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Abstract

We consider the task of finding a mapping between two eNoses that employ two different sensor technologies, quartz microbalance
and conducting polymers. Such a mapping is a model that predicts the response of one eNose based on the response of the other. eNose
mappings are important for odor communication and synthesis, as well as for eNose data integration. We investigated a number of methods
for performing this task, including principal components regression, partial least squares, neural networks and tessellation-based linear
interpolation. Our measure of success is the percentage of predictions that are correctly classifiable. Using two different techniques for
splitting our data set, we achieved success rates of 67% and 100%.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Our group recently introduced a scheme that will enable
odor communication [1]. Electronic noses (eNoses) play a
fundamental role in the scheme, at the basis of which lies
the concept of anodor space. An odor space is the collection
of all possible response patterns of a nose, be it the human
nose or an eNose.

The odor communication system described in[1] requires
the realization of an algorithm—themix-to-mimic (MTM)
algorithm—which is as yet not fully realizable. One of its
core components is an algorithm capable of mapping from
the space of an eNose into the space of the human perception,
termed thepsychophysical space.

While eNose responses can be directly measured by
applying chemical samples to them, the way to obtain
measurements from the psychophysical space is to con-
duct large-scale human panel experiments. Due to the
difficulty in carrying out these experiments and directly
developing MTM, the suggestion in[1] is to construct
three sub-algorithms, each adding a further complication.
Upon the completion of the third, the full MTM will be
available. The second of these sub-algorithms—the MTM2
algorithm—involves the construction of a mapping between
two different eNoses.
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In this paper, we discuss our work on constructing a map-
ping between two eNoses that employ two very different
sensor technologies, quartz microbalance and conducting
polymers. The technology differences are important, as, in a
way, they represent the differences between eNoses and the
human nose.

Mappings between eNoses are also important for purposes
other than odor communication. Using such mappings we
would be able to integrate response patterns of different
eNoses into a unified database[4]. This would allow one to
combine data from different types of eNoses, to maintain
continuity when replacing sensor modules, and to overcome
drift effects due to sensor aging.

It appears that there is almost no work done on eNose
mappings. One example we found is[4], which describes
a linear mapping between two eNoses that share the same
sensor technology. We have not been able to find any re-
search on mappings between eNoses with different sensor
technologies.

2. Experimental

At the center of our laboratory setup are two eNoses:
MOSESII [6,7] with an eight-sensors quartz microbalance
(QMB) module, and Cyranose 320[8,9] which is a palm-top
device that contains 32 conducting polymer (CP) sensors.
CP and QMB are described in depth in[10].

The sample loop in our experiments consists of three
components connected in a row: the HP7694 headspace
sampler, followed by MOSESII, followed by Cyranose
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Fig. 1. The connection between MOSESII and Cyranose 320. The out-pipe
of the QMB module is connected to the 2 in. needle at the sample inlet of
Cyranose 320. This connection is mediated by a tailor made non-sealing
adapter, which directs part of the sample into Cyranose 320, and allows
the rest to evaporate in the room.

320. The duration of sample exposure that the headspace
sampler dictated, approximately 20 s, is not long enough to
reach saturation at the sensors, thus we measure the tran-
sient response. Between sample injections, the sample loop
is purged for 20 min with synthetic air.

The MOSESII eNose is designed for connecting to the
HP7694 headspace sampler. In contrast, the connection of
MOSESII to Cyranose 320 had to be improvised, and our
solution is shown inFig. 1. The pressure in the headspace
sampler was set to 1.52 bars, which is higher than the regular
pressure of 0.96–0.97 bars that we have regularly used when
measuring with MOSESII alone. However, increasing the
pressure was necessary in order to achieve sufficiently strong
responses of the CP sensors of Cyranose 320.

Recording the sensor readings was done differently in
MOSESII and in Cyranose 320. The ability of MOSESII
to synchronize with the headspace sampler allowed us to
start the recording in MOSESII directly at the signal start.
In Cyranose 320, which could not be synchronized with
the headspace sampler, we had to continuously record the
entire batch of measurements. The number of vials in a
batch was up to 21, making a batch recording last as long
as seven hours. We later detected the CP signals within the
continuous recordings using a sliding window algorithm.
The time interval between consecutive readings was 1.2 s in
QMB, and one second in CP.

The list of samples for our measurements (Table 1) in-
cludes organic chemicals with varied chemical properties,

Table 1
The 23 chemicals in our data set

List of chemicals

(1s)-(−)-Alpha pinene (1s)-(−)-Beta pinene
(r)-(+)-Limonene (s)-(−)-Limonene
1-Propanol 2,6-Dimethylpyridine
2-Acetylpyridine 4-Methylanisole
Allyl hexanoate Butyl butyrate
cis-3-Hexen-1-ol cis-3-Hexenyl acetate
Decyl acetate Dipentene
Ethyl valerate Heptyl alcohol
Hexyl alcohol Isoamyl propionate
n-Hexane n-Octane
Pentyl acetate Piperidine
Terpiolene

with the intention to obtain measurements from a wide por-
tion of the eNose spaces. Each chemical was measured in
at least seven consecutive measurements (one vial per mea-
surement).

3. Methods

3.1. Feature extraction

Prior to feature extraction, we gathered the raw data of
both QMB and CP into a uniform database, containing an
entry per measurement. In addition to the sensors’ raw data,
each entry holds the sensors’ baseline, which was calculated
in advance in order to be used during the feature extraction
step.

When choosing features to extract, the main objective is
to represent the raw data as well as possible, using as few
features as possible. A central aspect of representation is the
ability to discriminate between different odorants. We con-
sidered two features:height, which is the difference between
the signal maximum and its baseline, andrelative height,
which is the height divided by the baseline. Both features
are widely used in eNoses for a variety of applications, and
are simple to extract. For example, Our group had success-
fully used the height feature of QMB for tasks that include
classification and concentration prediction[3]. For Cyranose
320, It is suggested by the designers of its CP sensors to use
the relative height feature[9].

We visualized the scatter of the data with height and rel-
ative height, using principal component analysis (PCA), as
shown in Fig. 2. In order to compare the discrimination
power of the two features, we referred to repeated measure-
ments of the same odorant as a cluster, and for each feature
we calculated acluster discrimination measure (CDM), de-
fined as:

CDM = tr(Sb)

tr(Sw)
, (1)

where Sb is the weighted covariance matrix of the cluster
centroids (thebetween variance), and Sw is the weighted
sum of cluster covariance matrices (thewithin variance).
The cluster weight in both Sb and Sw is the fraction of the
cluster size out of the total data. The higher the CDM value,
the better the discrimination.

Prior to CDM calculation, the variance of all sensors was
unit-scaled, thus enabling the comparison of CDM values
between features and between sensor sets. The CDM values
for height and relative height are shown inTable 2. Between

Table 2
Cluster discrimination measure (CDM) for height and relative height

Height Relative height

QMB 199.3 189.0
CP 31.7 30.2
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Fig. 2. The scatter of the data set with the height and relative height features, in CP and QMB. The colors represent odorants. The data was unit-scaled
prior to applying the principal component analysis (PCA).

the two features there is only a small difference; therefore
we do not expect the choice between them to have much
influence on our results. There is, however, a large CDM
difference between QMB and CP; QMB has much higher
CDM, in accordance with the visual impression conveyed
by Fig. 2.

Since the CDM of the two features is roughly the same, we
chose to use the ‘traditional’ feature for each of the sensor
sets, namely the height for QMB and the relative height for
CP.

3.2. Mapping methods

Our task is to learn a mapping between two eNose spaces.
Mappings are directional. Thus, in every mapping one of the
spaces is thesource space and the other is thedestination
space. Denote byX andY the two matrices containing the
readings in the source space and the destination space, re-
spectively.X is ann × dS matrix andY is ann × dD matrix,
wheren is the number of measurements anddS, dD are the
dimension (number of sensors) of the source space and the
destination space, respectively. InX and Y, each measure-
ment is represented by a row that contains a single feature
per sensor. We seek a mapping model that will explainY
usingX.

3.2.1. Linear regression methods
We tried three linear regression methods: multiple linear

regression (MLR), principal component regression (PCR)
and partial least squares (PLS). These methods are explained
in detail in [11,12], and a wide statistical background for
them can be found in[13].

3.2.2. Nonlinear neural networks
The actual nature of the mapping between eNose spaces

is unknown to us, and we would like to be able to account
for nonlinear effects as well as for linear ones. Feed-forward
back-propagation neural networks (NN) are a powerful
learning tool, which can be used for learning nonlinear
functions. We used a network with a sigmoid hidden layer
and a linear output layer. This network architecture can ap-
proximate arbitrarily well any function with a finite number
of discontinuities, including nonlinear ones, given suffi-
cient neurons in the hidden layer[14]. In practice, we used
networks whose hidden layer size does not exceed 32.

Since we use NN for prediction, it is necessary to provide
means for generalization; that is, avoiding over-fitting the
model to the calibration data. For this purpose, we used
the Bayesian regularization training method. In addition, we
applied the early stopping technique, using a validation set
consisting of 40% of the calibration data. The description of
these methods can be found in[14].

3.2.3. Tessellation-based linear interpolation
The Tessellation-based linear interpolation method (TLT)

consists of two stages: Tessellation and prediction. First, we
tessellate the convex hull of theX points for which we know
the correspondingY points (the calibration set) with (dS
+ 1)-vertex shapes (namely,simplices; single:simplex). For
example, withdS = 2, this means tessellating an area with
triangles. In this tessellation, the vertices of all simplices
are calibration setX points.Fig. 3shows tessellations of the
QMB space and the CP space.

We predict theY point for a newX point in the follow-
ing manner: we first locate the simplex enclosing the new



O. Shaham et al. / Sensors and Actuators B 106 (2005) 76–82 79

Fig. 3. The two-dimensional Delaunay tessellation of QMB and CP. The axes are the first two principal components.

X point, which is assured to exist provided that the point is
within the convex hull of the calibration set. We then calcu-
late thebarycentric coordinates of the point relative to the
vertices of the simplex enclosing it. The barycentric coor-
dinates of a pointp within a simplex can be intuitively de-
scribed as weights, which, if placed at the simplex’s vertices,
their center of mass will coincide withp. We normalize the
sum of coordinates to 1, achieving unique coordinates which
can be used as interpolation weights. TheY point we pre-
dict for the newX point is then the linear interpolation from
the simplex’s vertices, which are calibration set points with
knownY values. In other words the prediction is the average
Y value of the simplex’s vertices, weighted according to the
barycentric coordinates.

The TLI method is local; this is the main property dif-
ferentiating it from all the other methods we use. By local,
we mean that the prediction is based only on calibration set
points in the vicinity of the predicted point. This property
protects TLI from global topological distortions in the map-
ping.

A method similar to TLI was recently presented in a dif-
ferent context in[5], termed there the Law of Mixtures (LM).
The difference between TLI and LM is in the tessellation
method. TLI uses Delaunay tessellation, which is the unique
tessellation such that the circumsphere of each simplex has
no vertices in its interior. This property works to prevent,
when possible, the use of elongated simplices, and thus con-
tributes to the locality of TLI.

We find that it is better to apply TLI in a low dimension,
because the number of outliers (test set points which lie
outside the convex hull) rises quickly with the dimension.
For that reason we applied TLI in the space defined by only
the first few principal components of the source space. As
an alternative, we used PLS weights instead of principal
components (we termed this variant TLIPLS). Furthermore,
when applying TLI in two dimensions, we also predict theY
values of outliers, using a method which was proposed in[5].

This method is based on mirroring the outlier into the convex
hull, predicting theY value for the mirrored point using
interpolation, as previously described, and then predicting
theY value of the outlier by extrapolating from the mirrored
point.

3.3. Assessment of the prediction quality

Our task is to map from the source space into the des-
tination space. A way to evaluate our success is to check
whether the prediction of a sample from odoranto can be
classified, in the destination space, as odoranto. Specifi-
cally, we find the center of mass (centroid) in the destination
space for all odorants. Then, we calculate the distance from
the prediction to all the odorant centroids. A prediction of
a sample from odoranto for which the closest centroid is
the centroid ofo is counted as a “hit”, since it can be cor-
rectly classified. When assessing the prediction quality over
the entire test set, our indicator is the percent of predictions
that gave a hit, which we term %hits. In all calculations, we
use Euclidean distance in the mean-centered and unit-scaled
destination space.

3.4. Splitting the data set into calibration and test parts

Our data set contains multiple samples from each odorant.
Naturally, samples of the same odorant are generally closer
to each other than samples of different odorants. When ap-
plying a mapping model to a new sample (a sample from
the test set), theproximity of the calibration set samples to
the new sample affects the prediction’s accuracy. It is not
desirable to blur this effect by disregarding the heterogenic
nature of the data set. Therefore, we separately examined the
two extremes of the proximity range, by using two different
techniques for splitting the data set into calibration and test
parts: therepresentative test set (REP) andleave-one-out
(LO). In the REP technique, the test set consists of a ran-
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Table 3
Prediction results of the mapping methods. The entries are the %hits values of each mapping method, in each of the two data splitting techniques

Mapping direction MLR (%) PCR (%) PLS (%) NN (%) TLI (%) TLIPLS (%) Significance

From QMB into CP LO 21 23 23 27 21 26 1.39 s.d.
REP 35 43 39 65 96 91 1.28 s.d.

From CP into QMB LO 57 67 64 65 15 16 0.79 s.d.
REP 83 91 91 100 78 78 1.51 s.d.

In PCR, PLS and NN the results are those of the most accurate model in the dimensionality range tested. In TLI, The results are those of the
two-dimensional model, and they include the prediction for outliers. The significance of the best method in each experiment is presented as the number
of standard deviations above the mean.

dom representative from each odorant in the data set. The
LO technique, on the other hand, does not take a random
odorant, but iterates through all odorants, using—in each
iteration—all samples of that odorant as the test set. In this
way, LO actually “leaves out” one odorant each time around.
A crude way of viewing the difference is this: REP tests the
mapping on samples that are “close” to the calibration set,
while LO tests the mapping on more “distant” samples.

4. Results

Following the feature extraction step described in
Section 3.1, and after excluding from the data set odorants
with responses that are too weak and other types of noisy
samples, the data set consisted of 141 different samples
from 23 odorants, with some six repeats per odorant. To this
data set we applied the methods described inSection 3.2
for learning mappings in both directions, that is, both from
QMB into CP and from CP into QMB. In PCR, PLS, NN
and TLI we tested a range of model dimensionalities. The
size of the test set was 23 with the REP technique (one
sample from each odorant) and 141 with the LO technique
(the agglomeration of test sets from all iterations). The
results are summarized inTable 3.

Fig. 4. Prediction from CP into QMB. Colors represent odorants. Actual measurements are marked with circles, predictions are marked with diamonds,
and the dashed lines link measurements to their corresponding predictions. In LO, the best method was PCR, achieving 67%hits. In REP, the best method
was NN, achieving 100%hits.

In mapping from QMB to CP, the best prediction perfor-
mance is 27%hits in LO and 96%hits in REP. In mapping
from CP to QMB, the best prediction performance is 67%hits
in LO and 100%hits in REP. Based on these results, we es-
timate that mapping from QMB into CP is harder than in
the opposite direction. Illustrations for the predictions from
CP into QMB are shown inFig. 4.

The comparison of the results of PCR and PLS inTable 3
shows that the performance of the two methods is equiva-
lent. A closer look into the differences can be obtained from
inspecting the %hits performance of PCR and PLS simul-
taneously as a function of the model dimensionality. This
analysis for mappings from CP into QMB is shown inFig. 5.
The best model dimensionality of PCR and PLS was similar
in most of our experiments. Furthermore, the performance
of PCR and PLS does not significantly differ in any place
along the dimensionality range. Based on this analysis, we
can conclude that despite the theoretical advantage of PLS
over PCR, the methods are practically equivalent in the con-
text of the current challenge.

Another view into the performance difference between
PCR and PLS can be obtained from comparing the results
of TLI and TLIPLS. The results do not exhibit any consistent
advantage of either method over the other.
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Fig. 5. The dependency of the %hits performance of PCR and PLS on the model dimensionality, in mappings from CP into QMB. The best dimensionality
with LO was 18/17 and with REP 15/12, in PCR/PLS, respectively.

The performance of the NN method is consistently good,
relative to the other methods, in all experiments. In one
of the experiments, the mapping from CP into QMB with
the REP splitting technique, it turned out to be the best
method, achieving 100%hits (Table 3). The NN performance
monotonically increases as additional nodes are added to the
network’s hidden layer, up to a certain level (Fig. 6). This
is expected, since generally a larger network possesses a
better expressive power. However, we observe that a hidden
layer size of eight or 16 is sufficient, and beyond this size
the performance does not improve. It can be estimated that
this network size reflects the complexity of the underlying
mapping from CP into QMB.

The performance of the TLI method (including the TLIPLS
variant) is outstanding in the mappings from QMB to CP
with the REP technique, achieving 96%hits, while the next
best method in this experiment is NN with only 65%hits

Fig. 6. %hits performance of the NN method as a function of the network’s
hidden layer size. Note that the hidden layer sizes tested are of the powers
of 2.

(Table 3). However, in other situations the performance of
TLI is relatively low, such as in mappings from CP into QMB
with the LO technique, where it achieves only 16%hits,
while all the other methods achieve 57–67%hits. We at-
tribute both the high performance in REP and the low per-
formance in LO to the local nature of TLI, as discussed in
Section 3.2.3.

The TLI performance does not change significantly, nor
consistently, in the model dimensionality range that we tried
(between 2 and 5). The number of outliers rises quickly with
the dimensionality, and with five dimensions over 50% of
the test set were outliers. We can thus conclude that com-
plicating the TLI model beyond two dimensions does not
seem necessary.

5. Conclusions and future work

In this paper we investigated methods for learning map-
pings between Cyranose 320, a conducting polymers eNose,
and the quartz microbalance module of the MOSESII eNose.
In mappings from CP into QMB, the percent of predictions
that could have been classified correctly (%hits) was 67%
for samples that are “distant” from the calibration set (LO)
and 100% for samples that are “close” to the calibration set
(REP). This mapping direction gave higher prediction accu-
racy than the opposite direction. A possible explanation for
this is that QMB possesses a high power of odor discrimina-
tion, thus with QMB as a target space more predictions can
be correctly classified. The prediction results provide infor-
mation about the appropriateness of the different mapping
methods to this task, as well as information about the nature
of the underlying mapping.

Some of the mapping methods we evaluated did not
have consistent performance in all experiments. The most
prominent example is the TLI method, which in the REP
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experiments was far better than in the LO experiments. We
concluded that TLI exploits the proximity of new samples
to calibration set samples better than the other methods.
From a practical point of view, it would be advisable to
dynamically choose a mapping method for the prediction
of each new sample, based on the proximity of that sample
to the calibration set.

The advantage of the nonlinear method we used, NN, over
the linear regression methods, is apparent from the results,
even though the gaps are not always large. This does not
suffice for determining whether the underlying mapping is a
nonlinear one. However, the results support the preference of
NN over the linear regression methods as a general strategy.

Another indication as to the nature of the underlying map-
ping is obtained from inspecting the model dimensional-
ity. In PCR and PLS, the optimal prediction accuracy was
achieved using a dimensionality that was lower than the total
number of sensors. Similarly, in NN we identified the hid-
den layer size beyond which the accuracy did not improve.
This type of information is helpful in choosing an appropri-
ate mapping model.

We have some ideas for improved mappings between
eNoses. Feature extraction approaches which capture more
information, such as the one presented in[2], could be ap-
plied. In addition, changes in the current mapping methods
or application of new ones may yield an improvement. In the
context of NN, different network architectures may prove
better.

Mapping between eNoses is important as a preliminary
step to mapping an eNose into the psychophysical (human
panel) space, which is a key task to realizing odor commu-
nication. The encouraging results we have achieved confirm
the viability of mapping between odor spaces. The represen-
tation of the psychophysical odor space that eventually will
be obtained from human panel experiments will no doubt
have different characteristics than an eNose space, and will

thus probably require different mapping methods. Neverthe-
less, we expect the conclusions we have drawn from the
current work to be helpful in the next stage.
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