Planned and Traversable Play-Out:
A Flexible Method for Executing
Scenario-Based Programs * **

David Harel and Itai Segall

The Weizmann Institute of Science, Rehovot, Israel
{david.harel, itai.segall}@weizmann.ac.il

Abstract. We introduce a novel approach to the smart execution of
scenario-based models of reactive systems, such as those resulting from
the multi-modal inter-object language of live sequence charts (LSCs).
Our approach finds multiple execution paths from a given state of the
system, and allows the user to interactively traverse them. The method
is based on translating the problem of finding a superstep of execution
into a problem in the AI planning domain, and issuing a known planning
algorithm, which we have had to modify and strengthen for our purposes.

1 Introduction

Scenario-based modeling appears to be a promising approach to system and soft-
ware design and development, and has resulted in intensive research efforts in
the last few years. One of the most widely used languages for capturing inter-
object scenario-based specifications is that of message sequence charts (MSCs)
proposed by the ITU [21], or its UML variant, sequence diagrams [28]. Recently,
an extension of MSCs has been proposed, called live sequence charts (LSCs)
[4]. LSCs are multi-modal charts that distinguish between behaviors that may
happen (existential, cold) and those that must happen (universal, hot).! The
language is highly expressive and can also specify negative behavior, and more,
and it has been extended to include, among other things, time, forbidden ele-
ments, and symbolic instances (i.e., the ability to talk also about classes, rather
than only object instances) [14]. An LSC is divided into two parts, a prechart
and a main chart. A prechart is a precondition for the main chart, i.e., if the
prechart of an LSC is satisfied, then its main chart must be satisfied as well.
In [15,14], the play-in/play-out approach is introduced, in which the user
specifies scenarios by playing them in directly from a graphical user interface

* This research was supported by the John von Neumann Minerva Center for the
Development of Reactive Systems at the Weizmann Institute of Science.
** This is a somewhat shortened conference version of the paper. The full version [16]
can be obtained by emailing one of the authors.
1 A variant of LSCs has also been defined, called modal sequence diagrams, or MSDs,
which adheres to the UML 2.0 standard; see [12].

of the system to be developed. When a scenario is played in, the Play-Engine
tool translates it on the fly into an LSC. Play-out is the complementary idea, in
which the Play-Engine uses the operational semantics of the language in order
to execute a set of LSCs. In this stage, the user again interacts directly with the
GUI, and the system responds to each user action with a superstep, which is a
set of actions, steps, that are dictated by the LSC specification as the result of
the action.

Here now is a simple example of an LSC specification for a three-story el-
evator, as shown in Figure 1. LSC Checkl, shown in Figure 1(a), states that
if the user presses the Close-Doors button then the elevator sends the mes-
sage Checkl to itself. The specification includes three such LSCs, with messages
Checkl, Check2, Check3. LSC Gotol, shown in Figure 1(b), states that if the
elevator sends Checkl to itself, then the system checks whether the elevator is
not on floor 1 and the Floorl button is pressed. If so, the elevator closes its
doors, moves to floors 2 and 1 and then opens its doors. The Floorl button
is turned off as well. According to the LSC semantics, partial order is defined
only among locations in the same lifeline (denoted by vertical lines). Therefore,
in this example, there is no explicit order between turning off Floorl and the
other four actions. At the bottom of the figure, two forbidden elements are spec-
ified, which state that the elevator may not send the message Check2 or Check3
to itself, as long as the main chart is active. Similar charts exist in the system
specifying movement to floors 2 and 3. Finally, the LSC TestCase of Figure 1(c)
is a test case, stating that if the elevator visits floors 3, 2 and 1, in that order,
then the Floor2 button is enabled.

The play-out mechanism described in [14] is naive, in the sense that at each
given point the system selects a single action that is enabled at that point and
executes it. This approach might lead to violations in the future, which could
have been avoided by selecting the action more wisely from the set of enabled
actions. In our example, assume the elevator has visited floors 3 and 2, and is
now moving to floor 1 according to the LSC Gotol of Figure 1(b). Once the set
Floor (1) message is sent from the elevator to itself, the TestCase LSC in Figure
1(c) becomes active too. Note that the elevator doors are closed at that point in
time. Now the system has two options: either open the doors as specified in the
Gotol chart, or enable the Floor2 button as specified in the TestCase chart. If
the system chooses to open the doors first, and only then enables the button,
a violation will occur, since TestCase states that after enabling the button the
doors must be closed, but the doors are already open and should not be closed
again. Had the system chosen to enable the button first, this problem would
have been avoided.

One way to tackle this problem is by using smart play-out [10,11], in which
play-out is translated into a model-checking problem. A model-checker is then
handed the claim “no legal superstep exists”, and if it delivers a counter-example,
which is really a legal superstep, it is then fed into the Play-Engine for execution.

Often it is useful to know more than a single legal superstep, but model
checkers are usually unable to provide more than one counter-example. In [14],

this issue is addressed in a rather crude way. The first-found superstep is turned
by the Play-Engine into a negative (forbidden) scenario. The resulting LSC is
then added to the specification and smart play-out is rerun. A different superstep
will then be found, if one exists. In this approach, the model-checker must be
employed repeatedly for each new superstep to be found, and the specification
keeps growing with another chart at each such run.?

In this paper we describe a new approach to the play-out problem, termed
planned play-out, which uses Al planning algorithms and finds many legal su-
persteps in a single run. As we show, this approach can also be used to support
interactive play-out, where the user is allowed to backtrack, and to choose be-
tween possible steps, in the quest for an acceptable superstep.

Technically, finding a legal superstep is translated into a planning problem,
and a planner is employed in order to solve it. The resulting plans are then
translated back into supersteps. We have chosen to use the IPP planner [25, 20],
an iterative Graphplan-like algorithm. Graphplan planners use a data structure
called a planning graph, which is a polynomial-sized graph that represents some
of the constraints in the planning problem, and which is used to reduce the search
for a legal plan. The resulting plan is a partial-order, in the sense that it is divided
into timesteps such that two actions in the same timestep are unordered in time.
Planning problems, Graphplan and IPP are all discussed in Section 3.

2 LSCs

A more detailed description of the LSC language is omitted from this version of
the paper; see [16].

3 Planning

Planning is a field of research central to Al, in which algorithms are designed to
generate a list of actions that lead to a predefined goal. Planning is appropriate
whenever a number of actions must be performed in a coherent manner to achieve
a goal — for example, a robot trying to reach a destination without bumping into
walls or getting into dead ends. The algorithms usually consider in advance the
consequences of their actions, and decide on the entire plan before performing
it.

A planning problem typically consists of three inputs: (1) a description of
the current state of the world — the initial conditions, (2) a description of the
desired state after performing the plan — the goals, and (3) a set of possible
actions — the domain theory. An action typically has a precondition, describing
when it is allowed, and an effect, describing the consequence of performing it.
An output plan is then a multiset of actions from the domain theory, with a
partial (or total) order, such that if performed in a manner consistent with the

2 In addition, the new superstep might be very similar to those already found, as the
only requirement is for it not to be identical to them.

Checkl

—_———

CloseBtn

LN

-

(a) The Checkl LSC, stating that if
the user presses the Close-Doors but-
ton, the elevator sends the message
Check1 to itself.

Gotol

‘ Flaori Btn

‘ Elewator

_— 9

< 4 *ICheck1])

o — —
[EIevator.FIoor<>Dne;FIoor1Btn:Trun?/
@_ _@ —_
-d_:jset Floor(Ting)
-r<]________:set FIoor[Ellhe]
i - 0pen i

—————

Forbidden Elements

MAIN

—Check2)

TestCasze
Elewator Floor2Bte
—_——_———— —

/

(

y

.

“Tset FloorThiee] \

=

F-

K]_____}set Flaor Twa)

F-

:q_____}set FloorOne]

-'<]___1True

Elervator=Lloze

MAIN

[Check3)

(b) The Gotol LSC, describing how

the elevator moves to floor 1.

the elevator

2 is pressed.

(c) The TestCase LSC, stating that if
goes to floors 3, 2 and 1,
in that order, then the button for floor

Fig. 1. Sample LSCs from the three-story elevator example

order, starting in a state consistent with the initial conditions, the goals will be

achieved.

There is a wide range of languages for representing the initial conditions, the
goals and the possible actions. We shall focus on the classic STRIPS representa-
tion [7], and its extension, ADL [27]. The propositional STRIPS representation
describes initial conditions and goals as a conjunction of positive boolean pred-
icates. Actions consist of conjunctive preconditions, add effects (predicates that
are true after performing the action) and delete effects (predicates that become

false).

Initial conditions: At(A, R1) A At(B, R1) A At(Bag, R1)
Goal: At(A, R2) A At(B, R2)
Actions:
Insert(object, room):
Precondition: At(object, room) A At(Bag, room)
Effects: In(object) A —At(object, room)
Remove(object, room):
Precondition: In(object) A At(Bag, room)
Effects: —In(object) A At(object, room)
Move(from, to):
Precondition: At(Bag, from)
effects: —At(Bag, from) A At(Bag, to)

Fig. 2. A STRIPS problem example

An example is given in Figure 2. It is similar to the rocket domain introduced
in [29], and involves two objects, A and B, and a bag. The purpose is to move the
objects from room R1 to R2, but only the bag can be moved directly between
the rooms. The initial conditions are that both objects and the bag are in room
R1, and the goal is to have both the objects in room R2. The insert action
represents inserting an object into the bag; its preconditions are that the object
and the bag are in the same room, and the effect is that the object is in the bag
and no longer in the room. Similarly, the remove action removes an object from
the bag. Finally, the move action moves the bag from one room to the other;
its precondition is the bag being in the from room, and its effect is removing
it from the from room, and placing it in the to room. A simple legal plan in
this example is to insert both objects into the bag, then move the bag, and then
remove both objects.

The ADL [27] language is an extension of STRIPS [7], in which conditional
and universally quantified effects are added, as well as negative goals. Our main
interest in ADL, as we explain later, is in the conditional effects and negative
goals.

3.1 Main approaches to planning

There are three main approaches to solving planning problems in the STRIPS
representation: (1) translation into a different problem, e.g., a formula in proposi-
tional logic, which is then solved by an external black-box algorithm, e.g., a SAT
solver [5,22, 23], (2) heuristic-based state-space search [3, 7], and (3) Graphplan
and its descendants.

Tha Graphplan approach [2], which we will use, calls for constructing a
polynomial-sized graph in a way that encodes many of the inherent constraints
of the problem. This graph and the constraints that arise from it are used in
order to significantly reduce the amount of search needed.

Graphplan’s main data structure is a planning graph, a polynomial-sized
graph that represents some of the constraints in the planning problem. Nodes

in the planning graph represent either propositions or actions, and are divided
into levels depicting timesteps. Two actions in the same timestep have no order
between them, but all actions in a specific timestep must occur before those in
the following one.

An important part of the graph analysis is detecting pairs of actions that can
never appear in a plan in the same timestep, and propositions that can never
be true together in the same timestep, and mark them as mutual exclusions
(mutezxes).

3.2 Planning Graphs

For lack of space, we omit from this version of the paper the more detailed de-
scription of the planning graph, its construction, and its usage in plan extraction;
see [16].

3.3 IPP

An important feature that ADL adds to STRIPS is the notion of conditional
effects. This allows actions to have different effects according to the state in
which they are performed. One of the algorithms that support this feature in a
Graphplan-like fashion is IPP [25, 20]. Negative goals and negative preconditions
are also supported by IPP.

4 Translating Play-Out into Planning

Our approach to finding legal supersteps is to represent play-out as a planning
problem and to solve it using the IPP planner [25,20]. The domain theory is
derived from the LSC specification, whereas the initial conditions are derived
from the current system state. The goals are independent of the specification,
and call simply for finishing the superstep safely. We have enhanced the IPP
algorithm so that multiple plans are generated in a single run. These plans are
then translated back into supersteps and are fed into the Play-Engine.

Even though we describe here the usage of the IPP planner, the problem is
represented in the ADL language, and cen be fed to any planner that supports
the relevant subset of ADL. The translation of play-out into planning is done
so that a plan exists if and only if a legal superstep exists, and plans can be
translated back into supersteps.

Each LSC is represented by an object, and its state is captured by various
predicates. An LSC can be either active or not (i.e., its main chart is active
or not) — a property represented by the predicate active. Each location in the
LSC can be enabled or disabled (according to the cut at any given moment),
represented by enabled_loc_X, for each location X in the LSC.

We assume that only a single copy of each LSC can be active at any given
moment, hence a single object per LSC is sufficient. In the future, we plan (no
pun intended. . .) to support multiple running copies by creating multiple objects
of the same class, where the class represents the LSC.

4.1 Initial conditions

The initial conditions of the planning problem are derived directly from the ini-
tial LSC state. Similarly to the smart play-out mechanism of [10], our translation
is invoked after an external event has occurred, in a state in which some LSCs
are active. The initial values of all the predicates are therefore determined ac-
cording to the set of active LSCs and their enabled locations in the given initial
configuration.

In the elevator example, suppose the superstep starts in a state where the but-
tons for floors 1 and 3 are on, the elevator is on floor 2, and the Close-Doors but-
ton is pressed. This causes charts Checkl, Check2 and Check3 to be activated and
the superstep to start. The initial condition will therefore be active(Checkl) A
active(Check2) A active(Check3) and the enabled predicates corresponding to
the location of the cut are true as well (any predicate not explicitly true is as-
sumed to be false). In addition, the predicates representing the light in button
floors 1 and 3 being on are both true.

4.2 The goal

A legal superstep is a sequence of actions that the LSCs take, after which all
LSCs are inactive. Hence the goal is:

(mactive(o1)) A -+ - A (nactive(oy,)).

This is similar to the way it is done for smart play-out [10].

4.3 Actions

Actions represent the possible transitions of the LSC system. Each action stands
for a possible step in a superstep, e.g., sending a message, advancing a condition,
etc. For each action we formulate its precondition and effect.

There are two types of steps, local and global. Global steps are message
sending and receiving, and are global in the sense that many charts must be
considered when deciding to perform them. Other steps, such as conditions, are
local, in the sense that only a single chart is relevant to them.

Conditions. We now describe the translation of conditions. Other constructs,
such as if-then-else and unbounded loops are translated in a similar fashion.

Both hot and cold conditions have an action for advancing them, and cold
conditions have an additional action for violation. A condition in an LSC is
synchronized with one or more lifelines, for each of which there is one location
that is relevant to the condition, and which must be active in order for the
condition to be advanced. Therefore, the precondition for the action of advancing
a condition is that all the relevant locations are enabled and that the condition
holds. The effect of this action is that the previous locations become disabled
and those subsequent to the condition become enabled.

For example, the action representing the hot condition of the doors being
closed in the TestCase LSC (which is at location 4 in the Floor2Btn lifeline, and

at location 6 in the Elevator lifeline) is:
Action advance_condition-1_TestCase (TestCase, Elevator)

Precondition: enabled_loc_Floor2Btn_4(TestCase)A

enabled_loc_Elevator 6(TestCase)
Doors_Closed(Elevator)

Effect: (menabled_loc_Floor2Btn_4(TestCase))A
(—enabled_loc_Elevator _6(TestCase))A
enabled_loc_Floor2Btn_5(TestCase)
enabled_loc_Elevator_T(TestCase)

One slightly more delicate case is that in which the condition appears at the
end of the main chart or the prechart, respectively. In this case, the effect is
conditional: (1) if all other lifelines are already in their final location, terminate
the LSC or enable the main chart, respectively, and (2) otherwise advance the
locations as described above.

As mentioned earlier, cold conditions have an additional action for violation.
It has similar preconditions, but if the condition does not hold then if it is in
a subchart the effect is to move to locations subsequent to the subchart and
otherwise the chart is deactivated and all locations are restarted.

Messages. Messages are not local: when one formalizes the action of sending a
message (both its precondition and its effect), many charts must be considered.
For simplicity, assume each message appears at most once in each LSC, and that
the message is synchronous. Asynchronous messages are also supported, but are
not described in this version of the paper.

In our translation, each message is transformed into an action. According
to the LSC semantics, a message must be triggered, i.e., there must be at least
one universal chart that causes it to be sent. Therefore, the precondition for the
action of sending a message is that at least one of the charts that contain the
message in their main chart is active, and that the message is enabled in it.

Upon sending a message that is enabled in an LSC, the cut is advanced
past it. If the sent message appears in an LSC but is not enabled in it, the
LSC is assumed to have a cold violation, so it is deactivated and the cut is
reset to its initial location. Thus, for each LSC containing the message, there
are two conditional effects: one stating that if the message is enabled the cut is
forwarded, and the second stating that if the message is not enabled the chart
is inactivated and the cut is reset to its initial location. Similarly to the case of
conditions, if the message is, or can be, the last action in the main chart (or the
prechart), the first effect must be divided into two different conditional effects,
according to the locations of the other lifelines.

Note that the only difference between prechart and main chart messages is
in the precondition: only main chart locations are considered in the precondition
(that is, only they affect the decision of sending a message).

For example, the message Set floor(2) sent from the elevator to itself ap-
pears in the main charts of Gotol, Goto2 and Goto3 (in all of them at location

7 of lifeline Elevator) and in the prechart of TestCase (though it will never be
the last message in that prechart). Its translation is as follows (and similarly for
charts Goto2, Goto3 and TestCase):?
Action send_Floor2_Elevator_Elevator(Gotol, Goto2, Goto3, TestCase)
Precondition: enabled_loc_Elevator_7(Gotol)V
enabled_loc_Elevator_T(Goto2)V
enabled_loc_Elevator_7(Goto3)
Effect: when (enabled_loc_Elevator_T(Gotol) :
—enabled_loc_Elevator_7(Gotol)A
enabled_loc_Elevator 8(Gotol)
when —(enabled_loc_Elevator_7T(Gotol) :
enabled_loc_Elevator _3(Gotol)
—enabled_loc_Elevator_4(Gotol) A—enabled_loc_Elevator_5(Gotol) A
—enabled_loc_Elevator_6(Gotol) A—enabled_loc_Elevator_7(Gotol)A
—enabled_loc_Elevator_8(Gotol) A—enabled_loc_Elevator_9(Gotol)A
—enabled_loc_Elevator_10(Gotol)A
enabled_loc_Floor2Btn_2(Gotol)A
—enabled_loc_Floor2Btn_3(Gotol) A—enabled_-loc_Floor2Btn_4(Gotol)A
—enabled_loc_Floor2Btn_5(Gotol)

A slightly simpler translation can be made if the user chooses not to allow
messages to violate main charts (which is sufficient in many cases). In this case,
the precondition of the action is that each LSC that contains the message in its
main chart is either inactive or else the message is enabled in it. Moreover, the
conditional effect that violates the main chart can be skipped.

4.4 More Formally

The formal definition of the translation is omitted in this version of the paper;
see [16].

5 Extending IPP

5.1 Forced mutexes

In some cases, especially when conditional effects are used, not all mutexes in-
herent in the problem arise from IPP’s planning graph. We introduce the notion
of forced mutexes into the ADL language. These are facts that the user knows
should always be mutex, and he/she can therefore explicitly specify them in the
problem description, adding them to those discovered by the standard IPP al-
gorithm. We have used this feature to specify that every two locations on the
same lifeline should always be mutex. Surprisingly, this small addition results

3 This translation can be made more efficient. For example, when violating a chart,
it is sufficient to disable only main chart locations if the chart is necessarily active.
These optimizations are not discussed in this version of the paper.

10

in huge performance improvements, causing problems that caused devastating
performance issues in an earlier implementation of our algorithm to be solved
within seconds. Further performance issues are discussed in section 6.3.

Mutexes in IPP are implemented using the efficient bit-vector idea introduced
n [26]. We adopt these ideas in the implementation of forced mutexes as well.
The result of this efficient implementation is that checking whether two facts are
mutex is performed in constant time, which does not depend on the number of
forced mutexes.

5.2 Finding many plans

IPP is a Graphplan-based planner that supports conditional effects, negative
preconditions and negative goals. Like most Graphplan-based planners, IPP is
an iterative process that halts once a solution is found. In order to be able to find
multiple supersteps we have enhanced the IPP planner to find multiple plans in
a single run. This is achieved by changing the halting condition and by adding
memoization of positive results.

The new halting condition is as follows. The user states in advance the num-
ber of timesteps he/she wishes to continue calculating beyond the shortest plan.
IPP will then find the shortest plan as before, but will keep iterating until all
plans bounded by the specified length are found.

In order to keep the running time feasible, one must memoize positive results.
IPP introduces an efficient memoization mechanism, as described in [17]. This
mechanism is used for memoizing negative results (i.e., unachievable subgoals in
the backtracking stage), in order to avoid re-checking them. Now that the process
is not halted upon finding the first plan, positive results (i.e., achievable subgoals
and subplans achieving them) must be memoized as well, since they could be
useful for other plans. We have implemented this using the same mechanism as
in the original IPP planner, with the addition that subgoals are augmented with
all subplans that achieve them.

The output of the extended IPP algorithm is a leveled DAG representing
multiple plans that achieve the goals. In it, nodes on level ¢ represent states
achievable in ¢ timesteps and edges represent the actions that drive the system
from one state to another. If an edge is labeled with more than one action, there
is no explicit order between them.

A snippet of the DAG generated in our example can be seen in Figure 3

6 Results

6.1 Traversable play-out

Once the play-out problem has been translated into a planning one and multiple
plans have been found, this information can be used for what we call traversable
play-out (TPO). In the TPO mode, play-out is performed interactively: at each
step, a list of possible actions is given to the user, who is then allowed to choose

11

SEND_CHECK3_FLEVATOR_ELEVATORSEND_CHECK2_ELEVATOR_ELEVATOR D_CHECK1_ELEVATOR_ELEVATOR

SEND_DOORS_CLOSE_ELEVATOR_ELEVATOR
SEND_LIGHT FALSE FLOOR3BTN_FLOOR3BTN

SEND_LIGHT _FALSE FLOOR3BTN_FLOOR3BTN
SEND_FLOOR_TWO_ELEVATOR_ELEVATOR

Fig. 3. Part of the DAG generated for the elevator example. In the first timestep,
the elevator sends Checkl, Check2 or Check3 to itself. If Check3 was sent, then the
condition in the Goto3 chart is advanced, and then the doors close and the floor3
button turns off (with no explicit order between the last two)

his/her preferred action. The user can also undo previous steps and explore other
paths of execution. Note that only “smart” steps are allowed, i.e., only those that
can lead to a successful superstep. If a certain action is enabled at some given
time, yet performing it will cause all future runs to fail (i.e., there is no legal
way to finish all the LSCs), then the action will not be presented as a possible
valid action at that time.

In the TPO mode the user can explore various possibilities, find new su-
persteps not considered earlier, and get a general feeling for all the options the
LSC system provides. We feel that these abilities are one of the most significant
advantages of our method.

Figure 4 demonstrates the dialog box for TPO with the valid steps at the
beginning of the example. A video demonstrating the traversable play-out mode
can be downloaded from [19].

6.2 Cut-queries

Another feature that is part of our method is that of cut-queries, which query
for locations of cuts during the run. The user can, for example, state that he/she
wishes to see runs in which either a specific case in a switch-case statement is
chosen, or two specific locations in an LSC are simultaneously enabled. Note
that in general such queries cannot be described by simply adding an LSC to
the specification, since one cannot directly describe by an LSC the requirement
that a specific location should be enabled in another LSC.

Each such query can be described as an AND/OR combination of a set of
atomic queries (those describing simultaneous locations of a cut). The query is

12

Valid Steps
Please select one of the following steps;
the Elevator sends Check:3[) to the itzelf Perform Selectsd
the Elevator sends Check2(] ta the itzelf
HIE‘ Elevator zends Check1([] to the itzelt
Fiun Freely
Previous step:

Unda &l

Fig. 4. Valid options for the first step in the superstep of the elevator example

then translated into the planning domain along with the play-out problem in
a way that ensures that only compliant supersteps are found. For each atomic
query, a predicate is added, together with an action. The precondition is that
the cut is at the correct locations, and the effect is to enable the predicate. The
AND/OR combination of the atomic queries can then be added to the goals as
a similar combination of the corresponding predicates.

6.3 Performance

Planning is known to be NP-complete or worse under most reasonable assump-
tions [6]. Moreover, Graphplan-based planners usually do not scale up to large
domains and large plans. Unfortunately (but not surprisingly), we inherit these
limitations.

Still, for the very simple elevator example discussed here, all supersteps (19
timesteps) were found in 300 milliseconds on a standard PC. A different elevator
example, in which the “Goto” LSCs are more than twice the size of the ones
described in this paper (and all the GUI buttons are takein into account), where
44 timesteps are needed for all plans, the full execution takes about 4 seconds.
These results raise the hope that finding all supersteps in much larger specifica-
tions will also become eventually feasible. But, of course, the jury is not in on
this yet.

It is important to note that finding all supersteps is usually not expected to
be a run-time feature, but rather a design-time tool. Therefore, a running time
on the scale of a few minutes for a large specification is quite satisfactory.

7 Future Work

We have described a framework in which supersteps of LSC specifications are
calculated in advance using planning techniques, thus allowing users to interact
with the system during play-out. The system lets the user choose steps during

13

the run, but in a way that guarantees completion of the superstep: whatever the
user chooses is legal and will lead to a successful completion of all LSCs. We
also introduced cut-queries that allow the user to define in advance which of the
supersteps are of interest.

A subset of the full LSC language of [14] is currently supported in our im-
plementation of planned and traversable play-out, including synchronous and
asynchronous messages, hot and cold conditions, switch-cases, infinite loops and
main chart-scoped forbidden elements. Thus, for example, we do not yet support
time and symbolic instances.

There are two main issues to be resolved in the context of finding all su-
persteps: supporting the full LSC language and finding a representation of all
supersteps.

As mentioned above, only a subset of the features of the LSC language is cur-
rently supported, and we have described some assumptions made along the way.
This subset should be extended to support the full language, and the assump-
tions should be removed. In our opinion, some of the constructs will turn out to
be easier to support than others. For example, we feel that symbolic instances
will not pose a serious problem. A predicate can determine to which object the
instance is bound and this predicate should be checked in each relevant action.
Similarly, multiple running copies of an LSC can be represented by multiple ob-
jects, all derived from the same LSC class. On the other hand, constructs that
have a numeric essence, like time, numeric variables, and bounded loops, might
be more difficult. This can perhaps be solved using planning with resources (see,
e.g., [24]), but then the Graphplan solution might not be a good approach.

Our implementation finds many supersteps in a single run, but usually not
all of them. In general, there can be infinitely many different supersteps, but
these often have a finite representation. For example, a loop that can be iterated
any number of times is often an adequate finite representation of infinitely many
different supersteps. Future research should address this issue.

8 Related Work

In [30], a symbolic simulation engine for LSC specifications is described. It uses
constraint logic programming, which in turn uses a form of backtracking in order
to find a solution, and can be used to find many supersteps. It is noteworthy that
this approach finds full-order supersteps only, hence the backtracking stage will
be slower when trying to find interestingly-different supersteps (i.e., ones that
differ not only in the order of the steps). Moreover, the approach is used mainly
for simulation and finding violations in specifications, whereas our approach is
intended for execution and finding many valid supersteps.

There has been an attempt, carried out recently in our group, of representing
partial orders derived from LSCs as digraphs [8]. These digraphs were then
merged in a way that represented all possible supersteps appropriate for a set
of LSCs. The approach, however, was never implemented in the Play-FEngine or
extended to support more than messages.

14

In another piece of recent work in our group, LSC specifications are compiled
into AspectJ code [13]. This code can then be compiled using any Aspect]J Java
compiler into a stand-alone application. The current compilation implements
naive play-out, yet stronger and more sophisticated play-out mechanisms can
probably be adopted too.

In several projects, model checkers have been augmented to produce multiple
counter-examples. In [1], a heuristic BDD-based algorithm for finding multiple
behavior paths is introduced, in order to explore and debug hardware design. In
[9], a model checker is used iteratively in order to refine an abstracted model.

Acknowledgments We’d like to thank Orna Kupferman for suggesting to us
the possible relevance of planning and AI, and Ron Merom for the idea of the
elevator example.

References

1. S. Barner, S. Ben-David, A. Gringauze, B. Sterin and Y. Wolfsthal, “An Algorith-
mic Approach to Design Exploration”, Proc. International Symposium of Formal
Methods Europe on Formal Methods - Getting IT Right (FME’02), 2002, pp. 146-
162.

2. A. Blum and M. Furst, “Fast Planning Through Planning Graph Analysis”, Proc.
14th Intl. Joint Conf. on Artificial Intelligence (IJCAT’95), 1995, pp. 1636-1642
(Extended version appears in Artificial Intelligence, 90(1-2), 1997, pp. 281-300)

3. B. Bonet and H. Geffner, “HSP: Heuristic Search Planner”, Proc. 4th Intl. Conf. on
Artificial Intelligence Planning Systems (AIPS’98) Planning Competition, Pitts-
burgh, 1998.

4. W. Damm and D. Harel, “L.SCs: Breathing life into message sequence charts”,
Formal Methods in System Design, 19(1):45/22680, 2001. Preliminary version
appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’99).

5. M. Ernst, T. Millstein and D. Weld, “Automatic SAT-Compilation of Planning
Problems”, Proc. 15th Intl. Joint Conf. on Artificial Intelligence (IJCAT'97), 1997,
pp. 1169-1176.

6. K. Erol, D. S. Nau and V. S. Subrahmanian, “Complexity, Decidability and Unde-
cidability Results for Domain-Independent Planning”, Artificial Intelligence, 76(1-
2), July 1995, pp. 75-88.

7. R. Fikes and N. Nilsson, “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving”, Journal of Artificial Intelligence, 2(3/4), 1971, pp.
189-208.

8. Amos Gilboa, MSC Thesis, The Weizmann Institute of Science, 2003, “Finding all
Possible Supersteps in LSCs”.

9. M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer and M. Y. Vardi, “Multiple-
Counterexample guided Iterative Abstraction Refinement: An Industrial Evalua-
tion”, 9th Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), 2003, pp. 176-191.

10. D. Harel, H. Kugler, R. Marelly and A. Pnueli, “Smart Play-Out of Behavioral
Requirements”, Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02), November 2002, pp. 378-398.

11

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

15

D. Harel, H. Kugler and A. Pnueli, “Smart Play-Out Extended: Time and Forbid-
den Elements”, Proc. 4th Int. Conf. on Quality Software (QSIC’04), IEEE Com-
puter Society Press, 2004, pp. 2-10.

D. Harel and S. Maoz, “Assert and Negate Revisited: Modal Semantics for UML
Sequence Diagrams”, Proc. 5th Int. Workshop on Scenarios and State Machines:
Models, Algorithms and Tools (SCESM’06), 2006, pp. 13-20.

D. Harel and S. Maoz, “From Multi-Modal Scenarios to Code: Compiling L.SCs into
AspectJ”, 14th ACM SIGSOFT Symp. on Foundations of Software Engineering
(FSE’14), Portland, November 2006.

D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine, Springer-Verlag, 2003.

D. Harel and R. Marelly, “Specifying and Executing Behavioral Requirements: The
Play-In/Play-Out Approach”, Software and Systems Modeling (SoSyM) 2, 2003,
pp. 82-107.

D. Harel and I. Segall, “Planned and Traversable Play-Out: A Flexible Method
for Executing Scenario-Based Programs”, Technical Report MCS07-01, The Weiz-
mann Institute of Science, 2007.

J. Hoffmann and J. Koehler, “A new Method to Query and Index Sets”, Proc. 16th
Intl. Joint Conf. on Artificial Intelligence (IJCAT'99), 1999, pp. 462-467.

J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan Generation
Through Heuristic Search”, J. Artificial Intelligence Research, 14, 2001, pp. 253-
302.

http://www.wisdom.weizmann.ac.il/~itais/video/TPO-Example.avi

IPP website, http://wuw.informatik.uni-freiburg.de/ koehler/ipp.html.
ITU-TS Recommendation Z.120: “Message Sequence Chart (MSC)”. ITU-TS,
Geneva, 1996.

H. Kautz and B. Selman, “Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search”, Proc. 13th National Conf. on Artificial Intelligence
(AAAT'96), Portland, 1996, pp. 1194-1201.

H. Kautz and B. Selman, “Blackbox: A New Approach to the Application of Theo-
rem Proving to Problem Solving”, Workshop on Planning as Combinatorial Search,
Artificial Intelligence Planning Systems (AIPS’98), June 1998, pp. 58-60.

J. Koehler, “Planning under Resource Constraints”, 13th biennial European Conf.
on Artificial Intelligence (ECAT’98), 1998, pp. 489-493.

J. Koehler, B. Nebel, J. Hoffmann and Y. Dimopoulos, “Extending Planning
Graphs to an ADL Subset”, Proc. 4th European Conf. on Planning (ECP’97),
Springer LNAI, 1348, 1997, pp. 273-285.

D. Long and M. Fox, “Efficient Implementation of the Plan Graph in STAN”,
Journal of Artificial Intelligence Research, 10(1999), pp. 87-115.

E. P. D. Pednault, ” ADL: Exploring the Middle Ground Between STRIPS and the
Situation Calculus,” Proc. 1st Intl. Conf. on Principles of Knowledge Representa-
tion and Reasoning, Toronto, 1989, pp. 324-332.

UML. Documentation of the unified modeling language (UML). Available from the
Object Management Group (OMG), http://www.omg.org.

M. M. Veloso, “Nonlinear problem solving using intelligent casual-commitment”,
Technical Report CMU-CS-89-210, School of Computer Science, Carnegie Mellon
University, 1989.

T. Wang, A. Roychoudhury, R.H.C. Yap and S.C. Choudhary, “Symbolic Execu-
tion of Behavioral Requirements”, Proc. 6th Intl. Symp. on Practical Aspects of
Declarative Languages (PADL’04), 2004, pp. 178-192.

