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Abstract

Accurate computation of image motion enables the enhancement of image sequences. In scenes
having multiple moving objects the motion computation is performed together with object segmen-
tation by using a unique temporal integration approach.

After computing the motion for the different image regions, these regions can be enhanced
by fusing several successive frames covering the same region. Enhancements treated here include
improvement of image resolution, filling-in occluded regions, and reconstruction of transparent
objects.

1 Introduction

We describe methods for enhancing image sequences using the motion information computed by
a multiple motions analysis method. The multiple moving objects are first detected and tracked,
using both a large spatial region and a large temporal region, and without assuming any temporal
motion constancy. The motion models used to approximate the motions of the objects are 2-D
parametric motions in the image plane, such as affine and projective transformations. The motion
analysis is presented in a previous paper [16, 17], and will only be briefly described here.

Once an object has been tracked and segmented, it can be enhanced using information from
several frames. Tracked objects can be enhanced by filling-in occluded regions, and by improving
the spatial resolution of their images. When the scene contains transparent moving objects, they
can be reconstructed separately.
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'M. Irani was partially supported by a fellowship from the Leibniz Center.



Section 2 includes a brief description of a method used for segmenting the image plane into
differently moving objects, computing their motions, and tracking them throughout the image
sequence. Sections 3, 4, and 5 describe the algorithms for image enhancement using the computed
motion information: Section 3 presents a method for improving the spatial resolution of tracked
objects, Section 4 describes a method for reconstructing occluded segments of tracked objects, and
Section 5 presents a method for reconstructing transparent moving patterns.

An initial version of this paper appeared in [15].



2 Detecting and Tracking Multiple Moving Objects

In this section we describe briefly a method for detecting and tracking multiple moving objects in
image sequences, which is presented in detail in [17]. Any other good motion computation method
can be used as well. In this approach for detecting differently moving objects, a single motion is
first computed, and a single object which corresponds to this motion is identified and tracked. We
call this motion the dominant motion, and the corresponding object the dominant object. Once a
dominant object has been detected and tracked, it is excluded from the region of analysis, and the
process is repeated on the remaining image regions to find other objects and their motions.

When the image motion can be described by a 2-D parametric motion model, and this model
is used for motion analysis, the results are very accurate at a fraction of a pixel. This accuracy
results from two features:

1. The use of large regions when trying to compute the 2-D motion parameters.

2. Segmentation of the image into regions, each containing only a single 2-D motion.

2.1 2-D Motion Models

2-D parametric transformations are used to approximate the projected 3-D motions of objects on
the image plane. This assumption is valid when the differences in depth caused by the motions are
small relative to the distances of the objects from the camera.

Given two grey level images of an object, I(z,y,t) and I(x,y,t+ 1), it is assumed that:

I(z + p(z,y,t),y+q(z,y. 1)t + 1) = I(z,y,1), (1)

where (p(z,y,t),q(z,y,t)) is the displacement induced on pixel (z,y) by the motion of the planar
object between frames ¢ and ¢ 4+ 1. It can be shown [10] that the desired motion (p,¢) minimizes
the following error function at Frame ¢ in the region of analysis R:

Err(p,q)= 37 (0l +aly +1)%, (2)
(z,y)€R
We perform the error minimization over the parameters of one of the following motion models:

1. Translation: 2 parameters, p(z,y,t) = a, q(z,y,t) = d. In order to minimize Err(®(p, q),
its derivatives with respect to a and d are set to zero. This yields two linear equations in the
two unknowns, @ and d. Those are the two well-known optical flow equations [4, 20], where
every small window is assumed to have a single translation. In this translation model, the
entire object is assumed to have a single translation.

2. Affine: 6 parameters, p(z,y,1) = a+ bz +cy, q¢(z,y,t) = d+ ex + fy. Deriving Err((p, q)
with respect to the motion parameters and setting to zero yields six linear equations in the
six unknowns: a, b, ¢, d, e, f [4, 5].



3. Moving planar surface (a pseudo projective transformation): 8 parameters [1, 4],
p(z,y,t) = a+ bx + cy + g2? + hay, q(o,y,t) = d + ex + fy + gzy + hy?. Deriving
Err(t)(p, q) with respect to the motion parameters and setting to zero, yields eight linear
equations in the eight unknowns: a, b, ¢, d, e, f, g, h.

2.2 Detecting the First Object

When the region of support of a single object in the image is known, its motion parameters can be
computed using a multiresolution iterative framework [3, 4, 5, 6, 16, 17].

Motion estimation is more difficult in the common case when the scene includes several moving
objects, and the region of support of each object in the image is not known. It was shown in
[7, 16, 17] that in this case the motion parameters of a single object can be recovered accurately
by applying the same motion computation framework (with some iterative extensions [16, 17]) to
the entire region of analysis.

This procedure computes a single motion (the dominant motion) between two images. A seg-
mentation procedure is then used (see Section 2.5) in order to detect the corresponding object (the
dominant object) in the image. An example of a detected dominant object using an affine motion
model between two frames is shown in Figure 2.c. In this example, noise has affected strongly the
segmentation and motion computation. The problem of noise is overcome once the algorithm is
extended to handle longer sequences using temporal integration (Section 2.3).

2.3 Tracking Detected Objects Using Temporal Integration

The algorithm for the detection of multiple moving objects discussed in Section 2.2 can be extended
to track detected objects throughout long image sequences. This is done by temporal integration,
where for each tracked object a dynamic internal representation image is constructed. This image
is constructed by taking a weighted average of recent frames, registered with respect to the tracked
motion. This image contains, after a few frames, a sharp image of the tracked object, and a
blurred image of all the other objects. Each new frame in the sequence is compared to the internal
representation image of the tracked object rather than to the previous frame [16, 17]. Following is
a summary of the algorithm for detecting and tracking an object in an image sequence:

For each frame in the sequence (starting at ¢ = 0) do:

1. Compute the dominant motion parameters between the internal representation image of
the tracked object Av(¢) and the new frame I(¢ 4 1), in the region M(t) of the tracked
object (see Section 2.2). Initially, M(0) is the entire region of analysis.

2. Warp the current internal representation image Awv(t) and current segmentation mask
M (t) towards the new frame I(¢ 4+ 1) according to the computed motion parameters.

3. Identify the stationary regions in the registered images (see Section 2.5), using the reg-
istered mask M () as an initial guess. This will be the segmented region M(t+ 1) of the
tracked object in frame I(¢ 4+ 1).



Figure 1: An example of the evolution of an internal representation image of a
tracked object.

a) Initially, the internal representation image is the first frame in the sequence.
The scene contains four moving objects. The tracked object is the ball.

b) The internal representation image after 3 frames.
¢) The internal representation image after 5 frames. The tracked object (the
ball) remains sharp, while all other regions blur out.

4. Compute the updated internal representation image Av(¢+ 1) by warping Av(?) towards
I(t + 1) using the computed dominant motion, and averaging it with /(¢ + 1).

When the motion model approximates of the temporal changes of the tracked object well enough,
shape changes relatively slowly over time in registered images. Therefore, temporal integration of
registered frames produces a sharp and clean image of the tracked object, while blurring regions
having other motions. Figure 1 shows an example of the evolution of an internal representation
image of a tracked rolling ball. Comparing each new frame to the internal representation image
rather than to the previous frame gives the algorithm a strong bias to keep tracking the same
object. Since additive noise is reduced in the the average image of the tracked object, and since
image gradients outside the tracked object decrease substantially, both segmentation and motion
computation improve significantly.

In the example shown in Figure 2, temporal integration is used to detect and track the domi-
nant object. Comparing the segmentation shown in Figure 2.c to the segmentation in Figure 2.d
emphasizes the improvement in segmentation using temporal integration.

Another example of detecting and tracking objects using temporal integration is shown in
Figure 3. In this sequence, taken by an infrared camera, the background moves due to camera
motion, while the car has another motion. It is evident that the tracked object is the background,
as all other regions in the image are blurred by their motion.

2.4 Tracking Other Objects

After detecting and tracking the first object, attention is directed at other objects. This is done by
applying the tracking algorithm once more, this time to the rest of the image, after excluding the
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Figure 2: Detecting and tracking the dominant object using temporal integra-
tion.
a-b) Two frames in the sequence. Both the background and the helicopter are
moving.

¢) The segmented dominant object (the background) using the dominant affine
motion computed between the first two frames. Black regions are those ex-
cluded from the dominant object.

d) The segmented tracked object after a few frames using temporal integration.

first detected object from the region of analysis. The scheme is repeated recursively, until no more
objects can be detected.

In the example shown in Figure 4, the second dominant object is detected and tracked. The
detection and tracking of several moving objects can be performed in parallel, with a delay of one
or more frame between the computations for different objects.

=)

Figure 3: Detecting and tracking the dominant object in an infrared image
sequence using temporal integration.

a-b) Two frames in the sequence. Both the background and the car are moving.
¢) The internal representation image of the tracked object (the background).
The background remains sharp with less noise, while the moving car blurs out.
d) The segmented tracked object (the background) using an affine motion
model. White regions are those excluded from the tracked region.
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Figure 4: Detecting and tracking the second object using temporal integration.
a) The initial region of analysis after excluding the first dominant object (from
Figure 3.d).

b) The internal representation image of the second tracked object (the car).
The car remains sharp while the background blurs out.

¢) Segmentation of the tracked car after 5 frames.

2.5 Segmentation

Once a motion has been determined, we would like to identify the region having this motion. To
simplify the problem, the two images are registered using the detected motion. The motion of
the corresponding region is canceled after registration, and the tracked region is stationary in the
registered images. The segmentation problem reduces therefore to identifying the stationary regions
in the registered images.

Pixels are classified as moving or stationary using local analysis. The measure used for the
classification is the average of the normal flow magnitudes over a small neighborhood of each pixel
(typically a 3x3 neighborhood). In order to classify correctly large regions having uniform intensity,
a multi-resolution scheme is used, as in low resolution levels the uniform regions are small. The
lower resolution classification is projected on the higher resolution level, and is updated according
to higher resolution information when it conflicts the classification from the lower resolution level.



3 Improvement of Spatial Resolution

Once good motion estimation and segmentation of a tracked object are obtained, it becomes possible
to enhance the images of this object.

Restoration of degraded images when a model of the degradation process is given is an ill-
conditioned problem [2,9, 11, 13, 19, 24]. The resolution of an image is determined by the physical
characteristics of the sensor: the optics, the density of the detector elements, and their spatial
response. Resolution improvement by modifying the sensor can be prohibitive. An increase in the
sampling rate could, however, be achieved by obtaining more samples of the imaged object from a
sequence of images in which the object appears moving. In this section we present an algorithm
for processing image sequences to obtain improved resolution of differently moving objects. This is
an extension of our earlier method, which was presented in [14].

While earlier research on super-resolution [12, 14, 18, 25] treated only static scenes and pure
translational motion in the image plane, we treat dynamic scenes and more complex motions. The
segmentation of the image plane into the differently moving objects and their tracking, using the
algorithm mentioned in Section 2, enables processing of each object separately.

The Imaging Model. The imaging process, yielding the observed image sequence {gx}, is mod-
eled by: gp(m,n) = o(h(Tu( f(z,9))) + mile, 1)) , where

o g is the sensed image of the tracked object in the kg, frame.

e [ is a high resolution image of the tracked object in a desired reconstruction view. Finding
f is the objective of the super-resolution algorithm.

o T} is the 2-D geometric transformation from f to gi, determined by the computed 2-D motion
parameters of the tracked object in the image plane (not including the decrease in sampling
rate between f and gi). T is assumed to be invertible.

e h is a blurring operator, determined by the Point Spread Function of the sensor (PSF). When
lacking knowledge of the sensor’s properties, it is assumed to be a Gaussian.

e 7 is an additive noise term.

o 0} is a downsampling operator which digitizes and decimates the image into pixels and quan-
tizes the resulting pixels values.

The receptive field (in f) of a detector whose output is the pixel gz(m, n)is uniquely defined by its
center (z,y) and its shape. The shape is determined by the region of support of the blurring operator
R, and by the inverse geometric transformation 7),~'. Similarly, the center (x,y) is obtained by

Tk_l((m,n)).

An attempt is made to construct a higher resolution image f, which approximates f as accu-
rately as possible, and surpasses the visual quality of the observed images in {gz}. It is assumed
that the acceleration of the camera while imaging a single image frame is negligible.
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Figure 5: Schematic diagram of the super resolution algorithm. A
reconstructed image is sought such that after simulating the imaging
process, the simulated low-resolution images are closest to the ob-
served low-resolution images. The simulation of the imaging process
is expressed by Equation 3.

The Super-Resolution Algorithm. The presented algorithm for creating higher resolution
images is iterative. Starting with an initial guess f(®) for the high resolution image, the imaging
K
process is simulated to obtain a set of low resolution images {g,go)}kzl corresponding to the observed
input images {gk}?:l. If f(© were the correct high resolution image, then the simulated images
K - K
{g,go)}kzl should be identical to the observed images {gx}X ;. The difference images {gx — g,go)}kzl
are used to improve the initial guess by “backprojecting” each value in the difference images onto

its receptive field in £, yielding an improved high resolution image f(1). This process is repeated
iteratively to minimize the error function

(n) 1 & (n) )2
et = ]ZHgk—gk B

. k=1

The algorithm is described schematically in Figure 5.



The imaging process of g at the ny, iteration is simulated by:

g = (Tu(f™) 5 h) | s (3)

where | s denotes a downsampling operator by a factor s, and * is the convolution operator. The
iterative update scheme of the high resolution image is expressed by:

K
POt Z ) le 37 (((gk 419 *p) (4)
k=1

where K is the number of low resolution images, | s is an upsampling operator by a factor s, and
p is a “backprojection” kernel, determined by h and T} as explained below. The average taking
in Equation (4) reduces additive noise. The algorithm is numerically similar to common iterative
methods for solving sets of linear equations [19], and therefore has similar properties, such as rapid
convergence (see next paragraph).

In Figure 6, the resolution of a car’s license plate was improved from 15 frames.

Analysis and Discussion. We introduce exact analysis of the superresolution algorithm in the
case of deblurring: Restoring an image from K blurred images (taken from different viewing posi-
tions of the object), with 2-D affine transformations {Tk}fyzl between them and the reconstruction
viewing position, and without increasing the sampling rate. This is a special case of superresolution,
which is simpler to analyze. In this case the imaging process is expressed by:

g = Tu( V) b

and the restoration process in Equation (4) becomes:

1 K .
J = g0 =3 ((ge -0 ) (5)
k=1

The following theorems show that the iterative super resolution scheme is an effective deblurring
operator (proofs are given in the appendix).

Theorem 3.1 The iterations of Fquation (5) converge to the desired deblurred image f (i.e., an
f that fulfills: Yk gi = Tu(f) % h), if the following condition holds:

1
1 K T
% k=1 [Tkl
where § denotes the unity pulse function centered at (0,0).

Remark: When the 2-D image motions of the tracked object consist of only 2-D translations and
rotations, then Condition (6) reduces to ||6 — h*pl|l, < 1.

|6 = h*pll, <

(6)

Proof: see appendix.

Theorem 3.2 Given Condition (6), the algorithm converges at an exponential rate (the norm of
the error converges to zero faster than q" for some 0 < q < 1), regardless of the choice of initial
quess fO)

10



Figure 6: Improvement of spatial resolution using 15 frames. The
sampling rate was increased by 2 in both directions.

a) The best frame from the image sequence.

b) The license plate magnified by 2 using bilinear interpolation.

¢) The improved resolution image.

Proof: see appendix.

It is important to note that the original high resolution frequencies may not always be fully
restored. For example, if the blurring function is an ideal low pass filter, and its Fourier transform
has zero values at high frequencies, it is obvious that the frequency components which have been
filtered out cannot be restored. In such cases, there is more than one high resolution image which
gives the same low resolution images after the imaging process. According to Theorem 3.2 the
algorithm converges regardless of the choice of the initial guess. However, since there may be more
than one correct solution to the problem, the choice of the initial guess does determine which of the
solutions is reached. A good choice of the initial guess is the average of the registered low resolution
images of the tracked object in the desired reconstruction view: f(0) = 7 K Tw (gr). Such an
initial guess leads the algorithm to a smooth solution, which is usually a desired feature.

Another issue is the choice of the backprojection kernel p. Unlike , which represents properties
of the sensor (the PSF), there is some freedom in the choice of p. p is chosen so that Condition (6)

11



holds. The smaller ||6 — h * p||, is, the faster the algorithm converges (see proof of Theorem 3.1).
Ideally, if ||[6 — h*p|, = 0, then the algorithm converges in a single iteration. This, however,
means that p is the inverse kernel of h, which may not exist (as h is a low pass filter), or which
may numerically be unstable to compute. Permitting ||6 — & * p||, > 0 (but still within the bounds
of Condition (6)), allows p to be other than the exact inverse of h, and therefore increases the
numerical stability, but slows down the speed of convergence. In other words, there is a tradeoff
between the stability of the algorithm and its speed of convergence, determined by the choice of p.

The algorithm converges rapidly (usually within less than 5 iterations), and can be implemented
on parallel machines. The complexity of the algorithm is low: O(K N log N') operations per itera-
tion, where N is the number of pixels in the high resolution image f, and K is the number of low
resolution images. Since the number of iterations is very small, this is also a good estimate of the
complexity of the entire algorithm. The algorithm can be implemented in real-time, as only simple
arithmetic operations are involved in the computation.

12



4 Reconstruction of Occlusions

When parts of a tracked object are occluded in some frames by another moving object, but these
parts appear in other frames, a more complete view of the occluded object can be reconstructed
[15, 26]. The image frames are registered using the computed motion parameters of the tracked
object, and the occluded parts of that object are then reconstructed by temporally averaging gray
levels of all pixels which were classified as object pixels in the corresponding segmentation masks.
This process ignores the pixels when they are occluded by another moving object in the foreground,
and the missing regions will be reconstructed even if they are occluded in most frames.

In the example shown in Figure 7, the background of the image sequence (the room scene)
was completely reconstructed, eliminating the walking girl from the scene. The background was
reconstructed in all frames, generating a new sequence with no trace of the moving girl.

13



Figure 7: Reconstruction of occluded regions.

a) Five frames from the sequence. The camera is panning, and a girl
walks from right to left. The girl appears in all frames and occludes
parts of the background in each frame in the sequence.

b) Segmentation: black regions are those excluded from the tracked
background.

c¢) Full reconstructions of the background in all frames. The girl is
eliminated.

14



5 Reconstruction of Objects in Transparent Motion

A region contains transparent motions if it contains several differently moving image patterns that
appear superimposed. For example: moving shadows, spotlights, reflections in water, an object
viewed through another transparent object, etc. In this section, we present a method for isolating
and reconstructing tracked objects in transparent motion.

The presented scheme assumes additive transparency (such as in reflections). However, this
scheme could be applied also to cases of multiplicative transparency (as in moving shadows and
viewing through a semi-transparent media) by using the logarithm operation. Taking the logarithm
of the input images changes the multiplicative effects into additive effects, and once the tracking is
done, the exponent is taken to return to the original scale.

Previous analysis of transparency [6, 8, 21, 22, 23] assumed constant motion over several suc-
cessive frames, which excludes most sequences taken from an unstabilized moving camera. Some
methods [6, 21, 23] elegantly avoid the segmentation problem. They require, however, high order
derivatives (the order increases with the number of objects), which make them sensitive to noisy
data.

In our work we do not assume any motion constancy. We temporally integrate the image
frames rather than use temporal derivatives. This provides robustness and numerical stability to
the tracking algorithm. This approach not only tracks the moving transparent objects, but also
reconstructs them.

Transparent motions yield several motion components at each point, and segmentation cannot
be used to isolate one of the transparent objects. In practice, however, due to varying image
contrast, in many image regions one object is more prominent than other objects, and segmentation
can be used to extract pixels which support better a single motion in the region of analysis. We use
the temporal integration scheme described in Section 2.3 to track the dominant transparent object.
The temporal averaging restores the dominant transparent object in its internal representation
image, while blurring out the other transparent objects, making them less noticeable. Comparing
each new frame to the internal representation image of the tracked object rather than to the previous
frame gives the algorithm a strong bias to keep tracking the same transparent object, as it is the
only object in the internal image that is still similar to its image in the new frame (Figure 8).

For recovering the second transparent object, the temporal integration tracking technique is
applied once more to the sequence, after some delay. Let Av;(t) denote the internal representation
image of the first transparent object. Starting at frame I(?), the algorithm is applied only to pixels
for which the value of |I(t) — Avy(t)| is high. This difference image has high values in regions
which contain prominent features of transparent objects in /() that faded out in the internal
representation image Awvy(¢), and low values in regions which correspond to the first dominant
transparent object. Therefore, we use the values of the absolute difference image as an initial mask
for the search of the next dominant object in the temporal integration algorithm from Section 2.3.
The tracking algorithm is applied once again to the original image sequence, and not to frame
differences as in [6]. Now that the algorithm tracks the second dominant object, the new internal
representation image Awvy(t) restores the second dominant transparent object, and blurs out the
other transparent objects, including the first dominant object.

15
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Figure 8: Reconstruction of “transparent” objects.

a-b) The first and last frames in a sequence. A moving tripod is reflected in
the glass of a picture of flowers.

¢) The internal representation image of the first tracked object (the picture
of flowers) after 14 frames. The picture of flowers was reconstructed. The
reflection of the tripod faded out.

d) The internal representation image of the second tracked object (the reflection
of the tripod) after 14 frames. The reflection of the tripod was reconstructed.
The picture of flowers faded out.

In Figure 8, the reconstruction of two transparent moving objects in a real image sequence is
shown.

16



6 Concluding Remarks

Temporal integration of registered images proves to be a powerful approach to motion analysis,
enabling human-like tracking of moving objects. Once good motion estimation and segmentation
of a tracked object are obtained, it becomes possible to enhance the object images. Fusing informa-
tion on tracked objects from several registered frames enables reconstruction of occluded regions,
improvement of image resolution, and reconstruction of transparent moving objects.

17



APPENDIX

The appendix contains proofs of Theorems 3.1 and 3.2. The following notations will be used:

T denotes the transformation from the deblurred image f to a blurred image g.

T denotes the respective 2-D affine transformation describing the geometric transformation
of pizel coordinates from f to g, i.e.,

(T (2,) = £ (T4 2,p) -
Remarks:

1. T is assumed to be invertible.

2. It is easy to show from this definition that 7" is a linear transformation of f.

Since T is a 2-D affine transformation, it can be expressed in matrix notation by:
~ = x
T($,y):d—|—M ( y )7

where d is a 2 x 1 vector, and M is a 2 X 2 matrix.

MT denotes the linear transformation part of 7' (on pixel coordinates), which uses the matrix

—

M only (without the displacement d), i.e.,

MTu,y):M-(x),

Y

and respectively, M is the linear transformation on images defined by:
(Mr(£))(z,9) = f (M7'(2,9)) .

det(M) denotes the determinant of the matrix M.

In order to prove Theorems 3.1 and 3.2, we introduce the following two lemmas:

Lemma 1

1
(L.a)  |[[T][z = [det(M)|?
(1.b) T = —

| det(M)|Z

(1) [[Mygllo = |det(M)[>

(1.d) || Myl =

1
1
| det(M)|Z

Remark: It follows from this lemma that whenever the affine transformation T is limited to 2-D

translations and rotations, then ||T||2 = 1. When the transformation contains a scaling by a factor
s, then ||T||2 = s.

18



Proof:

(1.a)
o0 o0 %
izl = ([ [T 1@ epP de )
1
o0 o0 - 2
= ([ [ ) P e dy)
o0 o0 1
2
= ([ [ 1o tdean) du a)
( change of integral variables by (u,v)=T"'(z,y) )
1
= [det(M)[> - ||l
Therefore:
def
1Tl = Supypp=1 (IT()l2)
1
= Supjypzr (| detM)]Z |1 /])2)
1
= [det(M)[? - Supyf,=1 ([ fl2)
= |det(M)7 . i
(1.b)
It is easy to show that T—' (z,y) = T~ Y(z,y) = —M~! cd+ ML ( z ) . Therefore,
according to Lemma l.a, |7} = |det(M_1)|% = m .
(1.0)
Since Mr(z,y)=M - ( Zj ) , then according to Lemma l.a || M7z = |det(M)|% .
(1.d)
It is easy to show that Mp—1 = Mr~! . Therefore, according to Lemmas 1.b and 1.c,
Myl = —2— .
e
Lemma 2 |
T(fi+fo)= AT (T(fr)* Mz(f2))
2

where x denotes the convolution operator.

19



Proof:

(T M) ) = [ [ @) @) (Mr(f) (o = vy - 9) da d3

= /_Oo /_Oo fi(y,0)- f2 (T_l(ac,y) — (775)) | det(M)| dv dé

( change of integral variables by (v,¢) =T 1(«a,3) )
| det(M)] - (fi * f2)(T7 (2. )
| det(M)] - (T'(f1 * f2)) (2, y)
= |IT)* - (T(fr % f2)) (2, ) ( using Lemma 1.a ) I

Theorem 3.1

Let T, denote the transformation from the deblurred image f to the blurred image g The iterations
of Fquation (5) converge to the desired deblurred image f (i.e., an f that fulfills: Vk g¢p =
Te(f)* h), if the following condition holds:

1
# b 1Tl

where § denotes the unity pulse function centered at (0,0).

|6 = h*pll, <

(6)

Proof: Mathematical manipulations on the left hand side of Equation (5) yield:

1 K n
Flt) — g 4 =2 T ((gk—gi ))*P)
k=1
1 K

= (F 4+ 17 (95— 0t) +p))

K =
| K

= S n! (Tk(f(n)) + (gr — g;(gn)) * P)
k=1

1 K .
- K > T (Tk(f(”)) +gexp—gl” *p)
k=1

1 K

_ = -1 (n) _ (n)
- w2 h (Te(F) + gexp = TH(F)) 5 hx p)

20



K
- %];T;fl (T(F) 5 (8 = hx p)+ g1 *p)
Therefore, N
fo = & kzn (TLl7) 4 (5= hs )+ g2 %) ™)
=1
is another way of expressing the iterative scheme defined by Equation (5).

It is easy to show that the desired f is a fixed point of Equation (7), by replacing F+1) and
f) with f, and gj with Te(f)*xh . Therefore,

K
f:%ZTk_l(Tk(f)*(é—h*p)—l—gk*p). (8)
k=1

We shall now show that lim,,_, o f(”) = f:

[ErrH ]y = [ F0F) — £l

1 K
= Iz Xn (Tu(S0)) % (8 = hoxp) + g p) —
K
%ZTk_l (Tu(f)* (6 —hxp)+ gr*D) |2 ( using (7) and (8) )
k=1

K
- ||§];Tk-l (T = P (5= e p) Il

1 K .
= Nl 2 (Idet(Mp)| - (£ = ) My -1(6 = hxp)) [z
k=1
( using Lemma 2 and Lemma 1.b )
K

= ) = 1y e e 3 (ldet(Mi)] - M-+ — i+ ) [

k=1
1 K
< 1 = £y sz (Idet(M)] - [ M= (8 = b+ p)]l2)
=1
1 K
< N = Flle -2 X (Idet(Mi)] - 1My, 126 — b * pll2)

k=1
1 K
= B (18 = o pllz - 2 D7 (Idet(Me)]| - | My, ]l2)
k=1

1

1 K
= Bl 18— hoxpllz - 5= Y (Idet(Mk)l C———
K |det(My)|?

) ( using Lemma 1.d )
1 K 1
= N Err g 18 = o pllz - <= 3 ldet(My)]?
k=1
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( unfolding the recursion )
1 K n+tl
1
< By - (||5 —hspla >0 |d€t(Mk)|2)
k=1

According to Condition (6)) and Lemma 1.a

K
1 1
|6 — h*pl|z- % Z |det(My)|2 <1
. k=1

therefore
K

n+1
. 1 1
lim. (né YD |det<Mk>|2) S (9)
k=1
and therefore
lim [|[Err™]); =0

n—oo

This proves that lim,_., f(® = f.

Remark: When the 2-D image motions of the tracked object consist of only 2-D translations and
rotations, then Condition (6) reduces to ||6 — h * p||, < 1. The reason for this is that | det(My)| = 1
for such affine transformations T}, and therefore, according to Lemma l.a: |[Tx|2=1. |1

Theorem 3.2
Given Condition (6), the algorithm converges at an exponential rate (the norm of the error converges
to zero faster than q" for some 0 < ¢ < 1), regardless of the choice of initial guess JiR

Proof: Equation (9) confirms the exponential speed of convergence. The proof of Theorem 3.1
shows that lim, . [[Err(M||; = 0 regardless of the magnitude ||[Err®)||y , and therefore the
choice of the initial guess f(©) does not affect the convergence. |
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