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Abstract

This paper presents a method for alignment of images acquired by sensors of di�erent modali�
ties �e�g�� EO and IR�� The paper has two main contributions� �i� It identi�es an appropriate
image representation for multi�sensor alignment� i�e�� a representation which emphasizes the
common information between the two multi�sensor images� suppresses the non�common in�
formation� and is adequate for coarse�to��ne processing� �ii� It presents a new alignment
technique� which applies global estimation to any choice of a local similarity measure� In
particular� it is shown that when this registration technique is applied to the chosen im�
age representation with a local�normalized�correlation similarity measure� it provides a new
multi�sensor alignment algorithm which is robust to outliers� and applies to a wide variety
of globally complex brightness transformations between the two images�

Our proposed image representation does not rely on sparse image features �e�g�� edge�
contour� or point features�� It is continuous and does not eliminate the detailed variations
within local image regions� Our method naturally extends to coarse�to��ne processing� and
applies even in situations when the multi�sensor signals are globally characterized by low
statistical correlation�

� Introduction

In images acquired by sensors of di�erent modalities �EO� IR� radar� etc�� the relationship

between the brightness values of corresponding pixels is usually complex and unknown�

Visual features present in one sensor image may not appear in the other image� and vice

versa� contrast reversal may occur between the two images in some image regions� while not
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in others� multiple brightness values in one image may map to a single brightness value in the

other image� and vice versa� In other words� the two images are usually not correlated in

their entirety� i�e�� they are not globally correlated �often� not even statistically correlated��

There are two fundamental questions that a multi�sensor alignment algorithm should

address� �i� What is a good image representation to work with �i�e�� what representation will

bring out the common information between the two multi�sensor images� while suppressing

the non�common information�� �ii� What is an appropriate similarity measure for matching

the two images within the selected representation�

Previous work on multi�sensor image alignment �e�g�� 	
� �� ��� 
� �� ���� can broadly be

classi�ed into two major classes of algorithms� These classes di�er in the way they address

the two abovementioned questions�

�� Methods that use an invariant image representation� By invariant image representa�

tion we refer to a representation that is invariant to changes in brightness and contrast�

as well as to contrast reversal� Some examples of invariant image representations are edge

maps 	
�� oriented edge vector �elds 	��� contour features 	
�� and feature points 	��� Such

representations aim at increasing the visual similarity between of the two images� Once this

is achieved� registration techniques that assume similar appearance �e�g�� that are based on

the brightness constancy assumption� can be applied� For example� the registration methods

employed in 	
� �� are extensions of the direct gradient�based registration methods 	�� ����

However� in the process of creating an invariant image representation� important image

information is usually lost� For example� in 	
� �� 
� there is a thresholding step� This step

usually eliminates most of the detailed variations within local regions of the images� leaving

only a sparse set of highly signi�cant image features� Moreover� the choice of threshold is

very data and sensor dependent�
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�� Methods that use an invariant similarity measure to register the multi�sensor images�

and therefore do not require an invariant image representation�

An example of such a similarity measure is Mutual Information 	���� which is a measure

of the statistical correlation between two images� The method suggested by 	��� is applied

directly to the raw multi�sensor intensity images� and does not require an invariant image

representation� This method assumes� however� that the statistical correlation between the

two images is global� an assumption which is often violated �e�g�� Figure 
�� Moreover� the

statistical correlation between raw multi�sensor images tends to decrease with the reduction

in spatial resolution �Section ��� Therefore� 	��� in its current form does not naturally extend

to coarse�to��ne estimation� which is often used to handle large misalignments� These issues

will be referred to in Section ��

In order to address the issues mentioned above� we have developed an approach which

uses a locally invariant similarity measure while globally constraining the local matches� In

particular� our approach to multi�sensor image alignment does not assume global correla�

tion �regular or statistical� of the images� but only a local one� The underlying chosen

image representation is continuous� and avoids thresholding and hence loss of image detail�

The representation is invariant to contrast reversal� provides orientational sensitivity� and is

suitable for coarse�to��ne processing� The estimation process has a built�in outlier rejection

mechanism� which is critical to multi�sensor alignment due to the plurality of non�common

image features across the two images �as a matter of fact� in many situations there are more

�outliers� than �inliers� in a multi�sensor image pair�� The motion models used in this work

were �D parametric transformations� The algorithm� however� can be extended to �D motion

models as well�

The rest of the paper is organized as follows� Section � describes the chosen image
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representation� Section � describes the global alignment method with a local similarity

measure� Section 
 presents results of applying our algorithm to IR�EO image pairs�

� The Image Representation

The underlying assumption of multi�resolution alignment is that the corresponding signals

at all resolution levels contain enough correlated structure to allow stable matching� This

assumption is generally true when an image pair is obtained by the same sensor� or by

two di�erent cameras of same modality� However� in multi�sensor image pairs �i�e�� image

pairs taken by sensors of di�erent modalities�� the signals are correlated primarily in high

resolution levels� while correlation between the signals tends to degrade substantially with

the reduction in spatial resolution� This is because high resolution images capture high

spatial frequency information� which corresponds to physical structure of the scene that is

common to the two images� Low resolution images� on the other hand� depend heavily on

illumination and on the photometric and physical imaging properties of the sensors �which

are characterized by low frequency information�� and these are substantially di�erent in two

multi�modality images�

To capture the common scene detail information while suppressing the non�common

illumination and sensor�dependent properties� the images are transformed into high�pass

energy images �e�g�� see 	���� An example of such an energy image is a Laplacian�energy image�

which is formed by �rst high�pass �ltering the image with a Laplacian �lter� then squaring

it� This facilitates coarse�to��ne search based on signal details� In 	�� the Laplacian�energy

image is used for e�ectively detecting small �high�resolution� temporal changes already at

low resolution levels�

High�pass energy image representations are useful for multi�sensor alignment� because�






�i� The creation of such energy images does not involve any thresholding� and therefore

preserves all image detail� This is in contrast to �invariant� representations �e�g�� edge maps

	
�� edge vectors 	��� contours 	
�� point features 	���� which eliminate most of the detailed

variations within local image regions�

�ii� The image information which is eliminated in the creation of the high�pass energy images

is exactly that which is not common to the two multi�sensor images� In particular� �a� the

sensor�dependent low�resolution information is eliminated� and �b� contrast�reversal which

may occur between the sensors �e�g�� Fig� �� is removed by the squaring operation� In other

words� the energy image representation is invariant to contrast reversal�

�iii� As mentioned in 	��� a pyramid data structure of the high�pass energy image projects

high resolution signal information into low resolution levels� In our case� this facilitates

coarse�to��ne alignment based on correlated scene details� as opposed to using pyramids of

the raw multi�sensor images �which contain uncorrelated sensor information at low spatial

resolutions��

However� the Laplacian� being a rotationally invariant operator� does not preserve direc�

tional information� This leads to potential false correspondences of patterns that are oriented

along di�erent directions in the Laplacian energy images� The energy�image representation

that we use is based on directional�derivative �lters rather than a Laplacian �lter� On top of

the abovementioned advantages of high�pass energy images� the directional�derivative�energy

also preserve directional information� and thereby avoid this problem� This further enhances

the robustness of the registration algorithm against the numerous outliers so common in a

multi�sensor image pair�

The directional derivative �lter is applied to the raw image in four directions �horizontal�

vertical� and the two diagonals�� Then� each of the four generated derivative images is

squared� �Since the squaring operation doubles the frequency band� the raw image is �ltered
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with a Gaussian prior to the derivative �ltering� to avoid aliasing e�ects��

The alignment algorithm �Section �� is applied simultaneously to all 
 corresponding

multi�sensor pairs of directional�derivative�energy images� seeking a single parametric trans�

formation �p� which simultaneously brings all directional pairs into alignment �see Section ���

Fig� � shows an example of the four directional�derivative�energy pairs constructed from

a multi�sensor image pair�

Fig� � shows the Gaussian pyramid constructed for one of the four multi�sensor pairs of

directional�derivative�energy images�

� The Alignment Algorithm

To align the multi�band energy image representation �Section ��� our alignment algorithm

uses a local correlation�based similarity measure� without assuming global correlation �reg�

ular or statistical� between the images� We have applied the algorithm with a normalized�

correlation�based local similarity measure for reasons explained below� However� it can be

similarly applied with a local statistical�correlation�based similarity measure �e�g�� based on

Mutual Information�� or any other appropriate local measure�

The global parametric estimation is applied directly to the collection of all local correla�

tion surfaces� while avoiding an independent local search for peaks in the individual surfaces�

Global alignment has the advantage of directly estimating the global parametric transfor�

mation� without �rst committing to any particular matches locally� In other words� local

matching is constrained by global alignment� Such a scheme is useful in any alignment algo�

rithm� but is particularly critical in multi�sensor alignment� due to the plurality of outliers

across sensors and hence the unreliability of local matches� Although global alignment has

been used for image registration� it has been based on minimizing the intensity di�erences
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�c�

�d�

�e�

Figure �� The four directional�derivative�energy image pairs� Left column� EO� Right
column� IR�
�a� The raw multi�sensor image pair� �b� horizontal derivative energy� �c� vertical
derivative energy� �d�e� energies of diagonal derivatives�






a�

b�

Figure �� The Gaussian pyramid constructed for one of the four pairs of directional�
derivative�energy images �Fig� ��d�� �a� EO� �b� IR�

between the corresponding pixels in the two images� i�e�� using the sum of squared di�erences

�SSD� as the match measure� That is� the similarity measure is based on the �brightness

constancy� assumption� which is severely violated in a multi�sensor image pair �even in the

energy images�� In this work� we have generalized global alignment techniques to use any

local similarity measure �e�g�� normalized correlation� SSD� or any other measure� which is

suitable for the particular alignment problem� This is done via global regression applied

directly to the local similarity�measure surfaces �e�g�� correlation surfaces�� as described in

Section ���� In particular� we found normalized�correlation to be a suitable similarity mea�

sure for multi�sensor energy�image alignment�

�



Global alignment is particularly critical when using the directional�derivative images�

no prior local estimation process can produce meaningful local matches on a directional�

derivative image pair� as these images lack information in the direction perpendicular to the

directional derivative �the �aperture problem��� The simultaneous and global registration of

all �four� directional pairs� however� provides full directional information�

Motion Models� When the scene can be approximated by a planar surface� or when the

baseline between the two sensors is small relative to their distance from the scene� then the

displacement �eld between the two images can be modeled in terms of a single �D parametric

transformation �see 	�� for a taxonomy of motion models��

We have focused our attention on alignment using a �D parametric transformation� al�

though our approach generalizes to �D models as well� Speci�cally� we focus on parametric

transformations which are linear in their unknown parameters fpig� For such transforma�

tions� the motion vector �u�x� y� � �u�x� y�� v�x� y��T can be expressed as�

�u�x� y� �p� � X�x� y� � �p� ���

where X�x� y� is a matrix which depends only on the pixel coordinates �x� y�� and �p �

�p�� ���� pn�
T is the unknown parameter vector� For example� for an a�ne transformation�

�
u�x� y� �p�
v�x� y� �p�

�
�

�
p� � p�x � p�y

p� � p�x � p�y

�
� ���

therefore� in this case� �p � �p�� p�� p�� p�� p�� p��
T and

X �

�
� x y � � �
� � � � x y

�
�

and for a quadratic transformation�

�
u�x� y� �p�
v�x� y� �p�

�
�

�
p� � p�x� p�y � p�x

� � p�xy

p� � p�x� p�y � p�xy � p�x
�

�
�
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therefore� �p � �p�� p�� p�� p�� p�� p�� p�� p��
T and

X �

�
� x y � � � x� xy

� � � � x y xy y�

�
�

The Normalized�Correlation as a Local Similarity Measure� Normalized�correlation

of two signals is invariant to local changes in mean and contrast� In other words� when the

two signals are linearly related� their normalized�correlation is �� When the linear relation�

ship does not hold� but the two signals contain similar spatial variations �as measured in the

form of local �uctuations�� the normalized�correlation will still give a value close to unity�

In general� however� the global relationship between two multi�sensor images is complex�

and therefore the two signals are not globally correlated �even after computing the energy

images�� Statistical correlation is a better global measure than regular or normalized cor�

relation� but may still not be a strong enough global similarity measure� because multiple

brightness values in one image may map to a single brightness value in the other image� and

vice versa� Locally� however� within small image patches which contain corresponding image

features� statistical correlation is high� Normalized�correlation is a linear approximation of

the statistical correlation of two signals in a small window� and is cheaper to compute�

The energy images that we compute tend to highlight the local variations that correspond

to local structure in the scene� These images are invariant to contrast reversal� but vary in

mean and contrast� When the relationship between corresponding patches deviates from

linear� the normalized�correlation �applied over local windows� is less than �� but is still high

for the correct displacement� For other displacements the normalized�correlation will be low�

especially for highly textured image patches� Therefore� the local normalized�correlation

surface of such patches will be concave with a prominent peak at the correct displacement�
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For corresponding image patches that contain mutually exclusive image features �i�e�� image

features which appear in only one of the � multi�sensor images � a thing which occurs

frequently�� the local correlation surface will not have a concave shape with a prominent

peak� Therefore� the structure of the local�normalized�correlation surfaces provides useful

information for alignment� The information from all of these local structures� however� should

be simultaneously used to determine the global alignment parameters� This is essential to

avoid the numerous potential false matches in limited local analysis� This is achieved via

global regression applied directly to the collection of local normalized�correlation surfaces� as

described in Section ����

��� Global Alignment with Local Correlation

Given two images� f and g� and their directional�derivative energy images� ffig
�
i�� and

fgig
�
i��� �nd the parametric transformation �p which maximizes the sum of all local normalized�

correlation values� Let S
	x�y

i �u� v� denote a correlation surface corresponding to a pixel �x� y�

in fi� For any shift �u� v� of gi relative to fi� S
	x�y

i is de�ned as�

S
	x�y

i �u� v�

def
� fi�x� y� �N gi�x � u� y � v�

where �N denotes normalized correlation computed over a small window� Let �u �

�u�x� y� �p�� v�x� y� �p�� denote the motion �eld described by the parametric transformation

�p� Then the parametric registration problem can be stated as follows� Find the parametric

transformation �p that maximizes the global similarity�measure M��p��

M��p� � �x�y�iS
	x�y

i �u�x� y� �p�� v�x� y� �p��

� �x�y�iS
	x�y

i ��u�x� y� �p��� ���
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To solve for �p that maximizes M��p�� we use Newton�s method 	��� which iteratively �ts

quadratic approximations to the objective function� and re�nes the peak location that max�

imizes these quadratic surfaces� In order to provide the context for our use of Newton�s

method for the maximization problem at hand� we �rst brie�y outline the steps of this

method�

Given the current estimate of the motion parameters �p�� let

M��p� � M��p�� � �r�pM��p���
T ��p � ��p

T
HM��p����p �
�

denote the quadratic approximation of M��p� around �p�� where� ��p � �p� �p� is the unknown

re�nement step of �p� that we want to solve for� r�pM denotes the gradient of M � and HM

denotes the Hessian of M �i�e�� the matrix of second derivatives�� both computed around �p��

According to Newton�s method 	��� the re�nement ��p computed based on this approximation

is�

��p
�

� ��HM��p���
�� � r�pM��p�� ���

To apply the Newton�s re�nement step to our problem� we derived the expressions for

r�pM and HM in terms of the measurable image quantities� i�e�� the collection of correlation

surfaces fS
	x�y

i g� Using the chain�rule of di�erentiation� we obtain

r�pM��p� � �x�y�ir�pSi��u� � �x�y�i�X
T � r�uSi��u��

HM��p� � �x�y�i�X
T �HSi

��u� �X� ���

where X is the matrix de�ned in Eq� ���� r�uSi is the gradient of S
	x�y

i ��u�� and HSi

is the

Hessian of S
	x�y

i ��u��

In other words� the quadratic approximation of M around �p� is obtained by combining

the quadratic approximations of each of the local correlation surfaces fS
	x�y

i gx�y�i around the
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local displacement vector �u� � �u�x� y� �p��� which is induced at pixel �x� y� by the parametric

transformation �p� �estimated at the previous iteration��

Substituting Eqs� ��� into Eq� ��� provides an expression for the re�nement step ��p
�

in

terms of the correlation surfaces fS
	x�y

i g�

��p
�

� ���x�y�i X
THSi

� �u��X��� ��x�y�i X
Tr�uSi� �u��� �
�

Note that these steps do not make any assumptions about the local correlation surface�

except that it is twice di�erentiable� Thus� any local similarity�measure can be substituted

for correlation� and our method will still apply�

The steps of the algorithm� To account for large misalignments between pairs of images�

we perform multi�resolution coarse�to��ne estimation� e�g�� as in 	��� A Laplacian �or a Gaus�

sian� pyramid is constructed for each of the energy images� Let fil and gil �i � �� �� �� 
�

denote the directional�derivative energy images at resolution level l in the pyramids of fi

and gi� respectively� Starting at the coarsest resolution level with �p� initially set to �� the

following steps are performed at each resolution level�

�� For each pixel �x� y� at fil �i � �� �� �� 
�� compute a local normalized�correlation sur�

face around the displacement �u� �i�e�� around the displacement estimated at the previous

iteration�� In practice� the correlation surface is estimated only for a small number of dis�

placements �u of gil within a radius d around �u�� i�e��

Sl
	x�y

i ��u� � fil�x� y� �N gil�x� u� y � v� �

��u � �u� v� s�t� jj�u� �u�jj � d

where the radius d is determined by the size of the masks used for discretely estimating the
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�rst and second order derivatives of Sl
	x�y

i ��u� at �u�� In our current implementation we used

Beaudet�s masks 	�� to estimate the �rst and second order derivatives of the surfaces� We

have experimented both with �� � masks �i�e�� d � �� and with �� � masks �i�e�� d � ���

�� Perform the regression step of Eq� �
� to compute the parametric re�nement ��p
�

�

�� Update �p�� �p� �� �p� � ��p
�

� and go back to step ��

After repeating the above process for a few iterations �typically 
�� the parameters �p are

propagated to the next resolution level� and the process is repeated at that resolution level�

The process is stopped when the iterative process at the highest resolution level is completed�

In practice� to improve performance� we add an image warping step before each itera�

tion �as in 	���� The inspection images fgig are warped towards the reference images ffig

according to the current estimated parametric transformation �p�� After warping the images�

�p� is set to �� and ��p
�

is estimated between the pairs of references and warped inspection

images� Warping compensates for the spatial distortions between the pairs of images �e�g��

scale di�erence� rotations� etc�� and hence improves the quality of the correlation�

Outlier rejection� To further condition and robustify the regression step of Eq� �
��

only pixels �x� y� for which the quadratic approximation of S
	x�y

i ��u� around �u� is concave

are used in the regression process� Other pixels are ignored� Since corresponding multi�

sensor image patches which have mutually exclusive image features will not tend to have

a concaved�shaped local correlation surfaces� they will be eliminated from the regression

at this point� Moreover� the contribution of each pixel to the regression step is weighted
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by the determinant of it Hessian� This built�in outlier rejection mechanism provides the

algorithm with a strong locking property onto a dominant parametric motion� even in the

presence of independent motions� noise� and exclusive features that appear in only one of

the sensor�images �but not in the other��

� Examples

The alignment algorithm described in Section � was implemented and applied with an a�ne

parametric model �Eq� �� to pairs of multi�sensor images� Fig� � shows result of alignment

of two multi�sensor images �visible and IR� obtained by sensors mounted on an aircraft

approaching landing� Note the signi�cant di�erence in scale between the two images �due

to signi�cantly di�erent internal sensor parameters�� Also note that contrast reversal occurs

in some parts of the images �e�g�� runway markings�� while not in others �e�g�� runway

boundaries��

The algorithms has been applied successfully even in very challenging situations� such as

the one shown in Fig 
� Note the signi�cant di�erence in image content between the two

sensor�images� Apart from having signi�cantly di�erent appearance� there are many non�

common features �i�e�� outliers� in the multi�sensor image pair� which can theoretically lead

to false matches� These are overcome by the built�in outlier mechanism of our algorithm

�see Section ���
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a� b�

c� d�

Figure �� Multi�sensor Alignment�
�a� EO image� �b� IR image� �c� Composite display of the two multi�sensor images
before alignment� Horizontal strips from the two images are spliced together� Note
the signi�cant misalignments between the images �e�g�� the runway markings and the
borders of the runway�� �d� Composite �spliced� display of the two multi�sensor images
after alignment� Note that all structures in the scene are aligned�
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b�

c�

d�

Figure 
� Multi�sensor Alignment�
�a� EO image� �b� IR image� �c� Composite �spliced� display before alignment� �d�
Composite �spliced� display after alignment� Note in particular the perfect alignment of
the water�tank at the bottom left of the images� the building with the arched�doorway
at the right� and the roads at the top left of the images�
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