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Abstract� Factorization using Singular Value Decomposition 	SVD
 is
often used for recovering �D shape and motion from feature correspon�
dences across multiple views
 SVD is powerful at �nding the global solu�
tion to the associated least�square�error minimization problem
 However�
this is the correct error to minimize only when the x and y positional
errors in the features are uncorrelated and identically distributed
 But
this is rarely the case in real data
 Uncertainty in feature position de�
pends on the underlying spatial intensity structure in the image� which
has strong directionality to it
 Hence� the proper measure to minimize is
covariance�weighted squared�error 	or the Mahalanobis distance

 In this
paper� we describe a new approach to covariance�weighted factorization�
which can factor noisy feature correspondences with high degree of direc�
tional uncertainty into structure and motion
 Our approach is based on
transforming the raw�data into a covariance�weighted data space� where
the components of noise in the di�erent directions are uncorrelated and
identically distributed
 Applying SVD to the transformed data now min�
imizes a meaningful objective function
 We empirically show that our
new algorithm gives good results for varying degrees of directional uncer�
tainty
 In particular� we show that unlike other SVD�based factorization
algorithms� our method does not degrade with increase in directionality
of uncertainty� even in the extreme when only normal��ow data is avail�
able
 It thus provides a uni�ed approach for treating corner�like points
together with points along linear structures in the image


� Introduction

Factorization is often used for recovering �D shape and motion from feature
correspondences across multiple frames ��� ����� Singular Value Decomposition
	SVD
 directly obtains the global minimum of the squared�error between the
noisy data and the model� This is in contrast to iterative non�linear optimiza�
tion methods which may converge to a local minimum� However� SVD requires
that the noise in the x and y positions of features are uncorrelated and have
identical distributions� But� it is rare that the positional errors of feature track�
ing algorithms are uncorrelated in their x and y coordinates� Quality of feature
matching depends on the spatial variation of the intensity pattern around each
feature� This a�ects the positional inaccuracy both in the x and in the y com�
ponents in a correlated fashion� This dependency can be modeled by directional
uncertainty 	which varies from point to point� as is shown in Fig� 

�

When the uncertainty in a feature position is isotropic� but di�erent features
have di�erent variances� then scalar�weighted SVD can be used to minimize a
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Fig� �� Directional uncertainty indicated by ellipse� �a� Uncertainty of a sharp corner
point� The uncertainty in all directions is small� since the underlying intensity structure
shows variation in multiple directions� �b� Uncertainty of a point on a �at curve� almost
a straight line� Note that the uncertainty in the direction of the line is large� while the
uncertainty in the direction perpendicular to the line is small� This is because it is hard
to localize the point along the line�

weighted squared error measure �
�� However� under directional uncertainty noise
assumptions 	which is the case in reality
� the error minimized by SVD is no
longer meaningful� The proper measure to minimize is the covariance�weighted
error 	the Mahalanobis distance
� This issue was either ignored by researchers ���
�� 
� ��� or else was addressed using other minimization approaches ��� ��� Mor�
ris and Kanade ��� have suggested a uni�ed approach for recovering the �D
structure and motion from point and line features� by taking into account their
directional uncertainty� However� they solve their objective function using an it�
erative non�linear minimization scheme� The line factorization algorithm of Quan
and Kanade ��� is SVD�based� However� it requires a preliminary step of �D pro�
jective reconstruction� which is necessary for rescaling the line directions in the
image before further factorization can be applied� This step is then followed by
three sequential SVD minimization steps� each applied to di�erent intermediate
results� This algorithm requires at least seven di�erent directions of lines�

In this paper we present a new approach to factorization� which introduces
directional uncertainty into the SVD minimization framework� The input is the
noisy positions of image features and their inverse covariance matrices which
represent the uncertainty in the data� Following the approach of Irani ���� we
write the image position vectors as row vectors� rather than as column vectors
as is typically done in factorization methods� This allows us to use the inverse
covariance matrices to transform the input position vectors into a new data space
	the �covariance�weighted space�
� where the noise is uncorrelated and identi�
cally distributed� In the new covariance�weighted data space� corner points and
points on lines all have the same reliability� and their new positional components
are uncorrelated� 	This is in contrast with the original data space� where corner
points and points on lines had di�erent reliability� and their x and y components
were correlated�


We apply SVD factorization to the covariance�weighted data to obtain a
global optimum� This minimizes the Mahalanobis distance in the original data
space� However� the covariance�weighted data space has double the rank of the
original data space� To obtain the required additional rank�halving� we use a
least�squares minimization step within the double�rank subspace�

Our approach allows the recovery of �D motion for all frames and the �D
shape for all points� even when the uncertainty of point position is highly elliptic
	for example� point on a line
� It can handle reliable corner�like point correspon�
dences and partial correspondences of points on lines 	e�g�� normal �ow
� all



within a single SVD like framework� In fact� we can handle extreme cases when
the only image data available is normal �ow�

Irani ��� used con�dence�weighted subspace projection directly on spatio�
temporal brightness derivatives� in order to constrain multi�frame correspon�
dence estimation� The con�dences she used encoded directional uncertainty as�
sociated with each pixel� That formulation can be seen a special case of the
covariance�weighted factorization presented in this paper�

Our approach thus extends the use of the powerful SVD factorization tech�
nique with a proper treatment of directional uncertainty in the data� Di�erent
input features can have di�erent directional uncertainties with di�erent elliptic�
ities 	i�e�� di�erent covariance matrices
� However� our extension does not allow
arbitrary changes in the uncertainty of a single feature over multiple frames� We
are currently able to handle the case where the change in the covariance matrices
of all of the image features can be modeled by a global �D a�ne transformation�
which varies from frame to frame�

The rest of the paper is organized as follows� Section � contains a short review
of SVD factorization and formulates the problem for the case of directional uncer�
tainty� Section � describes the transition from the raw data space� where noise is
correlated and non�uniform� to the covariance�weighted data space� where noise
is uniform and uncorrelated� giving rise to meaningful SVD subspace projection�
Section � explains how the covariance�weighted data can be factored into �D mo�
tion and �D shape� Section � extends the solution presented in Sections � and ��
to a more general case when the directional uncertainty of a point changes across
views� Section � provides experimental results and empirical comparison of our
factorization method to other common SVD factorization methods� Section �
concludes the paper�

� Problem Formulation

��� SVD Factorization

A set of P points are tracked across F images with coordinates
�
	u�fp� v

�
fp
 j

f � 
 � � � F� p � 
� � � � � P
�
� The point coordinates are transformed to object�

centered coordinates by subtracting their center of mass� 	u�fp� v
�
fp
 is replaced

by 	ufp� vfp
 � 	u�fp � uf � v
�
fp � vf 
 for all f and p� where uf and vf are the

centroids of point positions in each frame� uf �
�
P

P
p u

�
fp� vf �

�
P

P
p v

�
fp�

Two F � P measurement matrices U and V are constructed by stacking all
the measured correspondences as follows�

U �

�� u�� � � � u�P
���

���
uF� � � � uFP

�� � V �

�� v�� � � � v�P
���

���
vF� � � � vFP

�� �

It was shown ��� �� �� that when the camera is an a�ne camera 	i�e�� orthographic�
weak�perspective� or paraperspective
� and when there is no noise� then the rank

of W �

�
U
V

�
�F�P

is � or less� and can be factored into a product of a motion



matrix M and a shape matrix S� i�e�� W �MS� where�

M �

�
MU

MV

�
�F��

� MU �

���m
T
�

���
mT
F

�	�
F��

� MV �

��� n
T
�

���
nTF

�	�
F��

� S � �s� � � � sP ���P �

The rows of M encode the motion for each frame 	rotation in the case of or�
thography
� and the columns of S contain the �D position of each point in the
reconstructed scene�

When there are errors in the measurement matrix W � then each position
	ufp vfp


T has a �D noise vector associated with it

Efp �


ufp �mT

f sp

vfp � nTf sp

�
���

�

When the noise Efp is an isotropic Gaussian random variable with a �xed vari�
ance ��� i�e�� �f �p Efp � N	�� ��I���
� then the maximum likelihood estimate
is obtained by minimizing the squared error�

Err
SVD

	M�S
 �
X
f�p

ETfpEfp � kW �MSk�
F

where k �k
F
denotes the Frobenius norm� The global minimum to this non�linear

problem is obtained by performing Singular Value Decomposition 	SVD
 on the
measurement matrix� W � A�BT � and setting to zero all but the three largest

singular values in �� to get a noise�cleaned matrix cW � A b�BT � The recovered

motion and shape matrices cM and bS are then obtained by� cM � A b����� andbS � b����B� Note that cM and bS are de�ned only up to an a�ne transformation�

��� Scalar Uncertainty

The model in Section ��
 	as well as in ���
 weights equally the contribution
of each point feature to the �nal shape and motion matrices� However� when
the noise Efp is isotropic� but with di�erent variances for the di�erent points
f��p j p � 
 � � �Pg� then Efp � N	�� ��pI���
� In such cases� applying SVD to the

weighted�matrix W� � W���� where ��� � diag	���� � ���� ���P 
� will minimize
the correct error function�

Err
weighted�SVD

	M�S
 �
X ETfpEfp

��p
� k	W �MS
�k

F
� kW� �MS�kF

where S� � S���� Applying SVD�factorization toW� will give cM and bS� � from
which bS � bS�� can be recovered� This approach is known as weighted�SVD or
weighted�factorization �
��

��� Directional Uncertainty

So far we have assumed that the noise in ufp is uncorrelated with the noise in
vfp� In real image sequences� however� this is not the case� Tracking algorithms
introduce non�uniform correlated error in the tracked positions of points which
depends on the local image structure� For example� a corner point p will be
tracked with high reliability both in ufp and in vfp� while a point p on a line
will be tracked with high reliability in the direction of the gradient 	�normal



�ow�
� but with low reliability in the tangent direction 	see Fig� 

� This leads
to non�uniform correlated noise in ufp and vfp� We model the correlated noise

Efp by� Efp � N	�� Q��
fp 
 where Qfp is the �� � inverse covariance matrix of the

noise at point p in image�frame f � The covariance matrix determines an ellipse
whose major and minor axes indicate the directional uncertainty in the location
	ufp vfp


T of a point p in frame f 	see Fig� 
� as well as ��� for some examples
�
Assuming that the noise at di�erent points is independent� then the maxi�

mum likelihood solution is obtained by �nding matricesM and S which minimize
the following objective function�

Err	M�S
 �
P

f�p	ETfpQfpEfp


�
X
f�p

�

	ufp �mT

f sp
 	vfp � nTf sp

�
Qfp



ufp �mT

f sp

vfp � nTf sp

��
� 	



Eq� 	

 implies that in the case of directional uncertainty� the metric that we want
to use in the minimization is the Mahalanobis distance� and not the Frobenius
�least�squares� norm� which is the distance minimized by the SVD process�

Morris and Kanade ��� have addressed this problem and suggested an ap�
proach to recoveringM and S which is based on minimizing the Mahalanobis dis�
tance� However� their approach uses an iterative non�linear minimization scheme�
In the next few sections we present our approach to SVD�based factorization�
which minimizes the Mahalanobis error� Our approach combines the bene�ts of
SVD�based factorization for getting a good solution� with the proper treatment
of directional uncertainty�� However� unlike ���� our approach cannot handle ar�
bitrary changes in covariance matrices of a single feature over multiple frames�
It can only handle frame�dependent �D a�ne deformations of the covariance
matrices across di�erent views 	see Section �
�

� From Raw�Data Space to Covariance�Weighted Space

In this section we show how by transforming the noisy data 	i�e�� correspon�
dences
 from the raw�data space to a new covariance�weighted space� we can
minimize the Mahalanobis distance de�ned in Eq� 	

� while still retaining the
bene�ts of SVD minimization� In particular� we will show that minimizing the
Frobenius Norm in the new data space 	e�g�� via SVD
 is equivalent to mini�
mizing the Mahalanobis distance in the raw�data space� This transition is made
possible by rearranging the raw feature positions in a slightly modi�ed matrix
form� �U j V �

F��P
� namely the matrices U and V stacked horizontally 	as op�

posed to vertically in W �

�
U
V

�
� which is the standard matrix form used in the

traditional factorization methods 	see Section ��


� This modi�ed matrix repre�
sentation is necessary to introduce covariance�weights into the SVD process� and
was originally proposed by Irani ���� who used it for applying con�dence�weighted
subspace projection to spatio�temporal brightness derivatives for computing op�
tical �ow across multiple frames�

� When directional uncertainty is used� the centroids fufg and fvfg de�ned in Sec�
tion �
�� are the covariance�weighted means over all points of fufpg and fvfpg in
frame f 




For simplicity� we start by investigating the simpler case when the directional
uncertainty of a point does not change over time 	i�e�� frames
� namely� when the
��� inverse covariance matrix Qfp of a point p is frame�independent� �f Qfp �
Qp� Later� in Section �� we will extend the approach to handle the case when the
covariance matrices undergo frame�dependent �D�a�ne changes� Because Qp is
positive semi�de�nite� its eigenvalue decomposition has the form Qp � ���T �
where �

���
is a real orthonormal matrix� and �

���
� diag	�max� �min
� Let

Cp � ��
�

� and ��fp �fp���� � �ufp vfp����Cp
���

� Therefore� �fp is the

component of �ufp vfp� in the direction of the highest certainty 	scaled by its

certainty
� and �fp is the component in the direction of the lowest certainty
	scaled by its certainty
� For example� in the case of a point p which lies on a
line� �fp would correspond to the component in the direction perpendicular to
the line 	i�e�� the direction of the normal �ow
� and �fp would correspond to the
component in the direction tangent the line 	the direction of in�nite uncertainty
�
In the case of a perfect line 	i�e�� zero certainty in the direction of the line
� then
�fp � �� When the position of a point can be determined with �nite certainty in
both directions 	e�g�� for corner points
� then Cp is a regular matrix� Otherwise�
when there is in�nite uncertainty in at least one direction 	e�g�� as in lines or
uniform image regions
� then Cp is singular�

Let �p� �p� up and vp be four F �
 vectors corresponding to a point p across
all frames�

�p �

�� ��p���
�Fp

�� � �p �

�� ��p���
�Fp

�� � up �

�� u�p���
uFp

�� � vp �

�� v�p���
vFp

��
then

��p �p�
F��

� �up vp�
F��

Cp
���

� 	�


Let � and � be two F � P matrices�

� �

�� ��� � � � ��P
���

���
�F� � � � �FP

��
F�P

and � �

�� ��� � � � ��P
���

���
�F� � � � �FP

��
F�P

then� according to Eq� 	�
�

�� j � �
F��P

� �U j V �
F��P

C
�P��P

	�


where C is a �P x �P matrix� constructed from all � x �matrices Cp �

�
cp� cp�
cp� cp�

�
	p � 
 � � �P 
� as follows�

C �

���������

c�� � c�� �
� � �

� � �
� cP� � cP�
c�� � c�� �

� � �
� � �

� cP� � cP�

�							�
�P��P

�



Note that matrix� contains the components of all point positions in their direc�

tions of highest certainty� and � contains the components of all point positions
in their directions of lowest certainty� These directions vary from point to point
and are independent� Furthermore� �fp and �fp are also independent� and the
noise in those two components is now uncorrelated� This will be shown and used
below�

Let R denote the rank of W �

�
U
V

�
�F�P

	when W is noiseless� and the

camera is an a�ne camera� then R � �� see Section ��

� A review of di�erent
ranks R for di�erent camera and world models can be found in ���� Then the
rank of U and the rank of V is each at most R� Hence� the rank of �U j V �F��P
is at most �R 	for an a�ne camera� in the absence of noise� �R � �
� Therefore�

according to Eq� 	�
� the rank of �� j � � is also at most �R�
The problem of minimizing the Mahalanobis distance of Eq� 	

 can be re�

stated as follows� Given noisy positions
�
	ufp vfp


T j f � 
 � � �F� p � 
 � � �P��
�nd new positions

�
	bufp bvfp
T j f � 
 � � �F� p � 
 � � �P� that minimize the

following error function�

Err
��

	bufp bvfp
T�� �
X
f�p



	ufp � bufp
 	vfp � bvfp
�Qfp

�
ufp � bufp
vfp � bvfp

�
� 	�


Because Qfp � Qp � CpC
T
p � we can rewrite this error term as�

�
X
f�p

�

	ufp � bufp
 	vfp � bvfp
�Cp��
	ufp � bufp
 	vfp � bvfp
�Cp�T

� k �U � bU j V � bV �C k�
F

� k �U j V �C � �bU j bV �C k�
F

� k �� j � �� � b� j b� � k�
F

where �bU j bV � is the F � �P matrix containing all the fbufp� bvfpg� and � b� j b�� �
�bU j bV �C� Therefore�
Minimizing the Mahalanobis distance of Eq� 	�
 is equivalent to �nding the

rank��R matrix � b� j b� � closest to �� j � � in the Frobenius norm�

This minimization can be done by applying SVD subspace projection to the

matrix �� j � �� to obtain the optimal � b� j b� �� This is done by applying SVD

to the known �� j � � matrix� and setting to zero all but the highest �R singular

values� However� note that although optimal� � b� j b� � � �bU j bV �C is in general a

rank��R matrix� and does not guaranty that cW �

� bUbV
�
is a rank�R matrix� In

Section � we show how we complete the process by making the transition from

the optimal rank��R matrix � b� j b� � to the rank�R solution cW �

� cMUcMV

� bS�



� Factoring Shape and Motion

The process of �nding the rank��R � b� j b� �� as outlined in Section �� does not

yet guarantee that the corresponding bU and bV can be decomposed into rank�R

matrices as follows�

� bUbV
�
� cM bS �

� cMUcMV

� bS� In this section we complete the

process and recover cM and bS by enforcing this matrix constraint on bU and bV �
Note that if C were an invertible matrix� then we could have recovered

�bU j bV � � � b� j b� �C��� and then proceeded with applying standard SVD to

� bUbV
�

to impose the rank�R constraint and recover cM and bS� However� C is in general
not invertible 	e�g�� because of points with high aperture problem
� Imposing the

rank�R constraint on bU � cMU
bS and bV � cMV

bS must therefore be done in the

� b� j b�� space 	i�e�� without inverting C
�
� b� j b� �

F��P
� �cMU

bS j cMV
bS�C � �cMU j cMV �F��R

� bS �

� bS
�
�R��P

C
�P��P

� 	�


Not every decomposition of � b� j b� � has the matrix form

�
S �
� S

�
� However�

if we are able to decompose � b� j b� � into the matrix form of Eq� 	�
� then the

resulting cM �

� cMUcMV

�
and bS 	which can be determined only up to an a�ne

transformation
 will provide the desired rank�R solution�

Because � b� j b��
F��P

is a rank��R matrix� it can be written as a bilinear
product of an F � �R matrix H and a �R� �P matrix G�

� b� j b� �
F��P

� H
F��R

G
�R��P

�

This decomposition is not unique� For any invertible �R� �R matrix D�

� b� j b� � � 	HD��
	DG
 is also a valid decomposition� We seek a matrix D
which will bring DG into a form

DG �

�
S �
� S

�
C 	�


where S is an arbitrary R�P matrix� This is a linear system of equations in the
unknown components of S and D� We therefore linearly solve for S and D� from

which the desired solution is obtained by� bS �� S and �cMU j cMV � �� HD���

��� Summary of the Algorithm

We summarize the steps of the algorithm�



Step �� Project the covariance�weighted data �� j � � � �U j V �C onto a

�R�dimensional subspace 	i�e�� a rank��R matrix
 � b� j b� � 	for an a�ne
camera �R � �
� This step is guaranteed to obtain the closest �R�dimensional
subspace because of the global optimum property of SVD�

Step �� Further enforce the rank�R solution by enforcing that

� bUbV
�
�

� cMUcMV

� bS�
This additional subspace projection is achieved within the �� j � � space� and
is obtained with simple least squares minimization applied to the linear set
of equations 	�
�

Note that the Rank�R subspace obtained by the second step is contained inside
the Rank��R subspace obtained in the �rst step� We cannot prove that the opti�
mal Rank�R solution is guaranteed to lie within this Rank��R subspace� However�
the bulk of the optimization task is performed in Step 
� which takes the noisy
high�dimensional data into the Rank��R subspace in an optimal fashion� More�
over� both steps of our algorithm are linear� Our empirical results presented in
Section � indicate that our two�step algorithm accurately recovers the motion
and shape� while taking into account varying degrees of directional uncertainty�

� Frame�Dependent Directional Uncertainty

So far we have assumed that all frames share the same �� � inverse covariance
matrix Qp for a point p� i�e�� �f Qfp � Qp and thus Cfp � Cp� This assumption�
however� is very restrictive� as image motion induces changes in these matrices�
For example� a rotation in the image plane induces a rotation on Cfp 	for all
points p
� Similarly� a scaling in the image plane induces a scaling in Cfp� and
so forth for skew in the image plane� 	Note� however� that a shift in the image
plane does not change Cfp�


The assumption �f Cfp � Cp was needed in order to obtain the separable

matrix form of Eq� 	�
� thus deriving the result that the rank of �� j � � is at
most �R� Such a separation can not be achieved for inverse covariance matrices
Qfp which change arbitrarily and independently� However� a similar result can
be obtained for the case when all the inverse covariance matrices of all points
change over time in a �similar way��

Let fQp j p � 
 � � �Pg be �reference� inverse covariance matrices of all the
points 	in Section ��� we explain how these are chosen
� Let fCp j p � 
 � � �Pg
be de�ned such that CpC

T
p � Qp 	Cp is uniquely de�ned by the eigenvalue

decomposition� same as de�ned in Section �
� In this section we show that if
there exist �� � �deformation� matrices fAf j f � 
� � � � � Fg such that�

�p��f � Cfp � AfCp � 	�


then the approach presented in Sections � and � still applies�
Such ��� matrices fAfg can account for global �D a�ne deformations in the

image plane 	rotation� scale� and skew
� Note that while Cfp is di�erent in every
frame f and at every point p� they are not arbitrary� For a given point p� all its
� � � matrices Cfp across all views share the same � � � reference matrix Cp
	which captures the common underlying local image structure and degeneracies
in the vicinity of p
� while for a given frame 	view
 f � the matrices Cfp of all



points within that view share the same � � � �a�ne� deformation Af 	which
captures the common image distortion induced on the local image structure
by the common camera motion
� Of course� there are many scenarios in which
Eq� 	�
 will not su�ce to model the changes in the inverse covariance matrices�
However� the formulation in Eq� 	�
 does cover a wide range of scenarios� and
can be used as a �rst�order approximation to the actual changes in the inverse�
covariance matrices in the more general case� In Section ��� we discuss how we
choose the matrices fCpg and fAfg�

We next show that under the assumptions of Eq� 	�
� the rank of �� j � �
is still at most �R� Let ��fp �fp���� � �ufp vfp����Cfp ���

	this is the same
de�nition as in Section �� only here we use Cfp instead of Cp
� Then�

��fp �fp� � �ufp vfp�AfCp � �eufp evfp�Cp
where �eufp evfp� � �ufp vfp�Af � Let eU be the matrix of all eufp and eV be the
matrix of all evfp� Because Cp is shared by all views of the point p� then 	just
like in Eq� 	�

�

�� j � � � �eU j eV �C
where C is the same �P � �P matrix de�ned in Section �� Therefore the rank of
�� j � � is at most the rank of �eU j eV �� We still need to show that the rank of

�eU j eV � is at most �R 	at most �
� According to the de�nition of eufp and evfp�� eufpevfp
�
���

� Af
T
���

�
ufp
vfp

�
���

� Af
T
���



mT
f

nTf

�
��R

sp
R��

�

Let Af �

�
af� af�
af� af�

�
���

� then

� eUeV
�
�F�P

�

���������

a�� � a�� �
� � �

� � �
� aF� � aF�
a�� � a�� �

� � �
� � �

� aF� � aF�

�							�
�F��F

�
Mu

Mv

�
�F�R

SR�P �

This implies that the rank of

� eUeV
�
is at most R� and therefore the rank of �eU j eV �

is at most �R� Therefore� the rank of �� j � � is at most �R even in the case of
�a�ne�deformed� inverse covariance matrices�

��� The Generalized Factorization Algorithm

The factorization algorithm summarized in Section ��
 can be easily generalized
to handle the case of a�ne�deformed directional uncertainty� Given matrices
fAf j f � 
 � � �Fg and fCp j p � 
� � � �Pg� such that Cfp � AfCp� then the
algorithm is as follows�



Step �� For each point p and each frame f compute�� eufpevfp
�
���

� Af
T
���

�
ufp
vfp

�
���

�

Steps � and �� Use the same algorithm 	Steps 
 and �
 as in Section ��
 	with

the matrices fCp j p � 
 � � �Pg� but apply it to the matrix �eU j eV � instead of

�U j V �� These two steps yield the matrices bS� fMV � and fMV � where
 emT
fenTf
�
��R

� Af
T
���


 bmT
fbnTf
�
��R

�

Step �� Recover cMU and cMV by solving for all frames f �
 bmT
fbnTf
�
��R

� 	ATf 

��
���


 emT
fenTf
�
��R

�

��� Choosing the Matrices Af and Cp

Given a collection of inverse covariance matrices� fQfp j f � 
 � � �F� p � 
 � � �Pg�
Eq� 	�
 is not guaranteed to hold� However� we will look for the optimal collec�
tion of matrices fAf j f � 
 � � �Fg and fCp j p � 
 � � �Pg such that the errorP

f�p kCfp �AfCpk is minimized 	where CfpC
T
fp � Qfp
� These matrices fAfg

and fCpg can then be used in the generalized factorization algorithm of Sec�
tion ��
�

Let E be a �F � �P matrix which contains all the individual �� � matrices
fCfp j f � 
 � � �F� p � 
 � � �Pg�

E �

��� C�� � � � C�P

��� � � � ���
CF� � � � CFP

�	�
�F��P

�

When all the Cfp�s do satisfy Eq� 	�
� then the rank of E is �� and it can be
factored into the following two rank�� matrices�

E �

��� A�

���
AF

�	�
�F��

�C� j � � � j CN ����P �

When the entries of E 	the matrices fCfpg
 do not exactly satisfy Eq� 	�
�

then we recover an optimal set of f bAfg and f bCpg 	and hence bCfp � bAf bCp
� by
applying SVD to the �F � �P matrix E� and setting to zero all but the two
highest singular values� Note that fAfg and fCpg are determined only up to a
global �� � a�ne transformation�

� Experimental Results

This section describes our experimental evaluation of the covariance weighted
factorization algorithm described in this paper� In particular� we demonstrate



two key properties of this algorithm� 	i
 that its factorization of multi�frame posi�
tion data into shape and motion is accurate regardless of the degree of ellipticity
in the uncertainty of the data � i�e�� whether the data consists of �corner�like�
points� �line�like� points 	i�e�� points that lie on linear image structures
� or
both� and 	ii
 that in particular� the shape recovery is completely unhampered
even when the positional uncertainty of a feature point along one direction is
very large 	even in�nite� such as in the direction of pure normal �ow
� We also
contrast its performance with two �bench�marks� � regular SVD 	with no un�
certainty taken into account� see Section ��

 and scalar�weighted SVD� which
allows a scalar uncertainty 	see Section ���
� We performed experiments with
synthetically generated data� in order to obtain a quantitative comparison of
the di�erent methods against ground truth under varying conditions�

In our experiments� we randomly generated �D points and a�ne motion
matrices to create ground�truth positional data of multiple features in multiple
frames� We then added elliptic Gaussian noise to this data� We varied the ellip�
ticity of the noise to go gradually from being fully circular to highly elliptic� up
to the extreme case when the uncertainty at each point is in�nite in one of the
directions�

Speci�cally� we varied the shape of the uncertainty ellipse by varying the
parameter r� �

p
�max	�min� where �max and �min correspond to the major

and minor axes of the uncertainty ellipse 	these are the eigenvalues of the covari�
ance matrix of the noise in feature positions
� In the �rst set of experiments� the
same value r� was used for all the points for a given run of the experiment� The
orientation of the ellipse for each point was chosen independently at random�
In addition� we included a set of trials in which �min � � 	r� � �
 for all the
points� This corresponds to the case when only �normal �ow� information is
available 	i�e�� in�nite uncertainty along the tangential direction
�

We ran �� trials for each setting of the parameter r�� For each trial of our
experiment� we randomly created a cloud of 
�� �D�points� with uniformly
distributed coordinates� This de�ned the ground�truth shape matrix S� We ran�
domly created �� a�ne motion matrices� which together de�ne the ground�truth
motion matrix M � The a�ne motion matrices were used to project each of the

�� points into the di�erent views� to generate the noiseless feature positions�

For each trial run of the experiment� for each point in our input dataset� we
randomly generated image positional noise 
fp with directional uncertainty as
speci�ed above� The noise in the direction of �max 	the least uncertain direction

varied between 
� and �� of the feature positions� whereas the noise in the
direction of �min 	the most uncertain direction
� varied between 
� and ���
of the feature positions� This noise vector was added to the true position vector
	ufpvfp


T to create the noisy input matrices U and V �

The noisy input data was then fed to three algorithm� the covariance�weighted
factorization algorithm described in this paper� the regular SVD algorithm� and
the scalar�weighted SVD algorithm� for which the scalar�weight at each point
was chosen to be equal to

p
�max � �min 	which is equivalent to taking the de�

terminant of the matrix Cfp at each point
� Each algorithm outputs a shape

matrix �S and a motion matrix �M � These matrices were then compared against

the ground�truth matrices S andM � eS � jjS� �SN jj
jjSjj eM � jjM� �MN jj

jjM jj

where �SN and �MN are �S and �M after transforming them to be in the same
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Fig� �� Plots of error in motion and shape w�r�t� ground truth for all three algorithms
�Covariance�weighted SVD� scalar�weighted SVD� regular SVD�� �a�b� Plots for the case
when all points have the similar elliptical uncertainty� which is gradually increased �a
� motion error� b � shape error�� �c�d� Plots for the case when half of the points have
�xed circular uncertainty� and the other half have varying elliptical uncertainty �c �
motion error� d � shape error�� The displayed shape error in this case is the computed
error for the group of elliptic points �the �bad	 points��

coordinate system as S and M � These errors were then averaged over the ��
trials for each setting of the parameter r��

Fig� ��a and ��b display the errors in the recovered motion and shape for
all three algorithms as a function of the degree of ellipticity in the uncertainty
r� �

p
�max	�min� In this particular case� the behavior of regular SVD and

scalar�weighted SVD is very similar� because all points within a single trial 	for
a particular �nite r�
� have the same con�dence 	i�e�� the same scalar�weight
�
Note how the error in the recovered shape and motion increases rapidly for the
regular SVD and for the scalar�weighted SVD� while the covariance�weighted
SVD consistently retains very high accuracy 	i�e�� very small error
 in the re�
covered shape and motion� The error is kept low and uniform even when the
elliptical uncertainty is in�nite 	r� � �� i�e�� when only normal��ow informa�
tion is available
� This point is out of the displayed range of this graph� but is
visually displayed 	for a similar experiment
 in Fig� ��

In the second set of experiments� we divided the input set of points into two
equal subsets of points� For one subset� we maintained a circular uncertainty
through all the runs 	i�e�� for those points r� � 

 � while for the other sub�
set we gradually varied the shape of the ellipse in the same manner as in the



previous experiment above 	i�e�� for those points r� is varied from 
 to �
� In
this case� the quality of the reconstruction motion for the scalar�weighted SVD
showed comparable results 	although still inferior
 to the covariance�weighted
SVD 	see Fig� ��c
� and signi�cantly better results than the regular SVD� The
reason for this behavior is that �good� points 	with r� � 

 are weighted highly
in the scalar�weighted SVD 	as opposed to the regular SVD� where all points are
weighted equally
� However� while the recovered shape of the circularly symmet�
ric 	�good�
 points is quite accurate and degrades gracefully with noise� the error
in shape for the �bad� elliptical points 	points with large r�
 increases rapidly
with the increase of r�� both in the scalar�weighted SVD and in the regular
SVD� The error in shape for this group of points 	i�e�� half of the total number
of points
 is shown in Fig� ��d � Note how� in contrast� the covariance�weighted
SVD maintains high quality of reconstruction both in the motion and in shape�

In order to visualize the results 	i�e�� visually compare the shape reconstructed
by the di�erent algorithms for di�erent types of noise
� we repeated these exper�
iments� but this time instead of applying it to a random shape� we applied it to a
well de�ned shape � a cube� We used randomly generated a�ne motion matrices
to determine the positions of ��� cube points in �� di�erent views� then cor�
rupted them with random noise as before� Sample displays of the reconstructed
cube by covariance�weighted algorithm vs� the regular SVD algorithm are shown
in Fig� � for three interesting cases� case of circular Gaussian noise r� � 
 for
all the points 	Figs� ��a and ��d
� case of elliptic Gaussian noise with r� � ��
	Figs� ��b and ��e
� and the case of pure �normal �ow�� when �min � � 	r� ��

	Figs� ��c and ��f
� 	For visibility sake� only � sides of the cube are displayed
�
The covariance�weighted SVD 	top row
 consistently maintains high accuracy of
shape recovery� even in the case of pure normal��ow� The shape reconstruction
obtained by regular SVD 	bottom row
� on the other hand� degrades severely
with the increase in the degree of elliptical uncertainty� Scalar�weighted SVD
reconstruction was not added here� because when all the points are equally re�
liable� then scalar�weighted SVD coincides with regular�SVD 	see Fig� ��b
� yet
it is not de�ned for the case of in�nite uncertainty 	because then all the weights
are equal to zero
�

� Conclusion

In this paper we have introduced a new algorithm for performing covariance�
weighted factorization of multiframe correspondence data into shape and mo�
tion� Unlike the regular SVD algorithms which minimize the Frobenius norm
error in the data� or the scalar�weighted SVD which minimizes a scalar�weighted
version of that norm� our algorithm minimizes the covariance weighted error
	or the Mahalanobis distance
� This is the proper measure to minimize when
the uncertainty in feature position is directional� Our algorithm transforms the
raw input data into a covariance�weighted data space� and applies SVD in this
transformed data space� where the Frobenius norm now minimizes a meaning�
ful objective function� This SVD step projects the covariance�weighted data to
a �R�dimensional subspace� We complete the process with an additional linear
estimation step to recover the rank R shape and motion estimates�

A fundamental advantage of our algorithm is that it can handle input data
with any level of ellipticity in the directional uncertainty � i�e�� from purely
circular uncertainty to highly elliptical uncertainty� even including the case of
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Fig� �� Reconstructed shape of the cube by the Covariance�weighted SVD �top row�
vs� the regular SVD �bottom row�� For visibility sake� only 
 sides of the cube are
displayed� �a�d� case of circularly symmetric noise� �b�e� case of elliptical noise with
ratio r� � ��� �c�f� case of pure �normal �ow	 �only line�like features� r� ��� Note
that the quality of shape reconstruction of the covariance weighted factorization method
does not degrade with the increase in the degree of ellipticity� while in the case of regular
SVD� it degrades rapidly�

points along lines where the uncertainty along the line direction is in�nite� It can
also simultaneously use data which contains points with di�erent levels of direc�
tional uncertainty� We empirically show that our algorithm recovers shape and
motion accurately� even when the more conventional SVD algorithms perform
poorly� However� our algorithm cannot handle arbitrary changes in the uncer�
tainty of a single feature over multiple frames 	views
� It can only account for
frame dependent �D a�ne deformations in the covariance matrices�
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