Smart Play-Out Extended: Time and Forbidden Elements'

David Harel, Hillel Kugler and Amir Pnueli
The Weizmann Institute of Science, Rehovot, Israel
{dharel,kugler,amir }@wisdom.weizmann.ac.il

Abstract from a graphical interface of the system to be developed (or
a virtual interface, in the form of an object model diagram).
Smart play-out is a powerful technique for executing live During play-in, the supporting tool, called tRéay-Engine

sequence charts (LSCs). It uses verification techniques taconstructs a formal version of the behavior in the form of
help run a program, rather than to prove properties thereof. LSCs.
In this paper we extend smart play-out to cover a larger set Play-out is a complementary idea to play-in, which
of the LSC language features and to deal more efficiently makes it possible to execute the behavior directly. Dur-
with larger models. The extensions cover two key featuresing play-out, the user also interacts directly with the ap-
of the rich version of LSCs, namely, time and forbidden el- plication GUI, and the Play-Engine reflects the system
ements. The former is crucial for systems with time con- state at any given moment on the GUI. Play-out is actu-
straints and/or time-driven behavior, and the latter allows ally an iterative process, where after each step taken by the
specifying invariants and contracts on behavior. Forbidden user, the Play-Engine computes a super-step, which is a se-
elements can also help reduce the state space consideredyuence of events carried out by the system as its response
thus enabling smart play-out to handle larger models. to the event input by the user. The play-out mecha-
nism of [14] is rather naive when faced with nondeter-
minism, and makes essentially an arbitrary choice among
the possible responses. This choice may later cause a vi-
olation of the requirements, whereas by making a dif-
ferent choice the requirements could have been satis-

1. Background

Understanding system and software behavior by consid-ﬁed
ering the various “stories” or scenarios it entails is a promis- dne of the problems with plav-out in its original form
ing approach, which has resulted in intensive research ef-. . P o play 9 '
forts in the last few years. One of the most widely used is the inherent nondeterminism allowed by the LSC lan-

languages for capturing scenario-based behavior is that ofJuage. LSCs is a declarative, inter-object language, and as

message sequence cha(SCs), proposed long ago by such it enables formulating high level behavior in pieces
the ITU [24], or its UML variantsequence diagranf&3]. (e.g., scenario fragments), leaving open details that may de-

More recently, a broad extension of MSCs has been pro_pend on the implementation. Technically, the two sources of

posed, calledive sequence chartd SCs) [8], which are this nondeterminism are the partial order semantics among

multi-modal in nature. They distinguish between behaviors gvents in each chart, and the liberal nature of the interleav-

that may happen in the system (existential) from those that"9 between different charts during execution. These fea-

must happen (universal), both on the chart level and whenggjsealzi dvfgﬁelésﬁ%;?.sea;;ymrcea?%rr]evnvfga Zt:geai’tebmm t(; atno
referring to the elements within a chart. A universal chart P P

contains aprechart which specifies the scenario which, if consider them as the system’s executable behavior. More-

: over, in the spirit of most tools that execute high-level sys-
successfully executed, forces the system to satisfy the sce: . . .

e 4 tem models, the naive play-out mechanism deals with non-
nario given in the actual chart body.

I . determinism in a way that is not controllable by the user,
In [14] a methodology for specifying scenario-based be- . . : . ., . .
havio[r t(]armed th@laygz/play—r:)utfgpp%oachs described. making choices that might be “good”, but which also might

. . N cause violations that lead to aborting the run.
Scenarios are captured by the user playing them in directly In [12], we introduced a more povx?erful technique for ex-

. . _ ecuting LSCs, calledmart play-out It takes a significant
* Thisresearch was supported in part by the John von Neumann Minerva . .
Center for the Verification of Reactive Systems, by the European Com- Step towar_ds removmg_the_ sources of non_d"?‘termwsm dur-
mission projecOMEGA (IST-2001-33522) and by the Israel Science ing execution, proceeding in a way that eliminates some of
Foundation (grant No. 287/02-1). the dead-end executions that lead to violations. In the cur-

rent paper, we extend this technique to cover two of the ological system — parts of the vulval development process
more advanced central features of LSCs, and in so doingof theC. elegansiematode worm [19].

also provide a means for dealing with larger models. We have also been working on extending smart play-out
to cover a larger set of the LSC language features and to
2. Smart Play-Out deal more efficiently with larger models, and this is the sub-

ject matter of the present paper. Specifically, we show how
The idea of smart play-out is to formulate the play-out smart play-out has extends to cover two key features of the

task as a verification problem, and to use a model-checkingriCh_VerSion of LSCs described ?n [14]', namely, time apd
algorithm [7] to find a “good” super-step (i.e., a chain reac- forbidden elements. The former is crucial for systems with

tion of system events that constitute the reaction to an ex-UMe constraints andfor time-driven behavior, and the latter
ternal event), if one exists. Thus, we use verification tech- &lOWs specifying invariants and contracts on behavior. For-

hiques to help run a program, rather than to prove proper_bidden eIemen.ts can also help reduce th_e state space .that
ties thereof. has to be considered by the model-checking, thus enabling

The model-checking procedure is handed as input a tranSmMart play-outto handie larger mgdels. .
sition system that is constructed from to the universal charts Ashort summary of th'e transla}tlpn of the basu; LSCs lan-
in the LSC specification. (These are the charts that drive the9439¢ that was defined in the original presentation of smart

execution in the naive play-out process too.) The transition p!ay-out in [12] appears in_the Appendb_(. Itis rather tech-
relation is designed to allow progress of the active univer- Nic@l and may be skipped in a first reading of the paper, or

sal charts, but to prevent violations. The system is initialized COnsulted when getting into the details of the extensions for

to reflect the status of the execution just after the last exter-ime and forbidden element.
nal event occurred, including the current values of object
properties, information on the universal charts that were ac-3. Time-Enriched LSCs
tivated as a result of the most recent external events, and the
progress in all precharts. In [13, 14] LSCs have been extended with timing re-
The model-checker is then given a property claiming that quirements, thus making the language suitable for specify-
it is always the case that at least one of the universal chartdng the behavioral requirements of time intensive systems.
is active. This is really the negation of what we want, since The approach follows Alur and Henzinger [1] in basing
in order to falsify the property, the model-checker searchesthe extension on a single clock object. The extensions have
for a run in which eventually none of the universal charts is been implemented in full in the Play-Engine tool. This ex-
active. That is, all active universal charts complete successtension assumes a discrete time model and adopts the syn-
fully, so that by the definition of the transition relation no vi- chrony hypothesis, according to which the system events
olations occurred in the process. Such a counter-example ishemselves consume no actual time, and time may pass only
the desired super-step. If the model-checker is able to ver-between events.
ify the property then no correct super-step exists, but if it ~ When handling time, play-out takes an “eager” ap-
is not able to, the counter-example is exactly what we seek.proach, progressing with system events as far as possible,
For more details see [12]. and only when faced with hot timing requirements that are
Smart play-out can also be used to satisfy existential not yet satisfied does it wait and allow time to pass. In con-
charts, which can be used to specify system tests. It au-trast, smart play-out may decide not to eagerly perform all
tomatically finds a trace (if there is one) that satisfies the enabled events, but rather to allow some time progress be-
existential chart without violating any universal charts in fore continuing the execution. As will be shown below
the process. This can be useful in understanding the posthis may help smart play-out to satisfy the LSC require-
sible behavior of a system and also in detecting problems,ments while the “naive” play-out may cause a viola-
by, e.g., asking if there is some way for a certain scenario,tion. Thus, smart play-out in effect refines the seman-
which we believe cannot be realized by the system, to betics of LSCs and makes it more liberal. Our extension of
satisfied. If smart play-out manages to satisfy the chart it smart play-out is also effective in the mode where an ex-
will execute the trace, thus providing evidence for the causeistential chart is to be satisfied, allowing queries of the
of the problem. form “what is the minimal time in which some objec-
Since the appearance of [12], in which we reported on tive can be achieved?”.
smart play-out as applied to a basic kernel version of LSCs We now use a few simple examples to illustrate the role
(more or less the one appearing in [8]), we have gained ex-and possible usage of smart play-out as applied to timed be-
perience in applying the method to several applications andhavioral requirements. Consider the two charts of Fig. 1.
case studies. These include a computerized system — ama- The first, “TimeZ, states that when the phoneZover
chine for manufacturing smart-cards [17] — as well as a bi- is opened, after more thahtime units the display sets its

fied, and then the messa§bowReception(2) occurs,
Timel activating the chart Time2 and the timed assignment in
this chart. The timed conditiohime > T + 8 forces6
additional time units to pass before it is satisfied and the

_ messagépen is taken, causing charffimel to be com-
% Coper Display ik pleted successfully. The timed conditi®ime < T + 2
I _I is now detected as violated by play-out, causing a violation
T o o of chart “Time2, as shown in Figure 2 .
< T - (SN :
T :=ime %
:’rq______]Show F!ecieption[E]
TimesT + 8 2
;]:___?Dpen E_'_'_'_:Sw Feception(2)
\ '
T::T{me EF
E_:_TDpen
Time2 L3RS
PR A Figure 2. Violation by naive play-out
< :f(]'_____]Show Receptioniz] - In contrast, if we apply the smart play-out process to

this example, it computes and carries out a different or-
der of events. After the user opens the cover, smart play-
out allows9 time units to pass, and only then the message
4 -~ Open ShowReception(2) s taken. Now, without any further
time delays the messa@gpen occurs, causing the success-
ful completion of both charts.
' Another issue concerns There are LSC specifica-
tions that are inconsistent due to contradicting time re-
Figure 1. Smart play-out helps with time qguirements. Consider the two charts of Fig. 3. The first,
“Time3, states that when the phon&®ver is opened, the
Antenna should open, the background of tBesplay
reception level t®2 and after more thag time units the should change to green and its reception level;tall ac-
Antenna is opened. The messa@pen must occur after cording to this ordering and withi3 time units. The
the messag8howReception(2) as implied by the par- second chart in the figure Time4, states that when-
tial order defined by charfTimeZ, taking into accountthe ever the theAntenna becomes open, the reception level
synchronization enforced by the timed condition labeled of the Display should change to level, but only af-
Time > T + 8. ter at leasts time units have passed from the opening of
The second chartin the figurelifneZ, states thatwhen- the Antenna . Smart play-out would prove that in such
ever the theDisplay sets its reception level ta, the a case no correct super-step exists, which by the seman-
Antenna should open within less thaf time units, as tics of LSCs means that the requirements are inconsistent;
specified by the timed condition label&@ine < T + 2. see [11].
Assuming that these are the only two relevant charts of
the system, and that the user opens the cover during naive.1. The Translation
play-out, the chartTimeZ becomes active and the play-out
mechanism then immediately stores the time. Af¢ime We now provide some details on how our extension of
units pass, the timed conditioime > T + 2 is satis- smart play-out translates the time features of LSCs to the

imum of the constant values, and for a variable or a function
we take the maximal value the variable or function can re-
turn while calculating?™**.

% ‘ Covver ‘ ‘ Ant ‘ | Dizplay |] |f actml -1 A CLCt;ni _ 0
S I R 0 if Loy =1 — 1ALy, o, =1
ey L) T ={ Ti+1 it TICK =1
: : | | {1, T; + 1} if0<T; <dm*
T; otherwise
o l0pen | A clock variable is initially set to value-1 and is set
& = - b again to this value when the chart changes from active to
: H::]EhangeBackground[Green] non-active. If objecO;, is at location] — 1 in chartm,, and
:Z]__'___'_:Showﬁeception[il] the next location of);, corresponds to a timed assignment
TimesaT + 3% to the clock variabld’;, thenT; is set to0. Once the clock
= variable isin the range < T; < d™*, itis incremented by

one if an explicitl' IC K occurs. In case an expliciti CK
message does not appear in the relevant LSCs or is not en-
abled, a nondeterministic choice can allow to increnignt

by one or to leave it unchanged. Actually, to achieve a more
efficient implementation we support “acceleration”, by al-

) lowing time increments ofl,2,4,8---, which in certain
- cases may help find a correct run faster.
—_— —l— == Intuitively, the specifier can add explicit time ticks to the
< Efq'_'_'_]Dpen charts, determining time progress, but may choose to spec-
' . ify only the timed assignments and time conditions with-
[[7Tme X out explicit time ticks, and then the nondeterministic choice
g will allow time progress. Ifl; reaches its maximum value
-_-_3smw Reception(4] d™e 1 1, it will remain with this value until the chart ends
: or a new timed assignment is taken. The fact fjaemains
at valued™** 4 1 and that this does not change the evalu-

ation of the timed conditions is part of the proof of the cor-

Figure 3. Inconsistent LSCs rectness of our translation and is omitted from this version
of the paper.

Timed conditions are a special form of conditions and are
transition relation used by the model-checking algorithms. thus handled within the framework of conditions as defined

The time features supported are timed assignments,n the original version of smart play-out [12]. We define how
timed conditions and an explicit TICK message; see to evaluate a timed condition using our timed clock defini-
[13, 14]. A timed assignment is of the forf) := TIME, tions. Given a timed condition of the forfime op T; + d
Where T; is a clock variable (local to the chart), and appearing in an LSC, we evaluate itBsop d. Since we re-
TIME is the global clock. A timed condition is of the setT; to 0 on a timed assignment, our evaluation of timed
form T'ime op T; + d, whereop is any of the standard oper- conditions is equivalent, and we are not forced to maintain
ations=, <, <, >, >, #. The delayd has an integer value, the global clock. This is also more efficient, since main-
and can be a constant (the usual case), a variable or a functaining global time values would force us to allocate larger
tion. An explicit TICK is a self message of the clock ob- ranges for the clock variables, which would have a strong
ject, and causes the global clock to progress by one timeeffect on the performance of the model-checking.
unit. Timed assignments can be specified also in the prechart,

In the smart play-out translation we add a new integer as shown in Fig. 4. Time is assigned to the variablenme-
variableT; corresponding to each clock variable appearing diately after the messaggéhowReception(2) occurs,
in the LSC specificatioril; is defined to range over the do- and this should be equivalent to performing the timed as-
main —1---d™* + 1, whered™** is the maximal delay = signment in the main chart, as specified in Fig. 1 in chart
value appearing in any timed condition for this variable. If “TimeZ. To ensure that timed assignments in the prechart
we restrict the delayg appearing in the timed conditions to are handled correctly, we modify the model-checking prob-
be constants, thedi™** is found simply by taking the max- lem of smart play-out that was originally given as:

are one of the LSC features supported in the standard play-

G(\/ (acty,, = 1)) in/play-out approach and the Play-Engine tool, they have a
mi €Sy significant role for smart play-out since they allow the user

to provide additional knowledge about the system, e.g., in-

to refer also to enabled timed assignments in the " . .
variants or preconditions, which can reduce the state-space

rechart: .
P dramatically and allow smart play-out to handle much larger
designs.
G(\/ (actm, =1)V \/ (BT Apen(m,) = 1)
m; ESy m; €Sy
Here ET A,cn(m,) 9€ts the value, if there is an enabled unload

timed assignment in the prechart of chart, and0 other-
wise. This states that at least one of the universal charts is
active or at least one of the timed assignments in a prechart

is enabled. Falsifying this modified property amounts to Contraller | Belt
finding a run that leads to a point in which all active uni-
versal charts have been completed successfully and there 2 _L T
are no enabled timed assignments that have not been per-
formed, which is exactly the desired run. i)
; b i
Time2b : oo 0]
Dizplay Ant Forbidden Elements

f__!____l__\ [PFE:::g Belt baes-1 _>_ :\
< {7 I5how Receptont2) | LsC F—Jrighi(|
T-Tme y | LsC Flen[] ‘

Figure 5. Forbidden elements

Forbidden elements are either messages or condi-
tions, and are specified in a special area at the bottom
of the LSC, separated by theorbidden Elements
header. An example of both element types appears in
Fig. 5. The chart describes thinloadscenario for a model
of a smart-card manufacturing machine [17]. When the
4. Forbidden Elements Controller sends the self messageload , as spec-

ified in the prechart, a new empty card is placed on the

Using forbidden elements [14] one can specify events belt, as specified by the messdy#0) appearing in the
that are not allowed to occur or conditions that are not al- main chart. No belt movements are allowed during this sce-
lowed to hold during specific intervals within a chart's ex- nario. This is specified by designating thight and
ecution. Forbidden elements can be used to express invarileft messages as forbidden while the unload chart is ac-
ants, i.e., expressions that must hold during specified executive.
tion intervals. In this section we explain how forbidden ele- The distinction between hot and cold applies also to for-
ments are fully supported by our extension of smart play-out bidden messages, where a hot forbidden message is not al
in a direct and natural way. lowed to occur in the designated scope, and if it does it

The use of forbidden elements is especially important in causes a violation and the system aborts, while the occur-
smart play-out. Apart from the fact that forbidden elements rence of a cold forbidden message causes the exit of the rel-

Figure 4. Timed assignment in a prechart

evant (sub) chart but it does not mean a violation. In our ex- or the messagezsgsoﬁok’ appears in the subchart and is

ample of Fig. 5 the forbidden messageght andleft enabled (that isy(m;)). AssumingOy, Os --- O,, are the
are hot, since they are strictly not allowed during the un- objects participating in the subchart, an objégtis out-
load scenario. side the subchart ffp, < L; V lp, > H; holds. HereL; is

Fig. 5 also shows the use of a forbidden condition. The the minimal location for objeaD; in the subchart whild?;
Unloadscenario should not be performed if there is already is the maximum location in the subchart. In case the scope
acard on the belt in the relevant si&. This is specified by is the entire LSC or the main chart the clause relating to par-
the forbidden conditioBelt.b3 <> -1, where by con- ticipating objects being outside the (sub) chart evaluates to
vention—1 denotes the fact that no card is placed on the belt FALSE and can thus be omitted.
slot,0 denotes an empty card, and a positive value denotesa A cold forbidden message affects the transition relation
personalized card. The forbidden condition is cold and hasof the location of an object participating in the (sub) chart.
the prechart as its scope. Thus, if the controller performs theif this cold forbidden message occurs, the participating ob-
unload message while the slbB is not empty, the for- jects exit the subchart.
bidden conditiorBelt.b3 <> -1 becomes true and the
prechart is exited without activating the main chart. As are-

sult the unload scenario designated in the main chart will , l !f bni,0; = L= 1A m: =1
not be taken. In general, the scope for forbidden elements lini0; = [—1 if Lm0, :Il —1Am =0
can be the entire LSC, its prechart, its main chart, or any Hj+1 msgp, .o, =1

subchart thereof.

Intuitively, if object O; is at location! — 1 in chart
m;, and the next location af); corresponds to the send-
ing of messagen from O; to Oy, then if in the next state
the message. is sent, the location is advanced; otherwise
it remains where it is, unless the cold forbidden message
msgsoﬁok’ occurs, in which case obje€; exits the sub-
chart to locationf; + 1.
The treatment of forbidden conditions follows along
_ similar lines. A condition is a boolean function over the do-
msgd .o’ = { 1 ifg ' mains of the opject propertie€; : D' x D'2 e x DT —
e 0 otherwise {0,1}, so that it can relate to the properties of several ob-
jects. Here, the properties appearing in the condition are
In order for the event of sendingsg from O; to Oy, to Py, P, --- P.. The values of properties can change only as
occur, we require the conditiogpto hold. This conditionis an effect of a message occurring, so for a hot forbidden con-
defined in a way that requires that at least one of the mainditions we disallow a message if in the next state we are
charts in which this message appears is active, and that alin the scope of the forbidden condition and the condition
active charts must “agree” on this message. When considerholds. Also, cold forbidden conditions affect the transition
ing also forbidden messages we conjupiatith a formula relation of the location of the participating (sub) chart ob-
" specifying thatmsgsoﬁok’ is not a hot forbidden mes- jects, but we omit the details in this version of the paper.
sage in the current scope. Notice that forbidden elements do not introduce additional
variables into our transition system, and thus they consti-
tute an effective means for reducing the state space and al-

4.1. The Translation

We first explain how we handle forbidden messages. As
explained in the Appendix, without considering forbidden
messages we define the transition relation for the occur-
rence of a message as follows:

/_ .
¢ = /\ x(mi) lowing smart play-out to handle larger models.
miEgS'(,(/\'rrw_qﬁ)j_‘OlC €ForbMessages(m;)

x(m;) = (actm, =0V (m;)) vV 5. Related Work

((lol <Ly Vlip, > Hl) A (102 < Ly V l02 > HQ) A

-+« AN(lo, < LnVlo, > Hy)) A large amount of work has been carried out on for-

P(m;) = mal requirements, sequence charts, and model execution.
\/ (moo, =l —1AL, o =1) Amyot and Eberlein [4] provide an extensive survey of sce-

nario notations. Their paper also defines several compari-
son criteria and then uses them to compare the different no-
We require that for each universal chant in which tations. The idea of using sequence charts to discover design
msgsojﬁok/ is designated as a hot forbidden message, ei-errors at early stages of development has been investigated
therm; is not active (that isqct,,, = 0), or all of the ob- in [2, 22] for detecting race conditions, time conflicts and
jects participating in the subchart are outside the subchartpattern matching. The language used in these papers is that

l; S.t. f(lt):msgi)j —o,

of classical message sequence charts, with the semantics bef9] W. Damm and J. Klose. Verification of a radio-based sig-
ing simply the partial order of events in a chart. In order to
describe system behavior, such MSCs are composed into hi-
erarchal message sequence charts (HMSCs) which are basii0]
cally graphs whose nodes are MSCs. As has been observed
in several papers, e.g. [3], allowing processes to progress
along the HMSC with each chart being in a different node
may introduce non-regular behavior and is the cause of un-
decidability of certain properties. Undecidability results and [11]

approaches to restrict HMSCs in order to avoid these prob-

lems appear in [15, 16, 10].

Live sequence charts have been used for the testing
and verification of system models. Lettrai and Klose [21]
present a methodology supported by a tool called TestCon-{12]
ductor, which is integrated into Rhapsody [18]. The tool is

used for monitoring and testing a model using a restricted

subset of LSCs. Damm and Klose [9, 20] describe a verifi-

cation environment in which LSCs are used to describe re-

quirements that are verified against a Statemate model im-
plementation. LSCs have also been applied to the specificall?’]
tion and verification of hardware systems [5, 6].

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

R. Alur and T. Henzinger. Real-time system = discrete sys-
tem + clock variablesSoftware Tools for Technology Trans-
fer, 1:86-109, 1997. A preliminary version appeared in the
Theories and Experiences for Real-time System Develop-
ment (T. Rus, C. Rattray, eds.), AMAST Series in Comput-
ing 2, World Scientific, 1994, pp. 1-29.

R. Alur, G. Holzmann, and D. Peled. An analyzer for
message sequence chart&oftware Concepts and Topls
17(2):70-77, 1996.

R. Alur and M. Yannakakis. Model checking of message se-
quence charts. 100th International Conference on Concur-
rency Theory (CONCUR99yolume 1664 oL ect. Notes in
Comp. Sci.pages 114-129. Springer-Verlag, 1999.

D. Amyot and A. Eberlein. An evaluation of scenario no-
tations for telecommunication systems developmentinin
Conf. on Telecommunication Syste2@01.

A. Bunker and G. Gopalakrishnan. Verifying a VCI Bus

Interface Model Using an LSC-based Specification. In
H. Ehrig, B. J. Kramer, and A. Ertas, editoRoceedings

of the Sixth Biennial World Conference on Integrated Design
and Process Technologpages 1-12, 2002.

A. Bunker and K. Slind. Propert Generation for Live Se-
quence Charts. Technical report, University of Utah, 2003.

E. Clarke, O. Grumberg, and D. Peled/odel Checking
MIT Press, 1999.

W. Damm and D. Harel. LSCs: Breathing life into mes-
sage sequence chart$ormal Methods in System Design
19(1):45-80, 2001. Preliminary version appeared in Proc.
3rd IFIP Int. Conf. on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’'99).

(14]

(19]

(16]

(17]

(18]

(19]

(20]

nalling system using the statemate verification environment.
Formal Methods in System Desigi9(2):121-141, 2001.

E. L. Gunter, A. Muscholl, and D. Peled. Compositional
message sequence charts.Pioc. 7" Intl. Conference on
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'01), volume 2031 ett. Notes in Comp.

Sci, Springer-Verlagpages 496-511, 2001.

D. Harel and H. Kugler. Synthesizing state-based object
systems from LSC specificationsint. J. of Foundations

of Computer Science (IJFCS1L3(1):5-51, Febuary 2002.
(Also,Proc. Fifth Int. Conf. on Implementation and Applica-
tion of Automata (CIAA 2000)uly 2000, Lecture Notes in
Computer Science, Springer-Verlag, 2000.).

D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-
out of behavioral requirements. Rroc. 4" Intl. Confer-
ence on Formal Methods in Computer-Aided Design (FM-
CAD’02), Portland, Oregonvolume 2517 otlect. Notes in
Comp. Sci.pages 378-398, 2002. Also available as Tech.
Report MCS02-08, The Weizmann Institute of Science.

D. Harel and R. Marelly. Playing with time: On the specifi-
cation and execution of time-enriched LSCs. RAroc. 10th
IEEE/ACM International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS'02Fort Worth, Texas, 2002.

D. Harel and R. MarellyCome, Let's Play: Scenario-Based
Programming Using LSCs and the Play-Engin8pringer-
Verlag, 2003.

J. Henriksen, M. Mukund, K. Kumar, and P. Thiagarajan.
On message sequence graphs and finitely generated regular
MSC languages. In J. R. U. Montanari and E. Welzl, edi-
tors,Proc. 27th Int. Collog. Aut. Lang. Progvolume 1853 of
Lect. Notes in Comp. Scpages 675-686. Springer-Verlag,
2000.

J. Henriksen, M. Mukund, K. Kumar, and P. Thiagarajan.
Regular collections of Message Sequence ChartsPrin
ceedings of the 25th International Symposium on Mathemat-
ical Foundations of Computer Science(MFCS’208@Jume

1893 ofLect. Notes in Comp. Scpages 675-686. Springer-
Verlag, 2000.

H.Kugler and G. Weiss. Planning a Production Line with
LSCs. Technical report, Weizmann Institute, 2004.
Rhapsody. I-Logix, Inc., products web
http://www.ilogix.com/products/.

N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E. Hub-
bard, and M. Stern. Formal Modeling of C. elegans Develop-
ment: A Scenario-Based Approach. In Corrado Priami, edi-
tor, Proc. Int. Workshop on Computational Methods in Sys-
tems Biology (CMSB 2003pages 4—-20. Springer-Verlag,
2003. Extended version To appear in Modeling in Molec-
ular Biology, G.Ciobanu (Ed.), Natural Computing Series,
Springer, 2003 .

J. Klose and H. Wittke. An automata based interpretation of
live sequence chart. IRroc. 7" Intl. Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’'01), volume 2031ladct. Notes in Comp. Sgi.
Springer-Verlag2001.

page.

[21] M. Lettrari and J. Klose. Scenario-based monitoring and test-
ing of real-time UML models. Irth Int. Conf. on the Uni-
fied Modeling Language, Toront@ctober 2001.

[22] A. Muscholl, D. Peled, and Z. Su. Deciding properties for
message sequence chartsPhoceedings of the 1st Interna-
tional Conference on Foundations of Software Science and
Computation Structures (FOSSACS '98umber 1378 in
Lect. Notes in Comp. Sci., pages 226—242. Springer-Verlag,

1998.

UML. Documentation of the unified modeling language
(UML). Available from the Object Management Group
(OMG), http://www.omg.org.

(23]

[24]
Chart (MSC). ITU-TS, Geneva, 1996.

Appendix A: The Basics of Smart Play-Out

Z.120 ITU-TS Recommendation Z.120: Message Sequence

Messages

We first define the transition relation for the location
variable, when the location corresponds to the sending of
a message:

-

Intuitively, if object O; is at location/ — 1 in chartm;,
and the next location o; corresponds to the sending of
messagensg from O; to Oy, then if in the next state the
message is sent, the location is advanced; otherwise it re-
mains where it is. It is important to notice that the event
msgo, .o, May not be allowed to occur at the next state
due to the happenings in some other chart. This is one of

l
-1

l’ if b0, =1—1Amsgy o, =1
i, if b0, =1—1A msg‘("‘)jéok’ =0

We provide here a short summary of the notations andthe places were the interaction between the different charts
translation used in the basic smart play-out process. Forbecomes important.

more details see [12, 14].

An LSC specificatiorS = S;; U Sg consists of a set of
charts, where each chart € S is existential or universal.
We denote bych(m) the prechart of chark:. Assume that
the set of universal charts § is Sy = {my, ma,...,ms},
and that the objects participating in the specification are
O ={04,...,0,}.

We define a transition system with the following vari-
ables:

act,,, ,determining if universal chart; is active. Its value
is 1 whenm; is active and) otherwise.

MSGo), 0y denoting the sending of messagag from
objectO; to objectOy. Its value is set td at the oc-
currence of the send and is changedtat the next
state.

msggj_,ok , denoting the receipt by obje€t, of message
msg sent by objecD;. Its value is set td at the oc-
currence of the receive and is changed &t the next
state.

Im,;,0; , denoting the location of objec?; in chartm;. It
ranges ovef) - - - ["* wherel™** is the last location
of O]‘ inm;.

lpeh(my),0, » denoting the location of objeaD; in the
prechart ofm;. It ranges oveo - - - [, where]"**
is the last location 00, in pch(m;).

We denote byf (1) = evnt(l) the event associated with
location/, and use the convention that primed variables de-
note the value of a variable in the next state, while unprimed

We now define the transition relation for the variable that
determines the occurrence of a send event (the receive case
is similar):

1 iféy A
s / 1 2
ms = .
90,0k { 0 otherwise
b 2 V B
miESu/\msggj_,ok €Messages(m;)
A
P2 =

A

miESy /\msgéiﬂok EMessages(m;)

V

I, S.t. f(lt):ms-qéj—»Ok

(acty, =0V h(m;))

P(m;) 2

(lWLi,O]‘ - lt - 1 /\ l;ni,Oj == lt)

Let us explain. In order for the event of sendingg
from O; to Oy, to occur, we require two conditions to hold,
which are expressed by the formulag and ¢-, respec-
tively. The first, ¢,, states that at least one of the main
charts in which this message appears is active. The as-
sumption is that message communication is caused by uni-
versal charts that are active and does not occur sponta-
neously. The second requiremeds, states that all active
charts must “agree” on the message. For an active chart
m; that containsmsge, .o, . We require that objecO);
progress to a locatiohy corresponding to this message, as
expressed by the formuta(m;). Formulag, states that for
all chartsm; containingmsggﬁok (that is,msgéﬁok €
Messages(m;)), either the chart is not active or the mes-
sage can occur (that ig,(m;) holds). According to the se-
mantics of LSCs, if a message does not appear in a chart

variables relate to the current state. organized by the variousexplicitly it (i.e., its sending and receipt) is allowed to oc-

features of the LSC language.

cur between the messages that do appear, without violating

the chart. This is reflected ity by the fact that the conjunc- completed successfully, with no violations — which is ex-
tion is only over the charts containingsgg, .o, - actly the desired super-step.

Precharts

The prechart of a universal chart describes the scenario
which, if completed successfully, forces the scenario de-
scribed in the main chart to occur. The main chart becomes
active if all locations of the prechart have reached maxi-
mal positions, which is what successful completion of the
prechart means. A central feature of play-out a sequence of
events in a super-step causing the activation of some addi-
tional universal chart, which now must also be completed
successfully as part of the same super-step. For this pur-
pose precharts are monitored, and locations along instance
lines are advanced when messages are sent and received.

Activation of Charts

For a universal chart;, we define the transition relation
for act,,, as follows:

1 if ¢(pch(m;))
act, =< 0 if ¢(m;)

act,,, Otherwise
om) 2 N (o, =)

O; €0bj(mi)

The main chartn; becomes active when all locations of
the prechart reach maximal positions, and it stops being ac-
tive when all locations of the main chart reach maximal po-
sitions.

The Model-Checking Formula

To compute a super-step in the execution of an LSC sys-
tem using a model checker, the system is initialized accord-
ing to the current locations of instances in precharts, while
all locations in the main charts are sebtarhe main chart's
activation state is also initialized to reflect the current state.
After each external event, the Play-Engine decides which
precharts have completed and sets their corresponding main
charts to be active. We also set the properties of the objects
to reflect their current value.

The model checker is then given the following property
to prove, stating that it is always the case that at least one of
the universal charts is active:

G(\/ (actm, = 1))

m; ESy

Falsifying this property amounts to finding a run that
leads to a point in which all active universal charts have

