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Abstract

This paper presents a method for alignment of images acquired by sensors of different modali-
ties (e.g., EO and IR). The paper has two main contributions: (i) It identifies an appropriate
image representation for multi-sensor alignment, 1.e., a representation which emphasizes the
common information between the two multi-sensor images, suppresses the non-common in-
formation, and is adequate for coarse-to-fine processing. (i) It presents a new alignment
technique, which applies global estimation to any choice of a local similarity measure. In
particular, it s shown that when this registration technique 1s applied to the chosen im-
age representation with a local-normalized-correlation similarity measure, it provides a new
multi-sensor alignment algorithm which is robust to outliers, and applies to a wide variety
of globally complex brightness transformations between the two images.

Our proposed image representation does not rely on sparse image features (e.g., edge,
contour, or point features). It is continuous and does not eliminate the detailed variations
within local 1mage regions. Our method naturally extends to coarse-to-fine processing, and
applies even in situations when the multi-sensor signals are globally characterized by low
statistical correlation.

1 Introduction

In images acquired by sensors of different modalities (EO, IR, radar, etc), the relationship
between the brightness values of corresponding pixels is usually complex and unknown:
Visual features present in one sensor image may not appear in the other image, and vice

versa; contrast reversal may occur between the two images in some image regions, while not
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in others; multiple brightness values in one image may map to a single brightness value in the
other image, and vice versa. In other words, the two images are usually not correlated in
their entirety, i.e., they are not globally correlated (often, not even statistically correlated).

There are two fundamental questions that a multi-sensor alignment algorithm should
address: (i) What is a good image representation to work with (i.e., what representation will
bring out the common information between the two multi-sensor images, while suppressing
the non-common information)? (ii) What is an appropriate similarity measure for matching
the two images within the selected representation?

Previous work on multi-sensor image alignment (e.g., [4, 6, 10, 7, 8, 11]) can broadly be
classified into two major classes of algorithms. These classes differ in the way they address

the two abovementioned questions:

1. Methods that use an wnvariant image representation. By invariant image representa-
tion we refer to a representation that is invariant to changes in brightness and contrast,
as well as to contrast reversal. Some examples of invariant image representations are edge
maps [4], oriented edge vector fields [6], contour features [7], and feature points [8]. Such
representations aim at increasing the visual similarity between of the two images. Once this
is achieved, registration techniques that assume similar appearance (e.g., that are based on
the brightness constancy assumption) can be applied. For example, the registration methods
employed in [4, 6] are extensions of the direct gradient-based registration methods |2, 5]).
However, in the process of creating an invariant image representation, important image
information is usually lost. For example, in [4, 6, 7] there is a thresholding step. This step
usually eliminates most of the detailed variations within local regions of the images, leaving
only a sparse set of highly significant image features. Moreover, the choice of threshold is

very data and sensor dependent.



2. Methods that use an invariant similarity measure to register the multi-sensor images,
and therefore do not require an invariant image representation.

An example of such a similarity measure is Mutual Information [11], which is a measure
of the statistical correlation between two images. The method suggested by [11] is applied
directly to the raw multi-sensor intensity images, and does not require an invariant image
representation. This method assumes, however, that the statistical correlation between the
two images is global, an assumption which is often violated (e.g., Figure 4). Moreover, the
statistical correlation between raw multi-sensor images tends to decrease with the reduction
in spatial resolution (Section 2). Therefore, [11] in its current form does not naturally extend
to coarse-to-fine estimation, which is often used to handle large misalignments. These issues
will be referred to in Section 2.

In order to address the issues mentioned above, we have developed an approach which
uses a locally invariant similarity measure while globally constraining the local matches. In
particular, our approach to multi-sensor image alignment does not assume global correla-
tion (regular or statistical) of the images, but only a local one.  The underlying chosen
image representation is continuous, and avoids thresholding and hence loss of image detail.
The representation is invariant to contrast reversal, provides orientational sensitivity, and is
suitable for coarse-to-fine processing. The estimation process has a built-in outlier rejection
mechanism, which is critical to multi-sensor alignment due to the plurality of non-common
image features across the two images (as a matter of fact, in many situations there are more
“outliers” than “inliers” in a multi-sensor image pair). The motion models used in this work
were 2D parametric transformations. The algorithm, however, can be extended to 3D motion
models as well.

The rest of the paper is organized as follows: Section 2 describes the chosen image



representation. Section 3 describes the global alignment method with a local similarity

measure. Section 4 presents results of applying our algorithm to IR/EO image pairs.

2 The Image Representation

The underlying assumption of multi-resolution alignment is that the corresponding signals
at all resolution levels contain enough correlated structure to allow stable matching. This
assumption is generally true when an image pair is obtained by the same sensor, or by
two different cameras of same modality. However, in multi-sensor image pairs (i.e., image
pairs taken by sensors of different modalities), the signals are correlated primarily in high
resolution levels, while correlation between the signals tends to degrade substantially with
the reduction in spatial resolution.  This is because high resolution images capture high
spatial frequency information, which corresponds to physical structure of the scene that is
common to the two images. Low resolution images, on the other hand, depend heavily on
illumination and on the photometric and physical imaging properties of the sensors (which
are characterized by low frequency information), and these are substantially different in two
multi-modality images.

To capture the common scene detail information while suppressing the non-common
illumination and sensor-dependent properties, the images are transformed into high-pass
energy images (e.g., see [3]). An example of such an energy image is a Laplacian-energy image,
which is formed by first high-pass filtering the image with a Laplacian filter, then squaring
it. This facilitates coarse-to-fine search based on signal details. In [3] the Laplacian-energy
image is used for effectively detecting small (high-resolution) temporal changes already at
low resolution levels.

High-pass energy image representations are useful for multi-sensor alignment, because:



(i) The creation of such energy images does not involve any thresholding, and therefore
preserves all image detail. This is in contrast to “invariant” representations (e.g., edge maps
[4], edge vectors [6], contours [7], point features [8]), which eliminate most of the detailed
variations within local image regions.

(ii) The image information which is eliminated in the creation of the high-pass energy images
is exactly that which is not common to the two multi-sensor images. In particular: (a) the
sensor-dependent low-resolution information is eliminated, and (b) contrast-reversal which
may occur between the sensors (e.g., Fig. 3) is removed by the squaring operation. In other
words, the energy image representation is invariant to contrast reversal.

(iii) As mentioned in [3], a pyramid data structure of the high-pass energy image projects
high resolution signal information into low resolution levels. In our case, this facilitates
coarse-to-fine alignment based on correlated scene details, as opposed to using pyramids of
the raw multi-sensor images (which contain uncorrelated sensor information at low spatial
resolutions).

However, the Laplacian, being a rotationally invariant operator, does not preserve direc-
tional information. This leads to potential false correspondences of patterns that are oriented
along different directions in the Laplacian energy images. The energy-image representation
that we use is based on directional-derivative filters rather than a Laplacian filter. On top of
the abovementioned advantages of high-pass energy images, the directional-derivative-energy
also preserve directional information, and thereby avoid this problem. This further enhances
the robustness of the registration algorithm against the numerous outliers so common in a
multi-sensor image pair.

The directional derivative filter is applied to the raw image in four directions (horizontal,
vertical, and the two diagonals). Then, each of the four generated derivative images is

squared. (Since the squaring operation doubles the frequency band, the raw image is filtered



with a Gaussian prior to the derivative filtering, to avoid aliasing effects).

The alignment algorithm (Section 3) is applied simultaneously to all 4 corresponding
multi-sensor pairs of directional-derivative-energy images, seeking a single parametric trans-
formation p, which simultaneously brings all directional pairs into alignment (see Section 3).

Fig. 1 shows an example of the four directional-derivative-energy pairs constructed from
a multi-sensor image pair.

Fig. 2 shows the Gaussian pyramid constructed for one of the four multi-sensor pairs of

directional-derivative-energy images.

3 The Alignment Algorithm

To align the multi-band energy image representation (Section 2), our alignment algorithm
uses a local correlation-based similarity measure, without assuming global correlation (reg-
ular or statistical) between the images. We have applied the algorithm with a normalized-
correlation-based local similarity measure for reasons explained below. However, it can be
similarly applied with a local statistical-correlation-based similarity measure (e.g., based on
Mutual Information), or any other appropriate local measure.

The global parametric estimation is applied directly to the collection of all local correla-
tion surfaces, while avoiding an independent local search for peaks in the individual surfaces.
Global alignment has the advantage of directly estimating the global parametric transfor-
mation, without first committing to any particular matches locally. In other words, local
matching is constrained by global alignment. Such a scheme is useful in any alignment algo-
rithm, but is particularly critical in multi-sensor alignment, due to the plurality of outliers
across sensors and hence the unreliability of local matches. Although global alignment has

been used for image registration, it has been based on minimizing the intensity differences
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Figure 1: The four directional-derivative-energy image pairs. Left column: EO. Right
column: IR.

(a) The raw multi-sensor image pair. (b) horizontal derivative energy, (c) vertical
derivative energy, (d,e) energies of diagonal derivatives.
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Figure 2: The Gaussian pyramid constructed for one of the four pairs of directional-
derivative-energy images (Fig. 1.d): (a) EO. (b) IR.

between the corresponding pixels in the two images, i.e., using the sum of squared differences
(SSD) as the match measure. That is, the similarity measure is based on the “brightness
constancy” assumption, which is severely violated in a multi-sensor image pair (even in the
energy images). In this work, we have generalized global alignment techniques to use any
local similarity measure (e.g., normalized correlation, SSD, or any other measure) which is
suitable for the particular alignment problem. This is done via global regression applied
directly to the local similarity-measure surfaces (e.g., correlation surfaces), as described in
Section 3.1. In particular, we found normalized-correlation to be a suitable similarity mea-

sure for multi-sensor energy-image alignment.



Global alignment is particularly critical when using the directional-derivative images:
no prior local estimation process can produce meaningful local matches on a directional-
derivative image pair, as these images lack information in the direction perpendicular to the
directional derivative (the “aperture problem”). The simultaneous and global registration of
all (four) directional pairs, however, provides full directional information.

Motion Models: When the scene can be approximated by a planar surface, or when the
baseline between the two sensors is small relative to their distance from the scene, then the
displacement field between the two images can be modeled in terms of a single 2D parametric
transformation (see [2] for a taxonomy of motion models).

We have focused our attention on alignment using a 2D parametric transformation, al-
though our approach generalizes to 3D models as well. Specifically, we focus on parametric
transformations which are linear in their unknown parameters {p;}. For such transforma-

tions, the motion vector @(x,y) = (u(z,y),v(x,y))" can be expressed as:
u(z,y; p) = X(z,y) - 7, (1)

where X (z,y) is a matrix which depends only on the pixel coordinates (z,y), and j =

(p1y -, pn)’ is the unknown parameter vector. For example, for an affine transformation:

u(@,y;9) | _ | p1+p2x+psy 2)
v(w, y; P) pa+ D52+ pey |’

therefore, in this case: = (pi, p2, p3, P1, P5, Ps)’ and

and for a quadratic transformation:

w(z,y;§) | _ | p1+paw + pay + pra® + psry
v(z, y; p) Pa+ 05 + pey + pray + psz? |



therefore: 7= (p1, P2, P3, P4, D5, D6, P1,Ps)” and
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The Normalized-Correlation as a Local Similarity Measure: Normalized-correlation
of two signals is invariant to local changes in mean and contrast. In other words, when the
two signals are linearly related, their normalized-correlation is 1. When the linear relation-
ship does not hold, but the two signals contain similar spatial variations (as measured in the
form of local fluctuations), the normalized-correlation will still give a value close to unity.

In general, however, the global relationship between two multi-sensor images is complex,
and therefore the two signals are not globally correlated (even after computing the energy
images). Statistical correlation is a better global measure than regular or normalized cor-
relation, but may still not be a strong enough global similarity measure, because multiple
brightness values in one image may map to a single brightness value in the other image, and
vice versa. Locally, however, within small image patches which contain corresponding image
features, statistical correlation is high. Normalized-correlation is a linear approximation of
the statistical correlation of two signals in a small window, and is cheaper to compute.

The energy images that we compute tend to highlight the local variations that correspond
to local structure in the scene. These images are invariant to contrast reversal, but vary in
mean and contrast. When the relationship between corresponding patches deviates from
linear, the normalized-correlation (applied over local windows) is less than 1, but is still high
for the correct displacement. For other displacements the normalized-correlation will be low,
especially for highly textured image patches. Therefore, the local normalized-correlation

surface of such patches will be concave with a prominent peak at the correct displacement.
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For corresponding image patches that contain mutually exclusive image features (i.e., image
features which appear in only one of the 2 multi-sensor images — a thing which occurs
frequently), the local correlation surface will not have a concave shape with a prominent
peak. Therefore, the structure of the local-normalized-correlation surfaces provides useful
information for alignment. The information from all of these local structures, however, should
be simultaneously used to determine the global alignment parameters. This is essential to
avoid the numerous potential false matches in limited local analysis. This is achieved via
global regression applied directly to the collection of local normalized-correlation surfaces, as

described in Section 3.1.

3.1 Global Alignment with Local Correlation

Given two images, f and g, and their directional-derivative energy images, {f;}i_, and
{g:}+_,, find the parametric transformation j which maximizes the sum of all local normalized-

w,y)(

correlation values. Let SZ-( u, v) denote a correlation surface corresponding to a pixel (z,y)

in f;. For any shift (u,v) of g; relative to f;, S@Y) is defined as:

)

Sz'(w7y)(u7 U) déf fz(-'lf, y) ON gl(l‘ Tu,y+ U)

where opn denotes normalized correlation computed over a small window. Let @ =
(u(z,y; P),v(z,y;P)) denote the motion field described by the parametric transformation
p. Then the parametric registration problem can be stated as follows: Find the parametric

transformation p' that maximizes the global similarity-measure M (p):

M@@) = S, %S5 (u(e, y; 7), v(, y; §))

= %, S i, v 7). (3)
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To solve for p that maximizes M(p), we use Newton’s method [9], which iteratively fits
quadratic approximations to the objective function, and refines the peak location that max-
imizes these quadratic surfaces. In order to provide the context for our use of Newton’s
method for the maximization problem at hand, we first briefly outline the steps of this
method.

Given the current estimate of the motion parameters pg, let

—

b (4)

%)

M(B) = M) + (VM (5))"8, + 8 Hau(95)

—

denote the quadratic approximation of M (p) around pg, where, 5; = p — po is the unknown
refinement step of py that we want to solve for, VM denotes the gradient of M, and H),

denotes the Hessian of M (i.e., the matrix of second derivatives), both computed around py.

According to Newton’s method [9], the refinement 5; computed based on this approximation
is:

6 = —(Hu(p)) ™ VM (i) (5)
To apply the Newton’s refinement step to our problem, we derived the expressions for

VM and H)y in terms of the measurable image quantities, i.e., the collection of correlation

surfaces {S§x7y)}: Using the chain-rule of differentiation, we obtain

ViM(P) = 344 VpSi(@) = Soy (X7 - VaSi(10))

Hy(p) = Soya(X" - Hs, (@) - X) (6)

where X is the matrix defined in Eq. (1), VzS; is the gradient of 5% (), and Hg, is the
Hessian of S (@).

In other words, the quadratic approximation of M around pg is obtained by combining
the quadratic approximations of each of the local correlation surfaces {Sl(xy)}xyl around the
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local displacement vector 4y = (x, y; pp), which is induced at pixel (x,y) by the parametric

transformation pg (estimated at the previous iteration).
Substituting Eqgs. (6) into Eq. (5) provides an expression for the refinement step 6;,* in

terms of the correlation surfaces {S"*}:
bp = —(Sags X' Hs, (00)X) ™" (Sa i X' VaSi(in)) (7)

Note that these steps do not make any assumptions about the local correlation surface,
except that it is twice differentiable. Thus, any local similarity-measure can be substituted

for correlation, and our method will still apply.

The steps of the algorithm: To account for large misalignments between pairs of images,
we perform multi-resolution coarse-to-fine estimation, e.g., as in [2]. A Laplacian (or a Gaus-
sian) pyramid is constructed for each of the energy images. Let f;; and g;; (1 = 1,2,3,4)
denote the directional-derivative energy images at resolution level [ in the pyramids of f;
and g;, respectively. Starting at the coarsest resolution level with pg initially set to 0, the

following steps are performed at each resolution level:

1. For each pixel (z,y) at f;; (i = 1,2,3,4), compute a local normalized-correlation sur-
face around the displacement ug (i.e., around the displacement estimated at the previous
iteration). In practice, the correlation surface is estimated only for a small number of dis-

placements @ of g;; within a radius d around uy, i.e.:

SI@) = fule,y) on gale +u,y+v)
Vi = (u,v) s.t. || —up|| < d

where the radius d is determined by the size of the masks used for discretely estimating the
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first and second order derivatives of ;%) (i) at 4p. In our current implementation we used
Beaudet’s masks [1] to estimate the first and second order derivatives of the surfaces. We

have experimented both with 3 x 3 masks (i.e., d = 1) and with 5 x 5 masks (i.e., d = 2).

2. Perform the regression step of Eq. (7) to compute the parametric refinement 6;,*.

*

3. Update py: po := po + 6;, , and go back to step 1.

After repeating the above process for a few iterations (typically 4), the parameters § are
propagated to the next resolution level, and the process is repeated at that resolution level.
The process is stopped when the iterative process at the highest resolution level is completed.

In practice, to improve performance, we add an image warping step before each itera-
tion (as in [2]). The inspection images {g;} are warped towards the reference images {f;}

according to the current estimated parametric transformation pj. After warping the images,

po is set to 0, and 6;,* is estimated between the pairs of references and warped inspection
images. Warping compensates for the spatial distortions between the pairs of images (e.g.,

scale difference, rotations, etc), and hence improves the quality of the correlation.

Outlier rejection: To further condition and robustify the regression step of Eq. (7),

only pixels (z,y) for which the quadratic approximation of S}x’y)(ﬁ) around g 1S concave

are used in the regression process. Other pixels are ignored. Since corresponding multi-
sensor image patches which have mutually exclusive image features will not tend to have
a concaved-shaped local correlation surfaces, they will be eliminated from the regression

at this point. Moreover, the contribution of each pixel to the regression step is weighted
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by the determinant of it Hessian. This built-in outlier rejection mechanism provides the
algorithm with a strong locking property onto a dominant parametric motion, even in the
presence of independent motions, noise, and exclusive features that appear in only one of

the sensor-images (but not in the other).

4 Examples

The alignment algorithm described in Section 3 was implemented and applied with an affine
parametric model (Eq. 2) to pairs of multi-sensor images. Fig. 3 shows result of alignment
of two multi-sensor images (visible and IR) obtained by sensors mounted on an aircraft
approaching landing. Note the significant difference in scale between the two images (due
to significantly different internal sensor parameters). Also note that contrast reversal occurs
in some parts of the images (e.g., runway markings), while not in others (e.g., runway
boundaries).

The algorithms has been applied successfully even in very challenging situations, such as
the one shown in Fig 4. Note the significant difference in image content between the two
sensor-images. Apart from having significantly different appearance, there are many non-
common features (i.e., outliers) in the multi-sensor image pair, which can theoretically lead
to false matches. These are overcome by the built-in outlier mechanism of our algorithm

(see Section 3).
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Figure 3: Multi-sensor Alignment.

(a) EO image. (b) IR image. (c¢) Composite display of the two multi-sensor images
before alignment. Horizontal strips from the two images are spliced together. Note
the significant misalignments between the images (e.g., the runway markings and the

borders of the runway). (d) Composite (spliced) display of the two multi-sensor images
after alignment. Note that all structures in the scene are aligned.
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Figure 4: Multi-sensor Alignment.

(a) EO image. (b) IR image. (c) Composite (spliced) display before alignment. (d)
Composite (spliced) display after alignment. Note in particular the perfect alignment of
the water-tank at the bottom left of the images, the building with the arched-doorway
at the right, and the roads at the top left of the images.
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