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Abstract. This paper presents a new framework for analyzing the ge-
ometry of multiple 3D scene points from multiple uncalibrated images,
based on decomposing the projection of these points on the images into
two stages: (i) the projection of the scene points onto a (real or vir-
tual) physical reference planar surface in the scene; this creates a virtual
“image” on the reference plane, and (ii) the re-projection of the virtual
image onto the actual image plane of the camera. The positions of the
virtual image points are directly related to the 3D locations of the scene
points and the camera centers relative to the reference plane alone. All
dependency on the internal camera calibration parameters and the ori-
entation of the camera are folded into homographies relating each image
plane to the reference plane.
Bi-linear and tri-linear constraints involving multiple points and views
are given a concrete physical interpretation in terms of geometric rela-
tions on the physical reference plane. In particular, the possible duali-
ties in the relations between scene points and camera centers are shown
to have simple and symmetric mathematical forms. In contrast to the
plane+parallax (p+p) representation, which also uses a reference plane,
the approach described here removes the dependency on a reference im-
age plane and extends the analysis to multiple views. This leads to sim-
pler geometric relations and complete symmetry in multi-point multi-
view duality.
The simple and intuitive expressions derived in the reference-plane based
formulation lead to useful applications in 3D scene analysis. In particular,
simpler tri-focal constraints are derived that lead to simple methods for
New View Synthesis. Moreover, the separation and compact packing of
the unknown camera calibration and orientation into the 2D projection
transformation (a homography) allows also partial reconstruction using
partial calibration information.
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1 Introduction

The analysis of 3D scenes from multiple perspective images has been a topic of
considerable interest in the vision literature. Given two calibrated cameras, their
relative orientations can be determined by applying the epipolar constraint to
the observed image points, and the 3D structure of the scene can be recovered
relative to the coordinate frame of a reference camera (referred to here as the
reference frame–e.g., see [13, 6]). This is done by using the epipolar constraint
and recovering the “Essential Matrix” E which depends on the rotation R and
translation T between the two cameras. Constraints directly involving the image
positions of a point in three calibrated views of a point have also been derived
[19].

If the calibration of the cameras is unavailable, then it is known that re-
construction is still possible from two views, but only up to a 3D projective
transformation [4]. In this case the epipolar constraint still holds, but the Essen-
tial Matrix is replaced by the “Fundamental Matrix”, which also incorporates
the unknown camera calibration information. The 3D scene points, the camera
centers and their image positions are represented in 3D and 2D projective spaces
(using homogeneous projective coordinates). In this case, the reference frame
reconstruction may either be a reference camera coordinate frame [8], or as de-
fined by a set of 5 basis points in the 3D world [14]. A complete set of constraints
relating the image positions of multiple points in multiple views have been de-
rived [5, 15]. Alternatively, given a projective coordinate system specified by 5
basis points, the set of constraints directly relating the projective coordinates of
the camera centers to the image measurements (in 2D projective coordinates)
and their dual constraints relating to the projective coordinates of the 3D scene
points have also been derived [2, 20].

Alternatively, multiple uncalibrated images can be handled using the “plane
+ parallax” (P+P) approach, which analyzes the parallax displacements of a
point between two views relative to a (real or virtual) physical planar surface Π
in the scene [16, 12, 11]. The magnitude of the parallax displacement is called the
“relative-affine structure” in [16]. [12] shows that this quantity depends both on
the “Height” H of P from Π and its depth Z relative to the reference camera.
Since the relative-affine-structure measure is relative to both the reference frame
(through Z) and the reference plane (through H), we refer to the P+P frame-
work also as the reference-frame + reference-plane formulation. The P+P
has the practical advantage that it avoids the inherent ambiguities associated
with estimating the relative orientation (rotation + translation) between the
cameras; this is because it requires only estimating the homography induced by
the reference plane between the two views, which folds together the rotation and
translation. Also, when the scene is “flat”, the F matrix estimation is unstable,
whereas the planar homography can be reliably recovered [18].

In this paper, we remove the dependency on the reference frame of the anal-
ysis of multi-point multi-view geometry. We break down the projection from 3D
to 2D into 2 operations: the projection of the 3D world onto the 2D reference
plane Π, followed by a 2D projective transformation (homography) which maps



the reference plane to the image plane. Given the “virtual images” formed by
the projection onto the reference plane, we derive algebraic and geometric rela-
tions involving the image locations of multiple points in multiple views in these
virtual images. The positions of virtual image points are directly related to the
3D locations of the scene points and the camera centers relative to the reference
plane alone. All dependency on the internal camera calibration parameters and
the orientation of the camera are folded into homographies relating each image
plane to the reference plane. We obtain a structure measure that depends only
on the heights of the scene points relative to the reference plane

In this paper, we derive a complete set dual relationships involving 2 and
3 points in 2 and 3 views. On the reference plane the multi-point multi-view
geometry is simple and intuitive. These relations are directly related to phys-
ical points on the reference plane such as the epipole and the dual-epipole[9].
We identify these points, and also two new entities called the tri-focal line and
the dual trifocal-line which are analogous to the epipole and the dual-epipole
when considering three-view and three-point geometries on the reference plane.
Structures such as the fundamental matrix and the trilinear tensor have a rather
simple form and depend only on the epipoles, and nothing else. The symmetry
between points and cameras is complete, and they can be simply switched around
to get from the epipolar geometry to the dual-epipolar geometry.

The simple and intuitive expressions derived in the reference-plane based
formulation in this paper lead to useful applications in 3D scene analysis. In
particular, simpler tri-focal constraints are derived, and these lead to simple
methods for New View Synthesis. Also, the separation and compact packing of
the unknown camera calibration and orientation into the 2D projection transfor-
mation (a homography) that relates the image plane to the reference plane, leads
to potentially powerful reconstruction and calibration algorithms. For instance,
based on minimal partial domain information, partial calibration and partial
reconstruction can be achieved. This is also briefly discussed in this paper.

The remainder of this paper is organized as follows: Section 2 introduces our
notations, and describes the two-view geometric and algebraic constraints (bi-
linearity and parallax) in the reference plane representation. Section 3 describes
duality (between scene points and camera centers) on the reference plane. Sec-
tion 4 examines the relations involving 3 views and the corresponding dual re-
lations. Section 5 discusses applications of this representation and shows initial
results for one particular application, namely new-view synthesis.

2 Two View Geometry on the Reference Plane

Figure 1 illustrates the two stage decomposition of the image formation process.
Figure 1a shows the projection of one scene point from two camera centers onto
the reference plane Π. Figure 1b shows the re-projection from the plane to one
of the camera image planes (the “reference frame”). In this and in all subsequent
figures in this paper, we adopt the following notations: P denotes scene points
in 3D, C denotes camera centers; i, j, k are indices used for scene points (e.g.,
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Fig. 1. The reference plane representation: (a) the projection of the
points onto the reference plane itself, removing the dependency on the refer-
ence image plane. pts is the epipole, and the red line is the epipolar line. (b)
the re-projection of the reference plane image onto a reference image frame
(camera “t”).

Pi) and r, s, t are indices used for camera centers (e.g., Cr). Also, pit denotes the
projection of the scene point Pi through camera center Ct. It is the intersection
of the ray PiCt with the reference plane Π. Similarly pis is the intersection of
PiCs with the reference plane. We define pit and pis as the “virtual-images” of
Pi on the reference plane from cameras Ct and Cs respectively. We define the
intersection of CtCs with Π as the epipole on Π. We use pts to denote the
epipole. Note that the location of the epipole pts on the reference plane Π is is
independent of the orientations and the internal calibration parameters of the
cameras s and t.

To derive the algebraic constraints involving multiple points in multiple
views, we define a coordinate system (x, y, Z) relative to the reference plane
Π, where (x, y) are parallel to Π and Z is perpendicular to it. For points on
the reference plane, we define Z = 1, for other points we define Z = H + 1,
where H denotes the height (i.e., the perpendicular distance) of the point from
the plane Π. Thus, Pi = (xi, yi, Zi), where Zi = Hi + 1, denotes the 3D coordi-
nates of the scene point Pi. Similarly Ct = (xt, yt, Zt)T , where Zt = Ht + 1, and
and Cs = (xs, ys, Zs)T , where Zs = Hs + 1. The points pit, pis and pts on the
reference plane are the intersections of the lines CtPi, CsPi, and CtCs with the
reference plane Π:

pit =


xit

yit

1


 =




Hixt−Htxi

Hi−Ht
Hiyt−Htyi

Hi−Ht

1


 pis =


xit

yit

1


 =




Hixs−Hsxi

Hi−Hs
Hiys−Hsyi

Hi−Hs

1


 (1)

pts =


xts

yts

1


 =




Hsxt−Htxs

Hs−Ht
Hsyt−Htys

Hs−Ht

1


 (2)

Note that the expressions given above do not involve any of the camera internal
calibration parameters or the orientations of the image planes. Also note that



there is only a single epipole, which is unlike the case of the reference-frame
based formulation, which involves two epipoles, one on each image frame.

The points pit, pis and pts on the reference plane are related to their cor-
responding points on an image plane (e.g., a reference image) via a single 2D
projective transformation, which is the homography between that image plane
and the plane Π. Figure 1b shows the re-projection onto the reference image t
— the points p, pw, and e are the projections of the image points pit, pis, and
the epipole pts respectively.

There are two basic results concerning two views of a point as observed on the
reference plane Π. The first is the expression for the “parallax” on the reference
plane, and the second is the bilinear constraint involving the two image locations
of the scene point and the epipole. These are described below.

Parallax on the Reference Plane: Given the expressions in Equations 1 and
2 , it can be easily verified that

pis − pit = γ(pis − pts), (3)

where γ = Hi(Ht−Hs)
(Ht−Hi)Hs

Note that this expression for parallax (Equation 3) involves only the heights
of the scene point and of the camera centers relative to the reference plane
Π. It does not include any quantities relative to any of the camera coordinate
systems (e.g., the reference frame) such as Z or TZ as before. Also, the parallax
magnitude γ does not depend on the x, y locations of either the camera centers
or the scene point1.

The Bilinear Constraint: Equation 3 implies that pit, pis, and pts are collinear.
Similar to the definition of the epipolar line on the image plane, the line contain-
ing these three points on Π is the intersection of the epipolar plane containing
Pi, Ct, and Cs with Π. Thus, this is the epipolar line as observed on the reference-
plane. The collinearity of these three points can be expressed as pit

T Fpis = 0

where F =


 0 1 −yts

−1 0 xts

yts −xts 0


 is the “Fundamental Matrix”. As opposed to the

reference frame based formulation, where the fundamental matrix depends on
the camera rotations and the internal calibration parameters of the camera, here
it depends only on the epipole. Moreover, the epipole is explicit in the F matrix
here, whereas, it is implicit in the standard formulation.

1 The expression for γ = HTZ
Zdπ

in the P+P case can be related to the current expression
as follows: Consider a virtual camera centered at Ct, whose image plane is the plane
Π, and its optical axis coincides with the H direction. Then H = Hi, Z = Ht − Hi,
TZ = Ht − Hs and dπ = Hs.



What happens when the epipole goes to ∞? In Equation 2, it can be seen
that when Hs = Ht, the epipole pts goes to ∞. In this case,

pts =


xts

yts

0


 =


xt − xs

yt − ys

0


 ,

and the expression for parallax can be rewritten as: (pis − pit) = Hi

(Ht−Hi)
pts.

In other words, all the parallax vectors are parallel to each other (i.e., meet at

∞). The Fundamental Matrix F =


 0 0 −yts

0 0 xts

yts −xts 0


 . We can, of course, unify

the finite and the infinite case by using 2D projective notations. However, in
this paper we choose to use 2D Euclidean coordinate representations, in order to
emphasize the physical meaning of the various observed and derived quantities.
Moreover, the parallax expression in Equation 3, which involves metric relations
is meaningless in a projective coordinate representation.

Also, when Ht = Hi or Hs = Hi, then pit or pis go to ∞ respectively. This
occurs when, fortuitously, the plane Π is chosen to be parallel to the optic ray
from the scene point to one of the cameras. In this case, the corresponding image
point cannot be observed on the reference plane, and our analysis does not apply.

3 Duality on the Reference Plane

In this section, we derive a set of dual relations on the reference-plane by switch-
ing the roles of camera centers and scene points as was previously done in [2,
20].

Consider two points Pi and Pj and one camera center Ct. Consider the in-
tersection of the rays PiPj , PiCt and PjCt with the reference plane Π (see
Figure 2a). These occur respectively at pij , pit and pjt. In a manner analogous
to the “epipolar plane” (defined by 2 camera centers and a scene point), we de-
fine the plane containing Pi, Pj and Ct (2 scene points and a camera center) as
the “dual epipolar plane”. By the same analogy, we define its intersection with
Π (i.e., the line connecting pit, pjt and pij) as the “dual epipolar line”, and pij

as the “dual epipole”. Note that the dual-epipole, the dual-epipolar lines, and
the dual-epipolar planes relate to a pair of scene points over multiple views, in
the same way the epipole, the epipolar lines, and the epipolar planes relate to
multiple scene points over a pair of views.

By applying the duality of scene points and camera centers, we can derive
the dual of the bilinear constraint and the parallax expressions in algebraic form.
They are:
Dual Parallax: pit−pjt = γd(pit−pij), where γd = Ht(Hj−Hi)

(Hj−Ht)Hi
,

and
Dual Bilinearity Constraint: pit

T Fdpjt = 0,
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Fig. 2. Duality on the reference plane: (a) the dual-epipolar geometry
associated with two points in one view. pij is the dual-epipole, and the blue
line going through pij is the dual-epipolar line. (b) both sets of epipolar
lines (shown in red) and dual-epipolar lines (shown in blue) that arise when
considering two points in two views.

where Fd =


 0 1 −yij

−1 0 xij

yij −xij 0


 is (defined as) the “Dual Fundamental Matrix”.

The duality of the bilinear constraint has been previously explored - e.g.,
Carlsson[2] and Weinshall, et al.[20] derive dual bilinear and trilinear relations
in terms of the projective coordinate representations of the scene points, camera
centers, and image points. Here, however, we derive these relations in the context
of the reference plane images, and provide physical meaning to the dual relations.
Also, Irani and Anandan [9] pointed out the dual epipole in the context of the
plane+parallax representation. In that case, since the projection on a camera
image plane (“reference frame”) is included in the formulation, there exists an
asymmetry in the various constraints and their dual constraints. Here, complete
symmetry is achieved by projecting all the observed quantities onto the reference
plane itself.

Figure 2b completes the picture by considering two points (Pi, Pj) in two
views (Ct, Cs). This configuration gives rise to one set of epipolar lines (corre-
sponding to each scene point) going through the epipole pts, and one set of dual-
epipolar lines (corresponding to each camera) going through the dual-epipole
pij .

4 Three View Geometry on the Reference Plane

In this section we extend our treatment to three views. [5] shows that there are no
additional independent constraints that can be derived in more than three views.
In this section we present a geometric interpretation of the three-view constraints
in terms of physical quantities on the reference plane Π. We derive the algebraic
three-view constraints and show that they have a very simple mathematical
form. We will also show that the tensor-representation of these constraints in



the reference-plane has a very simple mathematical form when compared to the
tensors in the standard formulations[15, 7, 5].

4.1 Geometric Observations

Figure 3 shows three views pis, pit, and pir of a point Pi as projected onto the
reference plane Π. The new camera center is labeled as Cr, and the two new
epipoles as prt and psr

2.

pir

pts

Pi

Cs

Ct

pitpis

Cr

psr

prt

Plane π

Fig. 3. Geometry of three views on the reference plane – a 3D view.
The 3 red lines are the epipolar lines of pairs of views, and the turquoise
line the trifocal-line. The 6 points on Π lie on 4 lines forming a “complete
quadrilateral”.

Taken pairwise at a time, the three views give rise to three epipolar con-
straints:

pit, pis, pts are collinear. pis, pir, psr are collinear.
pir, pit, prt are collinear.

There is, however, a fourth collinearity constraint, namely:

The epipoles pts, psr, prt are collinear.

This line is simply the intersection of the plane containing the three camera
centers Ct, Cs and Cr with Π (see Figure 3). This plane is referred to as the
tri-focal plane. Based on this definition we define the line connecting the three
epipoles as the “tri-focal line”.

The fact that the six points lie on four lines is fundamental to the projection
of three views of a point onto a reference plane Π. Note that this figure on the
2 Note that geometrically this figure is identical to Figure 2b, but the labeling of the

point is different. The scene point Pj in Figure 2b has been replaced by a camera
center Cr. In fact, this is because of the complete symmetry between scene points
and camera centers in our representation.



plane (Figure 4a) is known as the “complete quadrilateral” and plays a central
role in plane projective geometry [3].

Given the three cameras, every point in the scene forms a triangle (e.g.,
with vertices pit, pis and pir. Different points (e.g., indexed i, j, etc.) will form
different triangles, all of which share the same tri-focal line (see Figure 4b). In
other words, all these triangles are perspective from the tri-focal line3.

4.2 The Trifocal Ratio

Each pair of views from the three views provides an expression for parallax
similar to Equation 3. For example, consider:

pis − pit =
Hi(Ht − Hs)
(Ht − Hi)Hs

(pis − pts)

pir − pit =
Hi(Ht − Hr)
(Ht − Hi)Hr

(pir − prt)

(4)

From these equations we can eliminate Hi/(Ht − Hi) to obtain:

||pis − pit||
||pis − pts|| = λrst

||pir − pit||
||pir − prt|| (5)

where λrst = (Ht−Hs)
Hs

Hr

(Ht−Hr) . The above equation is true upto a sign change.
Note that λrst does not depend on the point i. In other words, for every scene
point, the locations of its image from the three views on the reference plane is
related by the same Equation 5.

This constraint is further explored in Section 4.3.
Given two “images” of the point Pi on Π, e.g., pis and pir, and the corre-

sponding epipoles, prt and pts, we can determine the location of the third “image”
pit by intersecting the two epipolar lines pispts and pirprt (see Figure 4a).

There are, however, two cases in which the three epipolar lines collapse into
a single line (and hence, their intersection is not unique). These are the same
situations noted in [5, 15], but here we examine it in the context of the reference-
plane images. The first is the case when the three camera centers are collinear
(see Figure 5) - in this case the three epipoles collapse into a single point (denoted
as e in Figure 5). The three epipolar lines also collapse into a single line, and
therefore pit cannot be determined by the intersection of the epipolar lines.
However, given the common epipole e and λrst, pit can be recovered from pis

and pir using Equation 5. In fact, in this case, λrst is the cross ratio of these
four points (the three image points and the epipole).

3 It is known in plane-projective geometry that if two triangles are perspective from a
line they are also perspective from a point [3] – this is the converse of the Desargues’
Theorem. Given the two triangles corresponding to i and j as in Figure 4b, then the
point of perspectivity is in fact the dual-epipole pij .
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Fig. 4. Three view geometry on the reference plane: (a) the complete
quadrilateral formed by the image of a single point in three views and the trifocal-
line (shown as a dashed line) containing the three epipoles. (b) different triangles
due to different scene points share the same trifocal-line.

Another interesting case is when the scene point Pi lies on the “tri-focal
plane” of the three cameras. In this case the three image points pit, pis and pir

all lie on the tri-focal line itself, i.e., once again the three epipolar lines collapse
onto the tri-focal line. Hence we cannot use the intersection of epipolar lines to
determine pit. In this case too, pit can be determined by Equation 5, using λrst.

The ratio λrst has a special significance. If we consider the tri-focal line, we
can show (by replacing Pi with Cr in Equation 3)that:

psr − prt = λrst(psr − pts) (6)

(Hence, the name “trifocal-ratio”.) In other words, in the general case:

λrst =
||psr − prt||
||psr − pts||

=
||pis − pit||
||pis − pts||

||pir − prt||
||pir − pit|| (7)

Note that in the singular case, when the epipoles collapse, the ratio of the dis-
tances between the epipoles (the top equation) is undefined, but the bottom
equation is still valid and can be used.

4.3 The Trifocal Tensor

Returning to Equation 5, we can write down component equalities as follows:

xis − xit

xis − xts
=

yis − yit

yis − yts
= λrst

xir − xit

xir − xrt
= λrst

yir − yit

yir − yrt
(8)

By taking two of these equalities at a time and cross-multiplying by the denomi-
nators we can get six linear constraints. Of these two are the same as the bilinear
(epipolar) constraints involving only two views at a time. The other four, which
involve all three views are:

(xis − xit)(xir − xrt) = λrst(xir − xit)(xis − xts)
(xis − xit)(yir − yrt) = λrst(yir − yit)(xis − xts)
(yis − yit)(xir − xrt) = λrst(xir − xit)(yis − yts)
(yis − yit)(yir − yrt) = λrst(yir − yit)(yis − yts) (9)
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Fig. 5. The Epipolar Lines Collapse

Note that these three view constraints are actually only bilinear in the image
locations of the scene point (as opposed to the trilinear constraints in [15])).
This is because by considering the projection of the points on the reference
plane itself, we eliminate the homographies induced between the views (which
appear in [16]).

The trilinear forms given in Equation 9 can be unified into a single tensor
equation in a manner analogous to [17]:

(sαpit)(rβprt) − λrst(rβpit)(sαpts) = 0 (10)

where

s =
[−1 0 xis

0 −1 yis

]
, r =

[−1 0 xir

0 −1 yir

]

and α, β = 1, 2 indicate the row indices of s and r (e.g., s1 = [−1 0 xis])4.
Based on further algebraic manipulation, Equation 10 can be rewritten as:

∀α, β = 1, 2 0 =
3∑

a=1

3∑
b=1

3∑
c=1

(pit)a(rβ)b(sα)c ((prt)bδac − λrst(pts)cδab)

=
3∑

a=1

3∑
b=1

3∑
c=1

(pit)a(rβ)b(sα)c(T rst)abc (11)

where δ follows the standard definition: δpq = 1 if p = q and 0 otherwise.
T rst is 3 × 3 × 3 tensor

(T rst)abc = ((prt)bδac − λrst(pts)cδab)

In the above equations, (pit)1, (pit)2, (pit)3, etc. denote the first (i.e., x), the
second (i.e., y), and the third (i.e, 1) components of pit, etc. Similarly (T rst)abc

denotes the entry indexed by a, b, c in the Tensor.
4 Note that as in [17], s1 is the vertical line on Π passing through pis and s2 is the

horizontal line on Π passing through pis. Similarly r1 and r2 are the vertical and
horizontal lines on Π passing through pir. Also, as in [17] the relationships in Equa-
tion 10 are valid for any line passing through pis and any other line passing through
pir. In other words, Equation 10 captures the same point-line-line relationship de-
scribed in [17] and [5].



Note that the elements of T rst depend on the two epipoles prt and pts and
λrst. This is in contrast to the general form of the trifocal tensor – for example,
the trilinear tensor in [15] also depends on the homographies due to the plane
Π between the different cameras and the tensor described in [5] which depends
on the camera projection matrices. As in the case of the Fundamental Matrix
F in our formulation, the epipoles are explicit within the Tensor T , whereas in
the general formulation, the tensor is implicitly related to the epipole. Given the
Tensor T rst we can recover the two epipoles prt and pts and the trifocal-ration
λrst; using Equation 6 we can recover the third epipole psr.

4.4 Duals of the Three View Constraints

3 Scene Points + 1 Camera: As in the case of two-view analysis, the duality
between scene points and camera centers also applies to three-view analysis.
By switching the roles of scene points and camera centers in Figure 3 (i.e.,
Pi → Ct, Ct → Pi, Cs → Pj , Cr → Pk) we can derive new constraints involving
one camera center and three points. The resulting geometric configuration is also
a complete quadrilateral, but with a different labeling of the points. Figure 6a
indicates the labeling corresponding to one view of three points. In this case
the dual-trifocal-line contains the dual-epipoles pij , pjk, and pki. The three-view
constraint given in Equation 5 is replaced by

||pjt − pit||
||pjt − pij || = λijk

||pkt − pit||
||pkt − pki|| (12)

where λijk = (Hj−Hi)
Hj

Hk

(Hk−Hi)
, is the dual to the trifocal-ratio λrst. Dual

to the other forms of the three-view constraints, (e.g., Equation 9) can also be
obtained by the same substitution of indices (i.e, i → t, t → i, s → j, r → k),
leading to the dual-tensor form:

(T ijk)abc = ((pki)bδac − λijk(pij)cδab))

and the corresponding constraint set:

∀α, β = 1, 2 0 =
3∑

a=1

3∑
b=1

3∑
c=1

(pit)a(kβ)b(jα)c(T ijk)abc (13)

where the definitions of the 2×3 matrices k and s are analogous to the definitions
of r and s given earlier. Note that the the three-view constraints and their dual,
the three-point constraints are completely symmetric. The dual-tensor depends
on the dual-epipoles and the dual to the trifocal-ratio,

Other Combinations of 3+1 Points: The complete symmetry between scene
points and camera centers implies that we can arbitrarily choose the label (either
as a scene point or as a camera center) for each of the four 3D points in Fig-
ure 3. So far, we have considered two choices: 3 camera center + 1 scene point,
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Fig. 6. Duals to the Three View Geometry: (a) the complete quadri-
lateral formed by 3 points + 1 camera center. (b) the quadrilateral formed by
2 points + 2 cameras. Note that the epipolar-lines (thin lines) intersect at an
epipole, the dual-epipolar lines (thick lines) intersect at a dual-epipole, and an
epipolar line intersects a dual-epipolar line at an image-point.

and 3 scene points + 1 camera center. The basic structure is that four points
are divided into a group of 3 and a single point. We can obtain other duals
by choosing the four points to consist of 2 camera centers + 2 scene points and
grouping them as 2 camera centers and a scene point + 1 scene point
or as 2 scene points and a camera center + 1 camera center.

In Figure 6b we show the resulting quadrilateral corresponding to the first
of these groupings. Since the configuration shown in this figure is based on 2
camera centers and 2 scene points, the six points on the quadrilateral consist of
four image points, one epipole, and one dual-epipole. Note that the two epipolar
lines intersect at an epipole, the two dual-epipolar lines intersect at a dual-epipole,
and each epipolar line intersects each dual-epipolar line at an image point.

Unlike the 3D world, where there are two types of points, camera centers and
scene points, on the reference-plane, there are three-types of points – epipoles,
dual-epipoles, and image points. Each of these form the center of a radial field
of lines that go through that point, all three have completely dual-roles on Π.

5 Applications

The simple and intuitive expressions derived in the reference-plane based formu-
lation in this paper lead to useful applications in 3D scene analysis. In particular,
the simpler (bilinear) tri-focal constraints with the identified tri-focal ratio lead
to a simple method for New View Synthesis. Initial experimental results are
shown in this section. Moreover, the separation and compact packing of the un-
known camera calibration and orientation into the 2D projection transformation
(a homography) that relates the image plane to the reference plane, leads to
potentially powerful reconstruction and calibration algorithms. These are briefly
discussed in this section.

5.1 New View Generation Using the Three-View Constraints

In this section we show that the reference-plane based formulation provides a
simple and intuitive way to generate new views from a given set of views.

We first show some results, followed by an explanation how they were ob-
tained.



Figure 7a and 7b display two images taken by a hand-held camera. The scene
contained toys which were placed on a rug on the floor. The camera translated
and rotated between the two views. The 3D parallax effects due to the camera
translation are apparent in the change of the 2D distance (on the image) between
the clown’s hat and the upper-right corner of the rug.

Figure 7c is a new synthesized view of the scene, as if obtained from a vir-
tual camera positioned farther to the left of the scene relative to the two original
views (and rotated, to compensate for the translation). Note the smaller distance
between the clown’s hat and the corner of the rug. For comparison and verifica-
tion, Figure 7d shows an actual view obtained from the same viewing direction
and orientation. Also, note the differences between the actual and synthesized
view. There are image distortions where the flow was inaccurate (at depth dis-
continuities, e.g., on the rug around the clowns head, and near the ears of the
smaller doll). Also, the synthesized view is missing the left part of the rug, as
this portion of the rug was not viewed in any of the 2 input images.

(a) (b)

(d) (c)

Fig. 7. New View Synthesis.
(a) and (b) show two images taken by a hand-held camera. The camera translated and
rotated between the two views. The 3D parallax effects due to the camera translation
are apparent by the change in the 2D distance (on the image) between the clown’s hat
and the upper-right corner of the rug. (c) A new synthesized view of the scene, Note
the smaller distance between the clown’s hat and the corner of the rug. (d) an actual
view obtained from the same viewing direction and orientation. Note the differences
between the actual and synthesized view: There are image distortions where the flow
was inaccurate (e.g., on the rug around the clowns head, and near the ears of the
smaller doll). Also, the synthesized view is missing the left part of the rug, as this
portion of the rug was not viewed in any of the 2 input images, (a and b).



Below is a brief description of how the synthesized view was generated. To
work directly with quantities on the reference plane Π would require partial cal-
ibration information about the input views. But as explained below, new view
synthesis is possible even without such information.

Step I: One of the two input images (camera “s”) is first warped towards the
other input image (camera “t”; the reference image) via a 2D projective trans-
formation to align the images of the plane Π in the two input image s and t. (Π
is the plane of the rug, in our case). The corresponding 2D projective transfor-
mation is computed automatically, without any prior or additional information,
using a 2D registration technique described in [10]. This method locks onto a
dominant 2D parametric transformation between a pair of images, even in the
presence of moving objects or other outliers (such as the toys, in our case). For
more details see [10].

Note that after such 2D warping, the two plane-stabilized images are in full
alignment in all image regions which correspond to the rug, and are misaligned
in all other (i.e., out-of-plane) image points (i.e., the toys). The farther a scene
point is from the planar surface (rug), the larger its residual misalignment. We
refer to these as planar-parallax displacements (see [11, 12, 9]).

Note that the plane-stabilized sequence is in fact a 2D re-projection of the
corresponding “virtual images” on the reference plane Π onto the reference im-
age plane, t (See Figure 1.b). Therefore, a “quadrilateral” on Π will project to
a “quadrilateral” on the image plane; different triangles on Π corresponding to
different scene points and sharing a common tri-focal line will preserve this rela-
tion on the reference image plane t. It can be shown that for any quadrilateral,
there exists some λ′

rst such that Equation (7) holds. In fact, it can be shown
that

λ′
rst =

TZ
ts

Hs

Hr

TZ
tr , (14)

where TZ
ts is the component of the translation between cameras t and s along

the optical (Z) axis of the reference camera t. Similarly TZ
tr for the third camera

r. Hs and Hr are as before (i.e., heights relative to Π).

Step II: Dense flow is estimated between the two plane-stabilized images (us-
ing the method described in [12]). Note that after plane stabilization, the flow
field between the two images reduces to a radial epipolar field centered at the
epipole (see Equation (3); see also [11, 12, 9]). The cancellation of the plane ho-
mography removes all effects of camera rotation and changes in calibration. This
allows to compute the flow field between a plane-stabilized image pair more reli-
ably than general flow, as it is constrained to satisfy a global epipolar constraint.

Step III: We estimate the epipole (pts) from the radial flow field between the
two input plane-stabilized images.

We then specify: (i) the virtual epipole (e.g., prt) between the reference image
and the virtual “plane-stabilized” image, (ii) a virtual tri-focal ratio λ′

rst in the



reference frame. Given the virtual tri-focal ratio λ′
rst, the virtual epipole prt,

the actual epipole pts, and the dense flow field between the two plane-stabilized
images (between pit’s and corresponding pis’s), we can estimate all image points
in the virtual (plane-stabilized) image (namely, all pir’s) using Equation 8.

The virtual tri-focal ratio λ′
rst and the virtual epipole prt can either be spec-

ified directly (e.g., via Equation (14)), or else by specifying the location of two
or more image points in the virtual (plane-stabilized) view, and estimate them
accordingly.

Step IV: Note that the synthesized plane-stabilized image is the same for any
camera centered at Cr. In other words, it is independent of the internal parame-
ters and the orientation of that camera. By specifying a homography that relates
the image plane of the virtual camera to the stabilized image from the reference
view, we have the complete flexibility to generate an image obtained by any cam-
era situated at Cr. This is done by unwarping the synthesized plane-stabilized
image via the corresponding 2D projective transformation.

5.2 3D Reconstruction and Camera Calibration

Given uncalibrated images, any approach for obtaining Euclidean (or Affine)
reconstruction requires some type of calibration. One of the benefits of our ap-
proach is that this process is factored into two separate stages, each of which
has a simple and intuitive solution. First, given the input images, the “virtual-
images” on Π must be determined. This can be done by taking advantage of
the P+P method[12]–(i) determine the planar homography for Π between an
arbitrarily chosen reference image and each other image, and (ii) determine the
homography between the reference image and Π. Note that the parallax Equa-
tion 3 is valid even if the image locations on Π are known only upto a 2D affine
transformation. This means that just by indicating two sets of parallel lines (that
are in different orientations) Π, the 3D Heights relative to the reference plane
can be recovered. From this information, the parallax magnitude γ (in Equa-
tion 3) can be determined. (Note that by specifying the 2D coordinates of four
points on the reference plane, the homography can fully determined, leading to
Euclidean reconstruction.)

Given γ and the height of one 3D scene point relative to Π the Heights of all
other points can be determined upto a global scale factor. Both these calibration
steps are simple and intuitive and require minimal specification of information.
The resulting reconstruction is with respect to the reference plane Π and does
not involve the camera reference frames.

The foregoing outline for a reconstruction method assumes that the cor-
respondences of each point across the multiple-views can be estimated. This
involves computing the parallax flow-field(s), and the epipole(s)– these can be
done in the same manner as described in [11, 12]. It is worth noting, however,
the removal of the planar homography allows the parallax computation to be
more robust and accurate [11, 12].
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