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Abstract—

A method for computing the 3D camera motion (the ego-
motion) in a static scene is introduced, which is based on
initially computing the 2D image motion of an image re-
gion. The computed dominant 2D parametric motion be-
tween two frames is used to register the images so that the
corresponding image region appears perfectly aligned be-
tween the two registered frames. Such 2D parametric regis-
tration removes all effects of camera rotation, even for the
misaligned image regions. The resulting residual parallax dis-
placement field between the two region-aligned images is an
epipolar field centered at the FOE (Focus-of-Expansion). The
3D camera translation is recovered from the epipolar field.
The 3D camera rotation is recovered from the computed 3D
translation and the detected 2D parametric motion.

The decomposition of image motion into a 2D parametric
motion and residual epipolar parallax displacements avoids many
of the inherent ambiguities and instabilities associated with
decomposing the image motion into its rotational and transla-
tional components, and hence robustifies ego-motion or 3D
structure estimation.

I. INTRODUCTION

The motion observed in an image sequence can be caused
by camera motion (ego-motion) and by motions of objects
moving in the scene. In this paper we address the case of
a camera moving in a static scene. Complete 3D motion
estimation is difficult since the image motion at every pixel
depends, in addition to the six parameters of the camera
motion, on the depth at the corresponding scene point. To
overcome this difficulty, additional constraints are usually
added to the motion model or to the environment model.

3D motion is often estimated from the optical or nor-
mal flow derived between two frames [1], [12], [26], or from
the correspondence of distinguished features (points, lines,
contours) extracted from successive frames [27], [13], [8].
Both approaches depend on the accuracy of the feature
detection, which can not always be assured. Methods for
computing the ego-motion directly from image intensities
were also suggested [11], [15].

Camera rotations and translations can induce similar im-
age motions [2], [9] causing ambiguities in their interpre-
tation. The problem of recovering the 3D camera motion
from a flow field is therefore an ill-conditioned problem,
since small errors in the 2D flow field usually result in large
perturbations in the 3D motion [2]. At depth discontinu-
ities, however, it is much easier to distinguish between the
effects of camera rotations and camera translations, as the
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image motion of neighboring pixels at different depths will
have similar rotational components, but different transla-
tional components. Motion parallax methods use this ef-
fect to obtain the 3D camera motion [22], [21], [8]. Other
methods use motion parallax for shape representation and
analysis [29], [7], [10]. However, accurate flow estimation
at depth discontinuities is difficult.

In this paper a method is introduced for computing the
ego-motion based on a decomposition of the image motion
into a 2D parametric transformation and a residual paral-
lax displacement field. This decomposition can be obtained
more robustly, and avoids many of the inherent ambiguities
and instabilities associated with decomposing a flow field
into its rotational and translational components.

We introduce the following scheme: We use previously
developed methods [17], [18], [4] to detect an image region
with a 2D parametric motion between two image frames.
The two frames are then registered according to the com-
puted 2D parametric transformation. This step removes
all effects of the camera rotation, even for the misaligned
image regions. The residual parallax displacement field
between the 2D region-aligned images is an epipolar field
centered at the FOE of the camera. The FOE is then
estimated from the epipolar field. When calibration infor-
mation is provided, the 3D camera translation is recovered.
The 3D rotation is estimated by solving a small set of linear
equations, which depend on the computed 3D translation
and the detected 2D parametric motion.

As opposed to other methods which use motion paral-
lax for 3D estimation [22], [23], [21], [8], our method does
not rely on parallax information at depth discontinuities
(where flow computation is likely to be inaccurate). The
residual displacements after 2D alignment provide a denser
and more reliable parallax field.

The advantage of this technique is in its simplicity and
in its robustness. No prior detection and matching are
assumed, it requires solving only small sets of linear equa-
tions, and each computational step is stated as an overde-
termined highly constrained problem which is numerically
stable.

This paper is an updated version of our [19] paper. Since
the paper was submitted to the journal, other publications
with similar approaches have appeared [28], [20], [30], [16].
These techniques are often referred to by the name “plane-
plus-parallax”, since the estimated 2D parametric transfor-
mation frequently corresponds to the induced homography
of a 3D planar surface in the scene.

II. EGo-MoTION FROM 2D IMAGE MOTION
A. Basic Model and Notations

Let (X,Y, Z) denote the Cartesian coordinates of a scene
point with respect to the camera (see Fig. 1), and let (x,y)
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Fig. 1. The coordinate system.

The coordinate system (X,Y, Z) is attached to the camera, and
the corresponding image coordinates (z,y) on the image plane
are located at Z = f.. A point P = (X,Y,Z)t in the world is
projected onto an image point p = (z,y)t. T = (Tx,Ty,Tz)t
and Q = (Qx,Qy, Q)¢ represent the relative translation and
rotation of the camera in the scene.

denote the corresponding coordinates in the image plane.
The image plane is located at the focal length: Z = f..
The perspective projection of a scene point P = (X,Y, Z)¢
on the image plane at a point p = (z,y)! is expressed by:

x X fe
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The camera motion has two components: a translation T' =
(Tx,Ty,Tz)! and a rotation Q = (Qx,Qy,Qz)!. Due to
the camera motion the scene point P = (X, Y, Z)! appears
to be moving relative to the camera with rotation — and
translation —7', and is therefore observed at new world
coordinates P’ = (X',Y', Z")t, expressed by:

P =M_g-P-T, (2)

where M_gq is the matrix corresponding to a rotation by
-0

When the field of view is not very large and the camera
motion has a relatively small rotation [1], the 2D displace-
ment (u,v) of an image point (z,y) in the image plane can
be expressed by [24], [4]:
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All points (X,Y,Z) of a planar surface in the 3D scene
satisfy a plane equation Z = A+ B- X + C Y, which can

be expressed in terms of image coordinates by using Eq. (1)
as:

1
E:a+ﬂ-m+7-y. (4)

In a similar manipulation to that in [1], substituting Eq. (4)
in Eq. (3) yields the 2D quadratic transformation:

ul]l [a+b-z+cy+g-2>+h -2y (5)
v | | dte-x+f-y+g-zy+h-y?

where:
a = —fCOéTX — chY e = _QZ — fcﬂTy
b:aTZ_fcﬁTX f:aTZ _fc’YTY (6)
c=Qz — foTx g———+5TZ
d= —fcaTy + chX h = QX + 'YTZ

Eq. (5), expressed by eight parameters (a,b,¢,d, e, f,g,h),
describes the 2D parametric image motion of a 3D planar
surface. The quadratic transformation (5) is a good ap-
proximation to the 2D projective transformation assuming
a small field of view and a small rotation.

Besides being an exact description of the instantaneous
motion field of a planar surface, the quadratic transforma-
tion also describes well the 2D image motion of an arbi-
trary 3D scene undergoing camera rotations, zooms, and
small camera translations. It also approximates well the
2D image motion under larger camera translations, when
the overall 3D range (Z) to the scene is much greater than
the variation of the range within the scene (AZ).

B. General Framework of the Algorithm

In this section we present a scheme which utilizes the
robustness of the 2D motion computation for computing
3D motion between two consecutive frames:

1. A single image region with a 2D parametric image mo-
tion is automatically detected (Sec. ITT). As mentioned
in Sec. II-A, this image region typically corresponds to
a planar surface in the scene, or to a remote part of
the scene.

2. The two frames are registered according to the com-
puted 2D parametric motion of the detected image
region. This image region alignment cancels the rota-
tional component of the camera motion for the entire
scene (Sec. II-C), and the FOE (focus-of-expansion)
and the camera translation can now be computed from
the residual epipolar displacement field between the
two 2D registered frames (Sec. II-D).

3. The 3D rotation of the camera is now computed
(Sec. II-E) from the 2D motion parameters of the de-
tected image region and the 3D translation of the cam-
era.

C. Cancelling Camera Rotation by 2D Region Alignment

At this stage we assume that a single image region with a
parametric 2D image motion has been detected, and that
the 2D image motion of that region has been computed.
The automatic detection and computation of such a 2D
transformation is briefly described in Sec. III.

Let (u(z,y),v(x,y)) denote the 2D image motion of
the entire scene from frame f; to frame f5, and let
(us(z,y),vs(x,y)) denote the 2D image motion of a single
image region (the detected image region) between the two
frames. Let S denote the 3D surface corresponding to the
detected image region, with depths Z;(z,y). As mentioned
in Sec. IT-A, (us,vs) can be expressed by a 2D parametric
transformation (Eq. (5)) if S satisfies one of the following
conditions: (i) S is a planar surface in the 3D scene, (ii)



S is an arbitrary 3D scene undergoing camera rotations,
zooms, and small camera translations, or (iii) S is a por-
tion of the scene that is distant enough from the camera
(i.e., its overall 3D range (Z) is much greater than the
range variations within it (AZj)).

Assuming the existence of such a surface S in the scene
is not a severe restriction, as most indoor scenes contain a
planar surface (e.g., walls, floor, pictures, windows, etc.),
and in outdoor scenes the ground or any distant object
can serve as such a surface. Note also that only the 2D
motion parameters (us(z,y),vs(z,y)) of the 3D surface S
are estimated. The 3D structure or motion parameters of
S are not estimated at this point.

Let f{* denote the frame obtained by warping the entire
frame f; towards frame f> according to the 2D paramet-
ric transformation (us,vs) extended to the entire frame.
This warping will bring the image region corresponding
to the detected surface S into perfect alignment between
fif and fo. In the warping process, each pixel (z,y) in
f1 is displaced by (us(z,y),vs(x,y)) to form f{f. Points
that are not located on the parametric surface S (i.e.,
Z(x,y) # Zs(x,y)) will not be in registration between f{*
and f>. We will now show that the residual 2D image dis-
placements between the two registered frames (f{* and f»)
forms an epipolar field centered at the FOE, i.e., affected
only by the camera translation 7.

Let P, = (Xl,Yl, Z1)t denote the 3D scene point pro-
jected onto p1 = (w1,y1)t in fi. According to Eq. (1):
P = (2 fc Y1 fl Z1)t. Due to the camera motion (2,7
from frame f; to frame f5, the point P; will be observed
in frame f> at p2 = (z2,y2)!, which corresponds to the 3D
scene point Py = (Xs, Y3, Z5)t. According to Eq. (2):

Py=M_gq-P -T. (7)

The warping of f; by (us, vs) to form f{ is equivalent to ap-
plying the camera motion (2,T) to the 3D points as though
they are all located on the surface S (i.e., with depths
Zs(z,y)). Let P; denote the 3D point on the surface S
which corresponds to the pixel (z,y) with depth Z,(z,y).
Then:

T1=F X1
e A A
Py = yl% :Z—S' Y :Z—S'Pl- (8)
Zs 1 Zl 1

After the image warping, P is observed in ff* at pf =
(zf,y®)t which corresponds to a 3D scene point P%.
Therefore, according to Eq. (2) and Eq. (8): PF = M_g

P,—-T= g—l -M_q-P, —T , and therefore:
Zl R
P = -M_q - (P + 7). (9)
Zs

By substituting (9) in

Zs 7,
2P+ (1- 22 (=T).
1 Zl

(7), PP can be expressed as:
PR = (10)

Eq. (10) shows that PF is independent of the camera ro-
tation 2. Moreover, P is on the straight line passing
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Fig. 2. The effect of 2D region alignment.

marked by +.

a) One of the frames.
b) The optical flow between two adjacent frames (before regis-
tration), overlayed on Fig. 2.a (for display purposes only).
c) The optical flow after (automatic) 2D alignment of the wall.
The flow is induced by pure camera translation (after the cam-
era rotation was canceled), and points now to the correct FOE.
d) The computed depth map. Bright regions correspond to close
objects.

The real FOE is

through P, and —T. Therefore, the projection of P* on
the image plane (p%) is on the straight line passing through
the projection of P» (i.e., p2) and the projection of —T (i.e.,
the FOE). This means that p? is found on the radial line
emerging from the FOE towards p2. In other words, the
residual image displacements between the registered frames
i and fy (i.e., p* — p2) form an epipolar field centered
at the FOE. (Note, that the magnitudes of the residual
displacements depend on the scene structure, g—i, however
their directions do not).

In Fig. 2, the optical flow is displayed before and after
registration of two frames according to the computed 2D
motion parameters of the image region (which happened
to correspond in this case with the wall at the back of the
scene). The optical flow is given for display purposes only,
and was not used in the registration. After registration,
the rotational component of the optical flow was canceled
for the entire scene, and all flow vectors point towards the
real FOE (Fig. 2.c). Before registration (Fig. 2.b) the FOE
mistakenly appears to be located elsewhere (in the middle
of the frame). This is due to the ambiguity caused by the
rotation around the Y-axis, which visually appears as a
translation along the X-axis. This ambiguity is resolved by
the 2D registration.

In Section ITI we briefly explain why the interpretation of
image motion in terms of a 2D parametric transformation
and a residual (epipolar) parallax displacement field is less
ambiguous and numerically more stable than the interpre-
tation the image motion in terms of its induced rotational
and translational image displacements.



D. Computing Camera Translation

Once the rotation is canceled by the 2D alignment of
the detected image region, the ambiguity between image
motion induced by 3D rotation and that induced by 3D
translation no longer exists (see Sec. II-C). Having can-
celled effects of camera rotation, the residual displacement
field is directed towards, or away from, the FOE. The com-
putation of the FOE therefore becomes overdetermined and
numerically stable, as there are only two unknowns to the
problem: the 2D coordinates of the center of the epipolar
field (i.e, FOE) in the image plane.

To locate the FOE, the optical flow between the 2D reg-
istered frames is computed, and the FOE is located using
a search method similar to that described in [22]. Can-
didates for the FOE are sampled over a half sphere and
projected onto the image plane. For each such candidate,
a global error measure is computed from local deviations
of the flow field from the radial lines emerging from the
candidate FOE. The search process is repeated by refining
the sampling (on the sphere) around good FOE candidates.
After a few refinement iterations, the FOE is taken to be
the candidate with the smallest error.

Since the problem of locating the FOE in a purely trans-
lational (epipolar) flow field is a highly overdetermined
problem, the computed flow field need not be accurate.
This is opposed to most methods which try to compute the
ego-motion from the flow field, and require an accurate flow
field in order to resolve the rotation-translation ambiguity
[2]. Given the FOE and camera calibration information,
the 3D camera translation is recovered.

E. Computing Camera Rotation

Let (a,b,c,d,e, f,g,h) be the 2D motion parameters of
a an image region as expressed by Eq. (5). Given these
2D motion parameters and the 3D translation parameters
of the camera (T'x,Ty,T7), the 3D rotation parameters of
the camera (Qx,Qy, Q) (as well as the surface parameters
when a plane («, 3,7)) can be obtained by solving Eq. (6),
which is a set of eight linear equations in siz unknowns.

From our experience, the parameters g and h in the
quadratic transformation, computed by the method de-
scribed in Sec. III, are not as reliable as the other six pa-
rameters (a,b,c,d, e, f), as g and h are second order terms
in Eq. (5). Therefore, whenever possible (when the set of
Eq. (6) is numerically overdetermined), we avoid using the
last two equations (for g and h), and use only the first six.
This yields more accurate results.

As a matter of fact, the only case in which all eight equa-
tions of (6) must be used to recover the camera rotation is
the case when the camera translation is parallel to the im-
age plane (i.e., T # 0 and Tz = 0). In that case, only Q4
can be recovered purely from the first six equations of (6)
(i-e., using only the reliable parameters a, b, c,d, e, f, and
disregarding the unreliable ones, g and h). In order to re-
cover the two other rotation parameters, (0x and Qy, the
second order terms ¢ and h must be used. Therefore, in
the case of T # 0 and Tz = 0, the translation parameters
(T'x,Ty,T7) and one rotation parameter, Q7 (the rotation

Fig. 3. Camera Stabilization.
a) One of the frames in the sequence.
b) The average of two frames, having both rotation and trans-
lation. The white lines display the image motion.
c) The average of the two frames after (automatic) 2D align-
ment of the shirt. Only effects of camera translation remain.
d) The average of the two frames after recovering the ego-
motion, and canceling the camera rotation. This results in a
3D-stabilized pair of images (i.e., no camera jitter).

around the optical axis) can be recovered accurately, while
the other two rotation parameters, Qx and Qy, can only
be approximated. In other configurations of camera motion
the camera rotation can be reliably recovered.

F. Experimental Results

The camera motion between the two frames in Fig. 2 was:
(Tx,Ty,Tz) = (1-7cm>0-4cm>12cm) and (Qx,Qy,Qz) =
(0°,—1.8°,—3°). The computation of the 3D motion pa-
rameters of the camera (after calibrating Ty to 12,
as T can only be determined up to a scale factor
[REF?)]), yielded: (T'x,Ty,T7) = (1.68¢m,0.1601,,1201,)
and (Qx, Qy, Qz) = (—0.050, —1.70, —3.250).

Once the 3D motion parameters of the camera are com-
puted, the 3D scene structure can be reconstructed using a
scheme similar to that suggested in [11]. Correspondences
between small image patches (currently 5 x 5 pixels) are
computed only along the radial lines emerging from the
FOE (taking the rotations into account). The depth map
is computed from the magnitude of these displacements.
In Fig. 2.d, the computed inverse depth map of the scene
(m) is displayed. Similar approaches to 3D shape re-

covery have since been suggested by [28], [20], [30], [16].
Fig. 3 shows an example where the ego-motion estima-

tion was used to electronically stabilize (i.e., remove camera
jitter) from a sequence obtained by a hand held camera.



III. COMPUTING A 2D PARAMETRIC MOTION

We use previously developed methods [17], [18], [4] in or-
der to detect a 2D parametric transformation of an image
region. In this section we briefly describe these methods.
For more details see [18]. Other for computing a 2D para-
metric region motion have also been suggested and can be
used [6], [3] equally.

Let R be an image region that has a single 2D paramet-
ric transformation (u(z,y),v(z,y)) between two frames,
I(z,y,t) and I(x,y,t+1). (u,v) is a quadratic transforma-
tion expressed by eight parameters q = (a,b, ¢, d, e, f,g,h)
(see Eq. (5)). To solve for these parameters, the following
SSD error measure is minimized:

Err®(q) Z (I(z,y,t) — I(x + u,y + v,t + 1))
(z,y)ER

~ > (ul + vl + 1) (11)
(z,y)ER

The objective function Err is minimized via the Gauss-
Newton optimization technique. Let q; denote the current
estimate of the quadratic parameters. After warping the
inspection image (I(z,y,t+1)) towards the reference image
(I(z,y,t)) by applying the parametric transformation q; to
it, an incremental estimate dq can be determined. After
iterating certain number of times within a pyramid level,
the process continues at the next finer level [5], [4], [18].
When the above technique is applied to a region R, the
reference and the inspection images are registered so that
the desired image region is aligned. However, a region of
support R of an image segment with a single 2D paramet-
ric motion is not known a-priori. To allow for automatic
detection and locking onto a single 2D parametric image
motion, a robust version of the above technique is applied
[18]. The robust version of the algorithms introduces two
additional mechanisms to the above described technique:

1. Outlier Rejection: A truncated function of the lo-
cal misalignments at each iteration provides weights
for the weighted-least-squares regression process of the
next iteration.

2. Progressive Model Complexity: The complexity of the
2D parametric motion model used in the regression
process is gradually increased with the progression of
the iterative process and the outlier rejection. Initially
a simple 2D translation (2 parameters) is used, and is
gradually refined to a 2D affine (6 parameters) and
further to a 2D quadratic (8 parameters). The pro-
gressive complexity scheme focuses first on the most
stable constant terms (a and d), then further refines
them along with the less stable linear terms (b, ¢, e, f),
and finally refines all parameters along with the least
stable quadratic terms (h and g¢). This provides the
algorithm with increased stability and locking capabil-
ities, and prevents it from converging into local min-
ima.

For more details see [18]. Other robust methods for lock-

ing onto a dominant 2D parametric transformation have
also been suggested [6], [3].

We would like to stress a few important points:

o Assuming the existence of a significant image region
with a single 2D parametric transformation is realistic
in a wide range of scenarios: Indoor scenes contain
planar surfaces (e.g., walls, floor, pictures, windows,
etc.), and in outdoor scenes the ground, a boulevard
of trees, or any distant large object will induce a 2D
parametric image motion.

o The interpretation of image motion in terms of a 2D
parametric transformation and a residual (epipolar)
parallax displacement field (as presented in Section II-
C) is less ambiguous and numerically more stable than
the interpretation the image motion in terms of its
induced rotational and translational image displace-
ments. This is due to the increased robustness and
accuracy of 2D parametric motion estimation in com-
parison to optical flow estimation.

When flow is computed, the support region for each
estimated flow vector is very small [14] (typically 5 x 5
or 7 x 7 windows), as larger windows will violate the
simple flow equations. Such small windows, however,
frequently suffer from aperture effects, hence accurate
non-constrained flow estimation is known to be an ill-
conditioned problem. Noisy flow, however, introduces
ambiguities in the interpretation of flow in terms of its
induced rotational and translational components [2].
Constraining the local flow estimation is difficult, as
flow vectors depend on the unknown depth Z of the
corresponding scene point.

A 2D parametric transformation (e.g., Eq. (5)), how-
ever, is expressed in terms of few parameters (e.g., 8),
yet has a substantially larger region of support in the
image plane. Therefore, the “flow” estimation of a
2D parametric motion is highly constrained and well
conditioned. For example, textured areas within the
region of support provide accurate image motion esti-
mation for the non-textured area in that region. Us-
ing one of the robust estimatio techniques [18], [6], [3]
provides the ability to accurately estimate a 2D para-
metric image motion of an image region. 2D alignment
using the computed 2D parametric transformation was
shown (see Section II-C) to disambiguate camera rota-
tion and translation. Furthermore, the residual epipo-
lar flow field can be also estimated more accurately
than general flow, as it is constrained to lie on an
epipolar field.

IV. CONCLUDING REMARKS

A method for computing ego-motion in static scenes was
introduced. At first, an image region with a dominant 2D
parametric transformation is detected, and its 2D motion
parameters between successive frames are computed. The
2D transformation is then used for image warping, which
cancels the rotational component of the 3D camera motion
for the entire image, and reduces the problem to that of a
pure 3D translation. The FOE and the 3D camera transla-
tion are computed from the 2D registered frames, and then
the 3D rotation is computed by solving a small set of linear



equations.

The advantage of the presented technique is in its sim-
plicity, and in the robustness and stability of each com-
putational step. The interpretation of the image motion
in terms of a 2D parametric transformation and a resid-
ual (epipolar) parallax displacement field, can be obtained
more robustly, and avoids many of the inherent ambiguities
and instabilities associated with decomposing a flow field
into its rotational and translational components. Hence,
the proposed method provides increased numerical stabil-
ity and computational efficiency. There are no severe re-
strictions on the camera motion or on the 3D structure of
the environment. Most steps use only image intensities,
and the optical flow is used only for extracting the FOE in
the case of pure epipolar field, which is an overdetermined
problem and hence does not require accurate optical flow.
The inherent problems associated with optical flow or with
feature matching are therefore avoided.
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