
How Hard is Smart Play-Out? 1

How Hard is Smart Play-Out?
On the Complexity of Verification-Driven Execution ∗

David Harel1 , Hillel Kugler2 , Shahar Maoz1 , Itai Segall1

1The Weizmann Institute of Science, Israel
{dharel,shahar.maoz,itai.segall}@weizmann.ac.il

2Microsoft Research, Cambridge, UK
hkugler@microsoft.com

Abstract

Smart play-out is a method for executing declarative scenario-based
requirements, which utilizes powerful model-checking or planning al-
gorithms to run the scenarios and avoid some of the violations that
can be caused by näıve execution. In this paper, we investigate the
complexity of smart play-out. Specifically, we use a reduction from
QBF in order to show that smart play-out for a most basic subset
of the scenario-based language of LSC is PSPACE-hard. The main
advantage of our proof compared to a previous one by Bontemps and
Schobbens is that ours is explicit, and takes advantage of the visual
features of the LSC language. We also show that for a subset of
the language, in which no multiple running copies are allowed, the
problem is NP-hard.

1 Introduction

Live sequence charts (LSCs) [2] constitute a visual formalism for
inter-object scenario-based specification and programming of reac-
tive systems. The language extends classical message sequence charts
(MSC) [10], mainly by adding universal and existential modalities.
Thus, LSCs distinguish between behaviors that may happen in the
system (existential, cold) and those that must happen (universal,
hot). A universal chart contains a prechart, which specifies the sce-
nario which, if satisfied, forces the system to satisfy also the scenario
given in the actual chart body.

An operational semantics was defined for the language in [8].
The result of this semantics is an execution technique for LSCs, called
play-out, in which an LSC specification consisting of a set of LSCs
is executed directly. However, the execution engine presented in [8]
is not enough, due to its näıve nature. At each point in time, it
chooses one step that is legal at that time, without considering the
consequences of one choice or the other. Thus, it may choose steps

∗The research was supported in part by The John von Neumann Minerva Cen-
ter for the Development of Reactive Systems at the Weizmann Institute of Science
and by a Grant from the G.I.F., the German-Israeli Foundation for Scientific Re-
search and Development.



2 Perspectives in Concurrency

that eventually lead to a violation even though other steps could
have avoided it. The notion of smart play-out is therefore introduced
in [7]. Two implementations have been suggested to date for smart
play-out [7, 9].

In this paper, we analyze the theoretical bounds on the complex-
ity of smart play-out, and prove the problem to be PSPACE-hard.
We also show an interesting subset of the problem, in which no mul-
tiple running copies are allowed, to be NP-hard.

Despite the high theoretical worst case complexity, in practice,
there are interesting LSC specifications for which smart play-out can
be applied successfully. We believe that since LSC specifications are
man-made, they will inherently have some “logical” structure, which
can be exploited for optimizing smart play-out techniques, causing
them to be practical. This issue is further discussed in Section 5.4.
Another reason that smart play-out may be effective despite its worst
case complexity is rooted in the significant advances made over the
past few years in verification methods and tools for analyzing large
complex systems.

The paper is organized as follows. Section 2 presents preliminary
material on LSCs. Section 3 defines the problem of smart play-out.
In Section 4 we prove the complexity results for the problem. In Sec-
tion 5 we discuss some issues related to the smart play-out problem
and its complexity. Finally, Section 6 covers some related and future
work. The formal proofs omitted from the body of the paper are
given in Appendix A.

2 Preliminaries

LSCs inherit the syntactic structure and visual representation from
MSCs. An LSC contains vertical lines, termed lifelines, which denote
objects, and events, involving one or more lifelines, thus inducing a
partial order. The most basic construct of the language are mes-
sages: a message is denoted by an arrow between two lifelines (or
from a lifeline to itself), representing the event of the source object
sending a message to the target object. Objects are partitioned into
environment-controlled and system-controlled ones, and messages are
said to be controlled by the environment or system according to the
sending object. A universal LSC, the kind used to drive the exe-
cution, is divided into two parts, the prechart and the main chart.
The intended semantics is that whenever the prechart is satisfied,
the main chart must also be satisfied. LSCs are multi-modal; almost
any construct in the language can be either cold (usually denoted by
the color blue) or hot (denoted by red), with a semantics of “may
happen” or “must happen”, respectively. If a cold element is violated
(say a condition that is not true when reached), this is considered



How Hard is Smart Play-Out? 3

a legal behavior and some appropriate action is taken. Violation of
a hot element, however, is considered a violation of the specification
and must be avoided.

An LSC may also contain conditions, if-then-else constructs,
etc., as well as more advanced constructs such as symbolic instances
(representing classes instead of individual objects), and forbidden el-
ements. Using conditions, one can also express anti-scenarios, i.e.,
scenarios that are forbidden, by introducing an LSC with the entire
forbidden scenario as a prechart, and a hot FALSE condition as the
main chart.

An example of an LSC can be seen in Figure 1(a). The prechart
is denoted by the dashed blue hexagon, and the main chart by the
solid black rectangle. The prechart contains a single message, in
which the object Y {i − 1}T sends Choose Next to itself. The main
chart states that XiT should send m to XiF , then Y iT should send
m to Y iF , etc. Note the SYNC construct, dictating an order between
these two messages, which would have otherwise been unordered.

An operational semantics was defined for the language in [8].
The result of this semantics is an execution technique for LSCs, called
play-out, in which an LSC specification consisting of a set of LSCs
is executed directly. In this semantics, the notion of cut is used.
The cut includes one location on each lifeline, separating the set
of messages that have already occurred from those that have not.
Whenever a message that is minimal in the prechart is sent, a running
copy of this chart is created, and the cut starts to progress. A runtime
configuration of an LSC specification is a set of running copies and
their corresponding cuts. Messages appearing immediately after the
cut are termed enabled. If a message that appears in a chart is sent
while not being enabled in it, the chart is violated (either causing a
violation of the specification or a graceful exit of the chart, according
to the modalities/temperatures).

Note that if a message appears twice in a chart, once as min-
imal and again as non-minimal, then this chart may have multiple
running copies at runtime: if the second appearance is enabled, and
the message occurs, then this copy must advance its cut to after the
message and another copy opens, advancing its own cut to be directly
after the minimal event. The complexity for the case where multiple
running copies are not allowed is discussed in Section 4.2.

3 The Smart Play-Out Problem

Given an initial configuration, we define a superstep to be a finite set
of steps executed by the system and ending in a state in which the
system has no more obligations. This means that after performing



4 Perspectives in Concurrency

the superstep all the main charts † have completed successfully. We
also assume that all events in the superstep were taken as a result of
appearing explicitly in the main chart of an LSC and being enabled;
that is, we do not consider the case of taking events ‘spontaneously’,
which may be in general helpful by allowing violation of precharts,
amounting to making less commitments to satisfy main charts.

The problem of smart play-out is defined as the problem of find-
ing a legal superstep from a given initial configuration if such a super-
step exists, or deciding and reporting that no such superstep exists
otherwise. This problem is proven to be PSPACE-hard in [1]. In
the present paper, we give an alternative proof, by a reduction from
QBF, the canonical PSPACE-complete problem [3].

We prove this complexity for the subset of LSCs containing
only messages. As a first step, we allow also synchronization con-
structs and anti-scenarios (charts for which the main chart is merely
a FALSE condition, causing the completion of the prechart to be an
immediate violation of the specification), and then explain how these
can be removed.

Note that we assume nothing about the structure of the charts
themselves. For example, a message may appear several times in a
chart. In particular, a message that is minimal in the prechart can
also appear again in the same chart. This feature allows multiple
copies of the same chart to be active simultaneously at runtime, each
at a different cut. Although our main focus is on the most general
case, the case in which multiple running copies are disallowed is also
discussed in Section 4.2.

4 How Hard is Smart Play-Out?

4.1 The general problem

Theorem 1 Any smart play-out mechanism supporting messages,
synchronization constructs, and anti-scenarios is PSPACE-hard.

Proof. We prove this by a reduction from QBF. Given a QBF
formula ϕ = ∃x1∀y1∃x2∀y2 · · · ∃xn∀yn(ψ), where ψ is a CNF formula
over variables {x1, y1, . . . , xn, yn}, we build a system and an LSC
specification. The specification is built such that a superstep exists
(from a specific initial configuration) if and only if the formula is
true.

Intuitively, the superstep will backtrack over the variables xi,
yi, where it will non-deterministically choose a value for the xi’s and
check both options for the yi’s. For each such assignment to all
variables, it checks that the CNF formula ψ holds.

†To simplify the discussion we assume that the main charts contain only system
events.



How Hard is Smart Play-Out? 5

We now describe the system and specification generated, first
intuitively and then more formally. The objects in the system are
viT, viF for each variable vi, v ∈ {x, y}. The assignment of a TRUE
value to a variable vi is denoted by a message m passing from viT
to viF and then back. A FALSE value is denoted by the same two
messages, in the reverse order (i.e., first from viF to viT ).

Some of these objects may also send various messages to them-
selves, as follows.

• A message Choose Next sent from an object yiT to itself de-
notes the fact that xi and yi have both received values and the
execution can proceed to the next pair.

• A message Done sent from an object yiT to itself indicates
a backtrack from yi — if yi was previously TRUE, then the
FALSE value should now be checked, and if it was FALSE the
execution will backtrack to i− 1.

• A message Check sent from either xiT or yiT to itself denotes
the fact that all variables are assigned values. The execution
will now “resend” these values and check that the assignment
is legal (i.e., that ψ holds).

• A message Done Check sent from either xiT or yiT to itself de-
notes the fact that this variable was checked. Once all variables
xi, yi are checked without the specification being violated, we
know that the current assignment is legal (i.e., ψ holds).

The specification consists of three groups of LSCs, with the fol-
lowing roles:

• Type 1 LSCs take care of the backtracking stage. They back-
track over the variables xi and yi, while non-deterministically
choosing values for the xi’s and checking both options for the
yi’s.

• Type 2 LSCs act as the memory of the system; they keep the
most recent assignment to each variable, and once all variables
are assigned values they “resend” these values, so that ψ can
be checked.
If a backtracking iteration changes only some of the values,
these LSCs are the ones in charge of remembering the values of
the rest of the variables.

• Type 3 LSCs check that ψ holds in the current assignment.
Each LSC checks one clause, and if a violated clause is detected,
it causes the specification to be violated.

Formally, the system consists of 4n + 1 objects, labeled:

x1T, x1F, y1T, y1F, . . . , xnT, xnF, ynT, ynF, and y0T



6 Perspectives in Concurrency

and of 12n+m+1 LSCs (where m is the number of clauses in ψ and
n is half the number of variables appearing in ψ), as follows.

• Type 1 LSCs:

– Type1A charts: Figure 1(a) shows n different charts (for
i = 1, . . . , n). Each such chart, upon seeing a Choose Next
message from yi−1 to itself, sends m from xiT to xiF , then
from yiT to yiF and from yiF to yiT , and, finally, the
message Choose Next from yiT to itself.

– Type1B charts: Figure 1(b) shows n charts, similar to the
Type 1A charts, only the first main chart message is from
xiF to xiT (as opposed to the other way around in Type
1A).

– Type 1C charts: Figure 1(c) shows n charts, stating that
whenever m is sent from yiT to yiF and back, and then
yiT sends Done to itself, m should be sent from yiF to
yiT and back, and, finally, yiT should send Choose Next
to itself.

– Type 1D charts: Figure 1(d) shows n charts, stating that
whenever m is sent from yiF to yiT and back, and then
yiT sends Done to itself, yi−1T should also send Done to
itself.

– Type 1E charts: Figure 1(e) shows a chart, specifying that
once ynT sends Choose Next to itself, all objects viT, v ∈
{x, y}, i ∈ {1, . . . , n} should send themselves Check and
Done Check. After they all do so, ynT should send Done
to itself.

• Type 2 LSCs:

– Type 2A charts: Figure 2(a) shows 2n different charts
(for v ∈ {xi, yi}, i = 1, . . . , n). Each such chart states,
for a specific object pair vT, vF , that if vT sends m to vF ,
vF sends m to vT , and then vT sends Check to itself, vT
should once again send m to vF , vF should send m to vT ,
and, finally, vT should send Done Check to itself.

– Type 2B charts: Figure 2(b) shows 2n charts, similar to
Type 2A charts, except that the order between the vT
sending m and the vF sending m is switched, both in the
prechart and in the main chart.

– Type 2C, Type 2D charts: Figures 2(c) and 2(d) show 2n
charts each, similar to Type 2A and Type 2B charts, re-
spectively, with the addition of object vT sending Done Check
to itself before the message Check in the prechart.



How Hard is Smart Play-Out? 7

• Type 3 LSCs:
Let ψ = C1 ∧ C2 ∧ · · · ∧ Cm. We introduce a single chart
for each clause Cj, j = 1, . . . , m. An example of this chart,
corresponding to the clause x1 ∨ y1 ∨ ¬y2, is given in Figure 3.
The example states that the following scenario is forbidden: the
scenario contains three independent sequences, with no explicit
order between them. The first contains object x1T sending
Check to itself, x1F sending m to x1T , x1T sending m to x1F
and x1T sending Done Check to itself. The second sequence is
similar, for objects y1T and y1F . Finally, the third sequence
is for objects y2T and y2F , except that the order of the two m
messages is switched.
It is easy to see how this example generalizes to any clause C.
All literals vk in C are represented similarly to x1 and y1 in the
example, and all literals ¬vk are represented similarly to y2.

Note that the size of the specification is polynomial in the size
of the input: it consists of 12n + m + 1 LSCs, with sizes as follows.
The Type 1E LSC is of size polynomial in n (it contains 2n objects,
each sending a constant number of messages). Type 3 LSCs are
of size polynomial in the size of the clauses of ψ (and all together,
polynomial in the size of ψ itself). All other LSCs are of constant
size.

We also introduce another set, called Type 1C′ LSCs; see Figure
4. These are similar to Type 1C charts, with an extra Choose Next
message sent from yiT to itself in the prechart (before the Done mes-
sage). These LSCs are not part of the final specification, but are
used as an intermediate step in the proof below.

Throughout the rest of the proof, we denote the event of object
o1 sending message msg to object o2 by o1

msg−−−→ o2.
We now explain intuitively why the specification constructed

here has a legal superstep, triggered by an external y0T
Choose Next−−−−−−−−−−→

y0T event, if and only if ϕ is true. The formal proof for this claim is
given in Appendix A.

We explain this by incrementally adding the chart types to the
specification. First, consider a specification containing only charts
of types 1A, 1B, 1C′, 1D and 1E. These represent the backtracking
“engine”. This engine backtracks over the xis and yis, where in
backtracking level i, xiT and xiF send each other the message m in a
non-deterministic order, then yiT

m−→ yiF and yiF
m−→ yiT are sent in

this order, and the following backtracking level is called (chart types
1A, 1B). Upon return of this call, yiF

m−→ yiT and yiT
m−→ yiF are sent

in this order (which is to be contrasted to the eariler case), and the
following backtracking level is called again (chart Type 1C’). Upon



8 Perspectives in Concurrency

(a) Type 1A charts: n charts, which,
together with Type 1B charts, nonde-
terministically choose an xi, and then
choose yi = T .

(b) Type 1B charts: n charts, which,
together with Type 1A charts, nonde-
terministically choose an xi, and then
choose yi = T .

(c) Type 1C charts:
n charts, for choosing
yi = F .

(d) Type 1D charts: n charts
for signaling that both values
for yi have been chosen.

(e) Type 1E chart: A single chart for sending the Check and Done Check mes-
sages.

Figure 1: LSCs of Type 1, forcing the smart play-out mechanism to
check all values for y variables and choose a value for each x variable.



How Hard is Smart Play-Out? 9

(a) Type 2A charts:
for “resending” the
last value, if true, of
each variable v after a

vt
Check−−−−→ vt message.

(b) Type 2B charts:
for “resending” the
last value, if false, of
each variable v after a

vt
Check−−−−→ vt message.

(c) Type 2C charts:
for “resending” the
last value, if true, of
each variable v after a

vt
Check−−−−→ vt message,

if it was not changed
since the previous
Check message.

(d) Type 2D charts:
for “resending” the
last value, if false, of
each variable v after a

vt
Check−−−−→ vt message,

if it was not changed
since the previous
Check message.

Figure 2: LSCs of Type 2, causing the last value of each variable to
be “resent” after each Check message.



10 Perspectives in Concurrency

Figure 3: An example for a Type 3 LSC, corresponding to the clause
x1∨y1∨¬y2. The chart causes the case where x1 = F, y1 = F, y2 = T
to be forbidden.

Figure 4: Type 1C′ charts: similar to Type 1C but with an extra

viT
Choose Next−−−−−−−−−−→ viT message in the prechart.



How Hard is Smart Play-Out? 11

return of this second call, this level returns as well (chart Type 1D).
At the halting condition, i.e., at level n, all xiT and yiT objects send
themselves Check and Done Check in this order (chart 1E). The idea
is that for variable vi, the order between viT

m−→ viF and viF
m−→ viT

represents the value given to it. Thus, for x variables, the order
is chosen non-deterministically and for y variables both options are
checked. The halting condition is the point where the CNF formula
ψ will be checked against the assigned values.

Type 2A and Type 2B charts act as memory – whenever a vari-
able vi is assigned some value (i.e., viT

m−→ viF and viF
m−→ viT are

sent in a certain order), the appropriate 2A or 2B chart will advance

past the first two prechart messages. Then, following a vT
Check−−−−→ vT

message, the two m messages will be resent in the same order. 2C and

2D are similar, and will resend the messages if a vT
Done Check−−−−−−−−−→ vT

is sent before the vT
Check−−−−→ vT (which happens whenever this vari-

ables has not been reassigned a value since the last time the halting

condition was reached). Since vT
Check−−−−→ vT is sent for all xis and yis

at the halting condition of the backtracking algorithm (of the Type 1
charts), augmenting the Type 1 charts with Type 2 charts causes all
variables to resend their last viT

m−→ viF and viF
m−→ viT messages (in

the same order they were last sent) whenever the halting condition
is reached.

Type 3 charts wait for this resend at the halting condition. Each
chart of Type 3 checks a single clause in ψ. Its prechart will be
satisfied if and only if the clause does not hold, i.e., all the variables
relevant to it were assigned values that are negations of those in
the clause. Since Type 3 charts are anti-scenarios (i.e., with a hot
FALSE condition as the main chart), if the prechart of a Type 3 chart
is ever satisfied, the specification is violated. Thus, augmenting the
specification with Type 3 charts assures that whenever the halting
condition in the backtracking algorithm is reached, all clauses are
satisfied, and ψ holds.

Therefore, the full specification has a legal superstep, following

an external y0T
Choose Next−−−−−−−−−−→ y0T event, if and only if the back-

tracking algorithm manages to assign values to the xis and yis such
that ψ always holds, which can happen if and only if ϕ is true.

We are now ready to move on to the main theorem of the paper
— the PSPACE-hardness of smart play-out mechanisms:

Theorem 2 Any smart play-out mechanism supporting messages is
PSPACE-hard.



12 Perspectives in Concurrency

Proof. It is enough to show how the synchronization constructs
and anti-scenarios of the above construction can be reduced to mes-
sages. There are three types of constructs that need to be removed,
as follows.

1. The SYNC constructs on two objects, appearing in Type 1A
and Type 1B charts, can easily be replaced by a newly intro-
duced message between the two lifelines (a different message for
each chart). Each of these messages appears only once in the
specification, therefore their only effect is in synchronizing the
two lifelines, much like the original synchronization construct.

2. The SYNC construct in the Type 1E chart can be replaced by
a series of new messages from each lifeline to the following one
(i.e., x1T to y1T , and then y1T to x2T , etc.). This will ensure

that the ynT
Done−−−−→ ynT message will be executed only after

all Done Check messages were sent, which is the purpose of the
SYNC.

3. Anti-scenarios in Type 3 charts can be removed as follows.
First, we duplicate the chart. In one copy, we use two newly in-
troduced messages msg1 and msg2, and specify that they must
appear in a certain order. In the second, we require them to
appear in the opposite order. Clearly, no superstep can sat-
isfy both, so that the new pair of LSCs acts, in combination,
as an anti-scenario that prevents the play-out mechanism from
satisfying the prechart.

Clearly, after making these changes, the specification is still poly-
nomial in the size of the input.

4.2 Multiple running copies

In general, the semantics of LSC and of play-out allows multiple
copies of the same chart to be simultaneously active. This may hap-
pen if messages that are minimal in the chart are allowed to reappear
in it. A similar issue was mentioned in [11] as one that requires spe-
cial attention — forbidding events from appearing more than once in
the same chart allowed a more succinct translation of the LSC lan-
guage into temporal logic. It remains an open question as to whether
this is a necessary condition for such a succinct translation to exist.

Both known PSPACE-hardness proofs — the one in [1] and ours
— use this feature in order to “implement memory”. For example, in
our proof this is heavily relied on in the Type 2 LSCs: the prechart
“remembers” the last value assigned to each variable, and the main
chart “resends” it. It is crucial that when the main chart resends this
value, a new copy opens with its prechart “remembering” this value.



How Hard is Smart Play-Out? 13

We do not know whether the complexity of the problem drops
when one forbids simultaneous multiple running copies of the same
chart. What we can prove, however, is that the smart play-out prob-
lem, even without multiple running copies, is NP-hard. While this
does not answer the question completely, it does show that the prob-
lem is still hard enough even in this constrained case. Note that even
without multiple running copies, the superstep may still be of length
exponential in the size of the specification. This is discussed further
in Section 5.3.

Theorem 3 Smart play-out without multiple running copies is NP-
hard.

Proof. We prove this by a reduction from SAT. Similarly to
the proof of the main theorem above, given a CNF formula ψ =
C1∧C2∧ · · · ∧Cm over variables {x1, . . . , xn}, we build a system and
an LSC specification. The specification is built such that a superstep
exists (from a specific initial configuration) if and only if the formula
is satisfiable.

The system consists of 2n + 1 objects, named x1T, x1F, x2T,
x2F, . . . , xnT, xnF and O. The truth assignment to x1, . . . xn is rep-
resented similarly to that in the proof Theorem 1, i.e., xi is assigned
TRUE if xiT sends m to xiF and then xiF sends m to xiT , and is
assigned FALSE if the same two messages are sent in reverse order.
The object O can send the message Start to itself, which is the event
that will trigger the superstep.

The specification contains 2n+m LSCs, of two types, as follows.

• Type 1 charts: these will be in charge of assigning values to the
variables:

– Type 1A charts: n charts, where chart i states that when-
ever O sends Start to itself, then xiT must send m to xiF .

– Type 1B charts: similar to Type 1A charts, except that
in the main chart xiF sends m to xiT .

• Type 2 charts: These are similar to the Type 3 charts in the
earlier construction, and make sure that each clause is satisfied
by the assignment. Given a clause C, let XT

C be the literals
appearing positive in C, and XF

c be those appearing negative.
The LSC corresponding to C is an anti-scenario, forbidding the
scenario in which ∀x ∈ XT

C the events xiF
m−→ xiT ; xiT

m−→ xiF

occur and ∀x ∈ XF
C the events xiT

m−→ xiF ; xiF
m−→ xiT occur.

The specification is clearly of size polynomial in that of the input.
Moreover, since there is no LSC for which a minimal event appears



14 Perspectives in Concurrency

again in the chart, there will never be any multiple running copies of
the same chart.

It is left to show that following an event O
Start−−−−→ O, a superstep

exists if and only if the formula is satisfiable.

• Assume a superstep exists. Clearly, from the Type 1 charts,
the superstep contains each object xiT sending one m message
to xiF and vice versa (in some order between the two). Since
no Type 2 charts are violated, it follows that for each clause C,
either ∃x ∈ XT

C s.t. xiT
m−→ xiF was sent first, or ∃x ∈ XF

C s.t.
xiF

m−→ xiT was sent first. If we assign TRUE to xi if and only
if xiT

m−→ xiF was sent first, it follows that for this assignment,
each clause is satisfied, and therefore ψ is satisfied.

• Assume an assignment to x1, . . . , xn exists s.t. ψ is satisfied.
Consider a superstep in which ∀xi assigned TRUE, the events
xiT

m−→ xiF ;xiF
m−→ xiT are sent, and ∀xi assigned FALSE,

the events xiF
m−→ xiT ;xiT

m−→ xiF are sent. Similarly to the
above argument, the superstep satisfies all Type 1 charts, and
does not satisfy the prechart of any anti-scenario in the Type 2
charts, and is therefore a legal superstep for the specification.

5 Discussion

5.1 Advanced constructs

LSCs is a rich language, which in addition to messages and synchro-
nization constructs that we have used in our proofs, contains also
conditions, object properties, assignments, messages with parame-
ters, and control flow constructs like if-then-else and loops. The
original smart play-out indeed handles these more advanced features
of the language (see [7]). Thus, it is of interest to understand whether
allowing the use of these constructs increases the complexity of smart
play-out.

The addition of bounded loops does not affect smart play-out
complexity, as such loops can be unravelled to represent all the it-
erations explicitly. However, the effect of using condition evaluation
and assignments over object properties and variables depends on their
domain and on the operators allowed. Thus, these may add no com-
plexity but might render smart play-out undecidable in the case of
infinite domains.

We note that unbounded loop constructs (i.e., star) may intro-
duce additional complexity, as they allow the user to add another
level of non-determinism to the LSC program: one may create a



How Hard is Smart Play-Out? 15

specification where the next cut is not uniquely determined by the
current cut and the next event. It is of interest to check how these
special cases may affect the complexity of smart play-out.

5.2 Upper bound

To date, there are two implementations of smart play-out: one based
on model-checking [7] and one based on AI-style planning (termed
planned play-out) [9]. However, neither support multiple running
copies (see 4.2). Thus, although both use a reduction into known
PSPACE problems, they cannot be used as a proof for an upper
bound for the complexity of the general problem. A tight upper
bound for the problem is yet unknown.

5.3 Superstep length

We note that the length of the superstep may be exponential in the
size of the specification. For example, in the specification used in
the proof of section 4.1, a legal superstep will traverse all possible
assignments to the yi’s, and will therefore be of exponential length.

Interestingly, this observation still holds even when multiple run-
ning copies are not allowed. For example, consider a one-object sys-
tem, with a specification consisting of k LSCs, Sk = {L1, L2, . . . , Lk},
over an alphabet Σk = {m1,m2, . . . , mk+1}, such that for all 1 ≤
i ≤ k, Li states that whenever mi is sent, eventually mi+1 needs
to be sent twice. Following m1, the only legal superstep for Sk is
of length exponential in k (for example, for S2, the superstep is
m1,m2,m3,m3,m2,m3,m3).

Thus, one may consider the problem of bounded smart play-out :
given a specification, an initial configuration, and an integer k, return
a superstep of length up to k if and only if one exists. This problem
may be of interest in practice. We leave its analysis to future work.

5.4 Accelerations

Although the worst case complexity of smart play-out is PSPACE-
hard, in practice we expect LSC specifications to be less complex.
The main purpose of smart play-out is to resolve dependencies be-
tween LSCs. Though there may be many such dependencies in the
worst case, our experience shows that in many interesting cases they
are limited. This fact gives rise to the hope that appropriate heuris-
tics could render the problem feasible for many practical specifica-
tions.

In other work in our group [6], and inspired by standard compiler
and model checking optimization techniques, we suggest an algorithm



16 Perspectives in Concurrency

that uses various acceleration techniques for smart play-out. The ac-
celerations are based on approximating the set of LSCs that may
participate in the current superstep, and on separating the elements
that may cause dependencies between the LSCs in the specification
(in the context of a given configuration) from the elements that may
not do so. While the former require smart play-out, the latter can
be handled efficiently in a more näıve fashion. All this is aimed at
reducing the size of the model without affecting the soundness and
completeness of finding a correct superstep. Clearly, such accelera-
tions are heuristic in nature, and do not reduce the complexity of the
problem in the worst case.

5.5 Is smart play-out good enough?

Smart play-out addresses the limitations of näıve play-out and finds a
legal superstep if one exists. However, looking only one superstep (or
a finite number of supersteps) ahead is still quite limited. Intuitively,
if the LSC specification is “too deep”, smart play-out may not be able
to distinguish between a superstep that allows the system to continue
playing (forever) from one that allows the environment to eventually
force the execution into a violation.

Indeed, in [4], it is shown that smart play-out, however often
repeated, is strictly weaker than full synthesis from LSCs, as was
defined in [5]. On the other hand, [4] also shows that for a given LSC
specification, there exists a k such that smart play-out that looks k
supersteps ahead is as good as full synthesis.

6 Related and Future Work

Bontemps and Schobbens [1] examine the complexity of various prob-
lems related to LSCs, including reachability, language inclusion, and
variants of synthesis. Specifically, they use a reduction from the halt-
ing problem of a PSPACE-bounded Turing machine to show that for
LSC, reachability, inclusion and satisfiability are PSPACE-hard. Fi-
nally, the authors of [1] claim that their results can be adapted to
show that determining whether a finite superstep exists is PSPACE-
complete, but an explicit proof is not given. In contrast, our proof
uses a reduction from QBF and is explicit.

A number of questions related to the complexity of smart play-
out remain open. As mentioned earlier, these include explicit inves-
tigation of additional langauge constructs, the question of whether
allowing multiple copies really affects the difficulty of the problem,
and establishing a tight upper bound for the general problem. In
addition, following [9], we consider the complexity of finding all su-
persteps (from a given configuration) to be an interesting question.



How Hard is Smart Play-Out? 17

References

[1] Y. Bontemps and P. Y. Schobbens. The complexity of live sequence charts.
In V. Sassone, editor, Proc. 8th Int. Conf. Foundations of Software Science
and Computational Structures (FoSSaCS’05), volume 3441 of Lecture Notes
in Computer Science, pages 364–378. Springer, 2005.

[2] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. J. on Formal Methods in System Design, 19(1):45–80, 2001. Pre-
liminary version in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’99 ), (P. Ciancarini, A. Fan-
techi and R. Gorrieri, eds.), Kluwer Academic Publishers, 1999, pp. 293-312.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[4] D. Harel, A. Kantor, and S. Maoz. On the Power of Play-Out for Scenario-
Based Programs. In D. Dams, U. Hannemann, and M. Steffen, editors,
Concurrency, Compositionality, and Correctness, Festschrift in Honor of
Willem-Paul de Roever. Springer, 2009. To appear.

[5] D. Harel and H. Kugler. Synthesizing State-Based Object Systems from
LSC Specifications. Int. J. of Foundations of Computer Science, 13(1):5–
51, February 2002. (Also in Proc. 5th Int. Conf. on Implementation and
Application of Automata (CIAA 2000), Springer-Verlag, pp. 1–33. Prelimi-
nary version appeared as technical report MCS99-20, Weizmann Institute of
Science, 1999. ).

[6] D. Harel, H. Kugler, S. Maoz, and I. Segall. Accelerating Smart Play-Out of
Scenario-Based Specifications. Submitted, 2009.

[7] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In M. Aagaard and J. W. O’Leary, editors, Proc. 4th Int. Conf.
on Formal Methods in Computer-Aided Design (FMCAD ’02), pages 378–
398. Springer-Verlag, 2002.

[8] D. Harel and R. Marelly. Come , Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[9] D. Harel and I. Segall. Planned and traversable play-out: A flexible method
for executing scenario-based programs. In O. Grumberg and M. Huth, edi-
tors, Proc. 13th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’07), volume 4424 of Lecture Notes in Computer
Science, pages 485–499. Springer, 2007.

[10] ITU. International Telecommunication Union Recommendation Z.120: Mes-
sage Sequence Charts. Technical report, 1996.

[11] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal Logic
for Scenario-Based Specifications. In N. Halbwachs and L. D. Zuck, edi-
tors, Proc. 11th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’05), volume 3440 of Lecture Notes in
Computer Science, pages 445–460. Springer, 2005.



18 Perspectives in Concurrency

A Completion of Proofs

In proving Theorem 1 we omitted the formal proof that a superstep

exists in the specification, following an external y0T
Choose Next−−−−−−−−−−→

y0T event, if and only if ϕ is true. This is proved in the following
series of claims.

Claim 1 Consider a specification consisting only of the Type 1 charts,
where Type 1C charts are replaced by Type 1C ′ charts. Any legal ex-

ecution of it, triggered by an external event y0T
Choose Next−−−−−−−−−−→ y0T ,

can be described by the following backtracking pseudo-code:

1: procedure Choose(i)
2: if i = n + 1 then
3: for all vj ∈ {xj, yj : j = 1, . . . , n} do

4: vjT
Check−−−−→ vjT

5: vjT
Done Check−−−−−−−−−→ vjT

6: end for
7: ynT

Done−−−−→ ynT
8: Return
9: end if

10: nondeterministic switch
11: case
12: xiT

m−→ xiF

13: xiF
m−→ xiT

14: case
15: xiF

m−→ xiT

16: xiT
m−→ xiF

17:

18: end switch
19: yiT

m−→ yiF

20: yiF
m−→ yiT

21: Async call to Choose(i+1)

22: Wait until yiT
Done−−−−→ yiT is sent

23: yiF
m−→ yiT

24: yiT
m−→ yiF

25: Async call to Choose(i+1)

26: Wait until yiT
Done−−−−→ yiT is sent

27: yi−1T
Done−−−−→ yi−1T

28: end procedure
Proof. For each i = 1, . . . , n, the four LSC instantiations of Type
1A, Type 1B, Type 1C′, and Type 1D charts implement the Choose



How Hard is Smart Play-Out? 19

procedure with parameter i, as follows.
The Type 1A and Type 1B charts begin the execution. Lines

10–21 are the exact description of their main charts (where the non-
deterministic choice comes from choosing which one progresses first),
according to LSC’s operational semantics.

Whenever a Type 1A and Type 1B chart pair completes (note
that this always happens simultaneously), the cut of the correspond-

ing Type 1C′ chart is right before the last prechart message (yiT
Done−−−−→

yiT ). Note that this state will not be violated, since neither of the
corresponding Type 1A, Type 1B or Type 1C′ charts can be activate

at that time. Once this message (yiT
Done−−−−→ yiT ) is sent, the main

chart will be activated. This corresponds to line 22 in the pseudo-
code. The main chart clearly implements lines 23 - 25.

Similarly, the Type 1D chart will be activated by the next yiT
Done−−−−→

yiT message (thus implementing line 26), and its main chart imple-
ments line 27.

The Type 1E chart clearly implements the halting condition in
lines 2 - 9. (Note that the for all command in Line 3 is interpreted
as all j’s executed in any order, not necessarily sequential, and with
any possible interleaving between the messages corresponding to dif-
ferent values of j.)

Claim 2 Consider a specification consisting of all Type 1 and Type
2 charts (with the original Type 1C charts, not Type 1C ′ as used
in Claim 1). Any legal execution of it, triggered by an external

y0T
Choose Next−−−−−−−−−−→ y0T event, can be described by the following pseudo-

code (changes from claim 1 underlined see line 5):

1: procedure Choose(i)
2: if i = n + 1 then
3: for all vj ∈ {xj, yj : j = 1, . . . , n} do

4: vjT
Check−−−−→ vjT

5: Repeat the last message m sent back and forth between
vjT and vjF (or vice versa)

6: vjT
Done Check−−−−−−−−−→ vjT

7: end for
8: ynT

Done−−−−→ ynT
9: Return

10: end if
11: nondeterministic switch
12: case



20 Perspectives in Concurrency

13: xiT
m−→ xiF

14: xiF
m−→ xiT

15: case
16: xiF

m−→ xiT

17: xiT
m−→ xiF

18:

19: end switch
20: yiT

m−→ yiF

21: yiF
m−→ yiT

22: Async call to Choose(i+1)

23: Wait until yiT
Done−−−−→ yiT is sent

24: yiF
m−→ yiT

25: yiT
m−→ yiF

26: Async call to Choose(i+1)

27: Wait until yiT
Done−−−−→ yiT is sent

28: yi−1T
Done−−−−→ yi−1T

29: end procedure

Proof. This proof has two parts. Fact 1: Augmenting the model
by the Type 2 charts, while replacing Type 1C′ charts with Type
1C charts, does not affect the backtracking part of the pseudo-code.
Fact 2: The Type 2 LSCs implement line 5. We start by proving the
second of these.

Fact 2: Assuming Fact 1 holds, whenever the pseudo-code reaches

line 4 (in which the message vjT
Check−−−−→ vjT is sent), for each vari-

able vj, exactly one of the corresponding Type 2 charts has its cut

right before the vjT
Check−−−−→ vjT message in the prechart, and no

main chart of Type 2 charts is active. This is true, since for each
vj, both vjT

m−→ vjF and vjF
m−→ vjT were necessarily sent. If

vjT
Done Check−−−−−−−−−→ vjT was sent afterwards, then either the Type 2C

or Type 2D chart has a cut in that location, otherwise this holds for
the Type 2A or Type 2B chart.

The vjT
Check−−−−→ vjT message in line 4, therefore, necessarily

activates exactly one of the Type 2 charts for each variable vj, which
corresponds to the correct order in which the last vjT

m−→ vjF and
vjF

m−→ vjT messages were sent. This will cause them to be sent

again. Also note that the message vjT
Done Check−−−−−−−−−→ vjT appears now

in two active main charts — the Type 1E chart, and the active Type
2 chart. According to LSC semantics, this message may not be sent
until enabled in both. This causes the Type 1E chart to block until



How Hard is Smart Play-Out? 21

all the vjT
m−→ vjF and vjF

m−→ vjT messages are resent, therefore
postponing the execution of line 6 until after line 5 completes.

Fact 1: First introduce the Type 1C charts and Type 2 charts
into the specification from Claim 1 (without removing the Type 1C′

ones yet). Clearly, Type 2 LSCs are activated by the vjT
Check−−−−→ vjT

message, which can be sent only by the Type 1E chart. Whenever
this chart is active, no other Type 1 charts are active. Moreover,
for each i = 1, . . . , n, either the corresponding Type 1C′ chart, or
the Type 1D chart has a cut right before the last prechart message

(the Type 1C precharts were violated by the yiT
Choose Next−−−−−−−−−−→ yiT

message). Now, whenever a Type 2 chart resends the last vjT
m−→ vjF

and vjF
m−→ vjT messages, this prechart will be violated, but another

copy of it will start. For Type 1D charts, it will reach the exact
same location (right before the last prechart message). Both Type
1C and Type 1C′ precharts will open, both with a cut following the

two m messages. Therefore, when the vjT
Done Check−−−−−−−−−→ vjT message

is sent (and the Type 2 charts all finish), the backtracking algorithm
continues from the exact same state as in Claim 1: Type 1C and
Type 1D charts are activated (where the main chart of Type 1C is
identical to that of Type 1C′), and Type 1C′ precharts are violated
and closed.

Since Type 1C′ charts never become active in this run, we can
now remove them from the specification without changing the exe-
cution.

Claim 3 A legal superstep in the specification defined above, trig-

gered by an external y0T
Choose Next−−−−−−−−−−→ y0T event, exists if and only

if ϕ is true.

Proof. First note that adding the Type 3 charts to the specifi-
cation does not change the result of the above claim (as long as no
Type 3 chart causes a violation), since Type 3 charts are only anti-
scenarios, and not LSCs with “real” main charts that can drive the
execution. Also note that for Type 1 and Type 2 charts alone, any
choice from among the non-deterministic possibilities reflects a legal
superstep. Therefore, a superstep exists for the entire specification
if and only if there exist choices for each of the non-deterministic
possibilities such that Type 3 charts are never violated.

The minimal messages in the precharts of Type 3 charts are
Check messages from the relevant vT objects to themselves. These
are sent in the halting condition of the pseudo-code above (line 4).
Therefore, these precharts will become active whenever a halting con-
dition is reached. For each object vT , following the Check message,



22 Perspectives in Concurrency

the corresponding vT and vF objects resend their last exchange of
the message m.

Assume a superstep exists. Consider, for each variable v, the
exchange of messages m replayed by the Type 2 charts (i.e., in line 5).
Let v = TRUE if the order is vT

m−→ vF ;vF
m−→ vT , and v = FALSE

otherwise. Now consider the set of all values that all variables take
in all the executions of line 5. It is clear that a Type 3 anti-scenario
holds (i.e., it violates the specification) if and only if none of the
corresponding literals is satisfied. Since a superstep exists for each
such set of values, no Type 3 anti-scenario holds; i.e., for each clause
ci, at least one of its literals is satisfied, and therefore the whole CNF
formula ψ holds. From the flow of the backtracking algorithm, it is
clear that it finds a value for each ∃ term and checks all ∀ terms,
such that ψ holds, and therefore ϕ is true.

Now assume a superstep does not exist, and by contradiction
that ϕ is true. Thus, there exist decisions for the backtracking algo-
rithm such that whenever the halting condition is reached, ψ holds.
The algorithm, along with these decisions, induce a legal superstep,
in contradiction to the assumption.


