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Abstract. The editors of these CoSMoS Workshop Proceedings have
invited us to describe the two sides of our joint approach to computer
simulation of biological systems: the biological side and the computer
science side. Irun Cohen, an immunologist, will voice the biological side;
David Harel, a computer scientist, will voice the computer science side.

1 Cohen

I was led to David Harel and to the tools and thinking of computer science by
a combination of factors emerging from my research into autoimmune diseases
and the regulation of the immune system. Some of these factors are common to
biology research generally and some are linked specifically to immunology and
to my particular way of thinking. I shall list the factors that appear to have been
the most influential for me, beginning with the general and proceeding to the
particular.

1.1 The mass of experimental information staggers the imagination.

A biologist who zooms out for a comprehensive view of his or her field of study
is frustrated; the mass of data defies memory and intuitive understanding. It
appeared clear to me that only a computer could remember all the details and
might help the biologist sort them out.

1.2 Pleiotropism and redundancy thwart understanding.

Human understanding is most comfortable with one-to-one, linear causality; for
example, intuition early on posited that each DNA gene sequence is expressed
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through one messenger RNA and translated into one protein with a single func-
tion. Now we have learned about DNA methylation and other epigenetic con-
trol mechanisms; alternative splicing; post-transcriptional and post-translational
modifications; single proteins with five or ten different functions. In my own field,
we see that a single cytokine can make some cells die, some cells live and grow,
some cells differentiate – depending on the type and states of the cells. Redun-
dancy and pleiotropism – multi-functionality – are the norm [5]. Most human
minds find it difficult to keep track of pleiotropic and redundant systems; our
thinking favors simple engineering diagrams. We need the help of systems and
design experts to handle all the redundant and multi-functional details of living
organisms.

1.3 Experimental analysis is static; living systems are dynamic.

Living systems are dynamic at every level – molecules, cells, organisms, popu-
lations; continuous interaction is the essence of biology. Yet, the experimental
method almost always involves a controlled but static analysis of the defining
dynamics. If we want to see how living systems work, we must go beyond analy-
sis and study running simulations that can integrate the piecemeal experimental
data to recreate a working, dynamic whole.

1.4 We will not be able to reduce living systems to fundamental
laws of nature; biology is not like physics.

The paradigm established by physics asserts that truly scientific understanding
is founded on simple underlying laws, preferably quantitative, that account for
the manifest complexity of the real world. Science, so viewed, is the quest for
fundamental laws of nature. The laws of nature endure; such laws define being.
The transient, mortal details of life are trivial accidents. Physics is interested
in being; physics would see no fundamental difference between C. elegans and
H. sapiens; in essence, they both operate according to the same chemical reac-
tions and cellular networks, albeit to different degrees of complexity. Biology, in
contrast to physics, strives to understand the impermanent differences between
C. elegans and H. sapiens; the differences are based on cursory details; the dif-
ferences are not being, but becoming. Biology cannot reduce the messy details
of the living organism to explanatory, fundamental laws of nature; biology is
defined by attending to the fleeting details. Biology is interested in the reactive
designs of life. Biologists, like me, need the help of computer scientists and their
computers to record, characterize, and catalog the complex details of living sys-
tems, and to render them quantitative and dynamic. Computer scientists know
about design principles. Indeed, the only principle of biology that approaches the
status of a law is the notion of evolution through genetic variation and survival
of the fittest – evolution is a design for becoming, not a law of being.



1.5 Mathematical analysis has been incomplete.

Biologists have collaborated with mathematicians to clarify biologic complexity
by reducing it to relatively simple abstract relationships that can be analyzed
by differential equations and other mathematical tools. My formative experience
with mathematical theoreticians has been fruitful [14, 27, 2, 24–26, 10] and has
prepared me for later work with Harel and computer science. But these forays
into theory could not take into account the rich details of the actual biology
behind the phenomena that were modeled mathematically. The math misses the
ontogeny.

1.6 The immune system is cognitive and computes the state of the
body.

The prevailing view has been that the immune system has only one particular
bias: it must not respond to self-molecules; the functional immune repertoire is
selected by the foreign antigens that happen to enter the body. In contrast, my
experimental investigations of autoimmunity and autoimmune diseases led me
to conclude the immune system is cognitive – it has a built-in representation of
particular self-molecules and molecular contexts that guides its response deci-
sions both to self and to foreign; the immune system, as it where, knows what
it is looking for [11, 3, 4].

The immune system, moreover, is engaged in an ongoing computation of the
state of the body: Its receptors gather information about the body (injury, infec-
tion, the need to grow blood vessels or destroy them, the need to stimulate cells
or kill them, the need to heal wounds, etc) and tranduces this input information
into an output of regulated inflammation that feeds back to modify the body
and the immune system itself [5–7]. The details are beyond the scope of this
chapter. The point here is that my appreciation of the internal structure, the
cognitive behavior and computational function of the immune system led me to
see what David Harel and computer science might have to offer.

2 Harel

2.1 Origins

I had been working since the early 1980’s on the problem of specifying the be-
havior of complex reactive systems [21]. This started via a one-day-per-week
consultation job at the Israel Aircraft Industries (IAI), working with the avion-
ics team of a fighter aircraft project. During that period, I proposed a visual
formalism [16] — a rigorous diagrammatic language — for specifying reactive
behavior, which I called statecharts [15]. This language has been around now for
exactly 25 years and is considered a useful way of specifying behavior of such
complicated systems [20]. It is in broad use in many industries, from cellular
telephones to aircraft, automobiles, interactive software systems, and the like.



During that period the two main issues I was obsessed with were specifying
the system’s behavior in ways that would be intuitive and natural, but, at the
very same time, formal and executable. We want a medium with which it is easy
to specify and model and which is easy to understand, but, on the other hand,
it must also have rigorous mathematical underpinnings, detailed and precise
enough so that the system’s full behavior can be executed (simulated) and ana-
lyzed by computer. The language of statecharts is a modest attempt to approach
these two goals, in that it is highly diagrammatic, and seems to fit the way peo-
ple think about behavior, yet it is as rigorous as any mathematical equation or
computer program.

2.2 Biology and computer science

In the late 1980’s it occurred to me that such problems of specifying behavior
are not only common and problematic in human-made systems, such as the ones
mentioned above, but might also be problematic in modeling Nature — in par-
ticular, biological systems. It seemed that the notion of a reactive system and
the great difficulties that lie in designing them, are common to biological sys-
tems too. Perhaps the methods and languages used to design human-made ones
could be used to help understand biology by “reverse engineering” it. However,
having almost no experience in biology I wasn’t able to take this much further
on my own. And then, as Irun Cohen wrote in his portion of this paper, we
happened upon each other, which led us to carry out an initial modest project
with Na’aman Kam, a joint student who indeed started to use statecharts to
specify biological phenomena [22].

The current paper will not be discussing the details of the work that we have
done together in the last decade or so (see, e.g., [12, 13, 28, 29], but, in retrospect,
I would submit that modeling, specifying and analyzing biology is one of the most
exciting imaginable uses of computer science. This includes a lot of work by
systems biologists, by bioinformatics researchers, but also by people like us who
are doing something that is not exactly bioinformatics and is not exactly systems
biology either. Rather, it is an attempt to mimic and imitate biology using
means taken from software engineering and computer science, in an attempt to
understand an entire system in a broad way [18, 19]. Many people, including
myself, believe that computer science — as opposed to computer software or
computation per se — will play a role in the science of the 21st century (which
will no doubt be dominated by the life sciences) similar to the role played in the
science of the 20th century (which was dominated by the physical sciences).

2.3 On aircraft and elephants

If we were to take as a typical example of a complex human-made system an
F-16 or F-35, we might want to take as an example a complex biological system a
multi-cellular organism, such as an elephant, or a lizard, or a fly, or a worm. The
former has to be specified, designed, built, tested, debugged, maintained, and so
on, and the latter has to be understood, which is by no means a small feat! In



fact, the work that Irun and I have been doing with a cadre of extremely talented
students raises the possibility of carrying out a whole organism project (WOP),
the main goal of which would be to model an entire multi-cellular organism
[17]. The organism would be modeled up to a certain pre-agreed-upon level of
detail, and we want a model that would be fully and interactively executable. We
would be reverse engineering an elephant, so to speak, rather than engineering
an F-35. . .

The benefits of a successful WOP are almost unimaginable. Imagine us being
able to actually simulate an elephant, in its entirety, have it develop from a fetus,
have it walk and eat and play, and produce offspring.Moreover, and perhaps most
importantly, during all of that the user of the model can intervene, by anything
from switching off a gene, to treading on the elephant’s foot and seeing what
happens. If we could do that, especially if the model would reach down into the
cellular and sub-cellular levels, there’s almost no limit to the kinds of things we
might be able to discover.

My claim is that although such a WOP is an almost unimaginably compli-
cated task, even for a small organism, and one would need something like 15-20
years to approach it, it is possible. An elephant is obviously not a particularly
good idea, but something smaller and more manageable is, such as the C. elegans
nematode, which has a little over 1000 cells, all easily traceable in the lab. This
is a multi-cellular organism of sufficient complexity to teach us an enormous
amount about life, sickness and death, and the processes leading to them, but
it is also of sufficiently modest proportions so as to be imaginable in a long, but
reasonable, time frame [17, 19].

2.4 Visuality and formality

It is worth re-emphasizing that the recommendation is that modeling biology
would have to be done using approaches that are intuitive enough so that biol-
ogists, who are not trained as mathematicians or as computer scientists, would
be able to do much of the modeling themselves. My feeling is that the education
that biologists will be getting in the next 10-15 years will bring them closer to the
ability to master techniques for the modeling and analysis of complex systems,
just as the education physicists got many tens of years ago, became a lot more
mathematical, enabling them master and use mathematical techniques to model
and analyze physical phenomena. Of course, as mentioned earlier, the languages
and approaches used should be intuitive, but formal, so they their attractiveness
to the biological community notwithstanding, they would be rigorous enough to
be fully executed.

These days, biologists use many kinds of diagrams to describe pathways and
networks, and the interdependency of genes and other intra-cellular entities.
Many of these diagrams are informative and clear, but for the most part they
are not sufficiently formal. Most of the approaches that advocate such diagrams
do not give rise to full execution. First of all, this is due to lack of sufficiently
detailed biological data and parameters; but more importantly, it is because the
semantics of the diagrams themselves does not lend itself to full executability; see



[23]. In contrast, the approaches we have been using (for example, statecharts-
based modeling) are such that once you have your model intact, it can be run,
or executed just like any other computer program.

2.5 One more word on the collaboration

From my personal point of view, the collaboration with Irun, which started in
the late 1990’s, has been one of the most productive and exciting periods of my
scientific life. I hope that we will continue to work for many years and that our
work will be at least as exciting as it has already been. Perhaps we will indeed
be able to contribute a little to the feeling that the marriage between computer
science and the life sciences is already, but will become even more so, one of the
most fruitful marriages in modern science.

3 Two Views but One Product

Our two views of this biology-computer science alliance, as you can see here,
reflect two different vantage points. Each of us entered the collaboration moti-
vated by different personal and professional histories, arising from our different
trainings, experiences and mindsets. Our colleagues, nevertheless, need see only
one product of interest to science – the work itself, which is the unity of our
joint thinking and our joint efforts. The meaning of this unified opus will, in
turn, diverge into the different ideas and experiments that we hope our work
will trigger in our fellow scientists. Such is the evolution of science: diverse views
generate a new viewpoint that generates new diverse views.
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