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Abstract

Accurate computation of image motion enables the enhancement of image sequences� In scenes
having multiple moving objects the motion computation is performed together with object segmen�
tation by using a unique temporal integration approach�

After computing the motion for the di�erent image regions� these regions can be enhanced
by fusing several successive frames covering the same region� Enhancements treated here include
improvement of image resolution� �lling�in occluded regions� and reconstruction of transparent
objects�

� Introduction

We describe methods for enhancing image sequences using the motion information computed by
a multiple motions analysis method� The multiple moving objects are �rst detected and tracked�
using both a large spatial region and a large temporal region� and without assuming any temporal
motion constancy� The motion models used to approximate the motions of the objects are ��D
parametric motions in the image plane� such as a�ne and projective transformations� The motion
analysis is presented in a previous paper ��	� �
�� and will only be brie�y described here�

Once an object has been tracked and segmented� it can be enhanced using information from
several frames� Tracked objects can be enhanced by �lling�in occluded regions� and by improving
the spatial resolution of their images� When the scene contains transparent moving objects� they
can be reconstructed separately�
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Section � includes a brief description of a method used for segmenting the image plane into
di�erently moving objects� computing their motions� and tracking them throughout the image
sequence� Sections � �� and � describe the algorithms for image enhancement using the computed
motion information� Section  presents a method for improving the spatial resolution of tracked
objects� Section � describes a method for reconstructing occluded segments of tracked objects� and
Section � presents a method for reconstructing transparent moving patterns�

An initial version of this paper appeared in �����
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� Detecting and Tracking Multiple Moving Objects

In this section we describe brie�y a method for detecting and tracking multiple moving objects in
image sequences� which is presented in detail in ��
�� Any other good motion computation method
can be used as well� In this approach for detecting di�erently moving objects� a single motion is
�rst computed� and a single object which corresponds to this motion is identi�ed and tracked� We
call this motion the dominant motion� and the corresponding object the dominant object� Once a
dominant object has been detected and tracked� it is excluded from the region of analysis� and the
process is repeated on the remaining image regions to �nd other objects and their motions�

When the image motion can be described by a ��D parametric motion model� and this model
is used for motion analysis� the results are very accurate at a fraction of a pixel� This accuracy
results from two features�

�� The use of large regions when trying to compute the ��D motion parameters�

�� Segmentation of the image into regions� each containing only a single ��D motion�

��� ��D Motion Models

��D parametric transformations are used to approximate the projected �D motions of objects on
the image plane� This assumption is valid when the di�erences in depth caused by the motions are
small relative to the distances of the objects from the camera�

Given two grey level images of an object� I�x� y� t� and I�x� y� t� ��� it is assumed that�

I�x� p�x� y� t�� y� q�x� y� t�� t� �� � I�x� y� t�� ���

where �p�x� y� t�� q�x� y� t�� is the displacement induced on pixel �x� y� by the motion of the planar
object between frames t and t � �� It can be shown ���� that the desired motion �p� q� minimizes
the following error function at Frame t in the region of analysis R�

Err�t��p� q� �
X

�x�y��R

�pIx � qIy � It�
�� ���

We perform the error minimization over the parameters of one of the following motion models�

�� Translation� � parameters� p�x� y� t� � a� q�x� y� t� � d� In order to minimize Err�t��p� q��
its derivatives with respect to a and d are set to zero� This yields two linear equations in the
two unknowns� a and d� Those are the two well�known optical �ow equations ��� ���� where
every small window is assumed to have a single translation� In this translation model� the
entire object is assumed to have a single translation�

�� A�ne� 	 parameters� p�x� y� t� � a� bx� cy� q�x� y� t� � d� ex� fy� Deriving Err�t��p� q�
with respect to the motion parameters and setting to zero yields six linear equations in the
six unknowns� a� b� c� d� e� f ��� ���





� Moving planar surface �a pseudo projective transformation�� � parameters ��� ���
p�x� y� t� � a � bx � cy � gx� � hxy� q�x� y� t� � d � ex � fy � gxy � hy�� Deriving
Err�t��p� q� with respect to the motion parameters and setting to zero� yields eight linear
equations in the eight unknowns� a� b� c� d� e� f � g� h�

��� Detecting the First Object

When the region of support of a single object in the image is known� its motion parameters can be
computed using a multiresolution iterative framework �� �� �� 	� �	� �
��

Motion estimation is more di�cult in the common case when the scene includes several moving
objects� and the region of support of each object in the image is not known� It was shown in
�
� �	� �
� that in this case the motion parameters of a single object can be recovered accurately
by applying the same motion computation framework �with some iterative extensions ��	� �
�� to
the entire region of analysis�

This procedure computes a single motion �the dominant motion� between two images� A seg�
mentation procedure is then used �see Section ���� in order to detect the corresponding object �the
dominant object� in the image� An example of a detected dominant object using an a�ne motion
model between two frames is shown in Figure ��c� In this example� noise has a�ected strongly the
segmentation and motion computation� The problem of noise is overcome once the algorithm is
extended to handle longer sequences using temporal integration �Section ����

��� Tracking Detected Objects Using Temporal Integration

The algorithm for the detection of multiple moving objects discussed in Section ��� can be extended
to track detected objects throughout long image sequences� This is done by temporal integration�
where for each tracked object a dynamic internal representation image is constructed� This image
is constructed by taking a weighted average of recent frames� registered with respect to the tracked
motion� This image contains� after a few frames� a sharp image of the tracked object� and a
blurred image of all the other objects� Each new frame in the sequence is compared to the internal
representation image of the tracked object rather than to the previous frame ��	� �
�� Following is
a summary of the algorithm for detecting and tracking an object in an image sequence�

For each frame in the sequence �starting at t � �� do�

�� Compute the dominant motion parameters between the internal representation image of
the tracked object Av�t� and the new frame I�t� ��� in the region M�t� of the tracked
object �see Section ����� Initially� M��� is the entire region of analysis�

�� Warp the current internal representation image Av�t� and current segmentation mask
M�t� towards the new frame I�t� �� according to the computed motion parameters�

� Identify the stationary regions in the registered images �see Section ����� using the reg�
istered mask M�t� as an initial guess� This will be the segmented region M�t��� of the
tracked object in frame I�t� ���
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a� b� c�

Figure �� An example of the evolution of an internal representation image of a
tracked object�
a� Initially� the internal representation image is the �rst frame in the sequence�
The scene contains four moving objects� The tracked object is the ball�
b� The internal representation image after  frames�
c� The internal representation image after � frames� The tracked object �the
ball� remains sharp� while all other regions blur out�

�� Compute the updated internal representation image Av�t��� by warping Av�t� towards
I�t� �� using the computed dominant motion� and averaging it with I�t� ���

When the motion model approximates of the temporal changes of the tracked object well enough�
shape changes relatively slowly over time in registered images� Therefore� temporal integration of
registered frames produces a sharp and clean image of the tracked object� while blurring regions
having other motions� Figure � shows an example of the evolution of an internal representation
image of a tracked rolling ball� Comparing each new frame to the internal representation image
rather than to the previous frame gives the algorithm a strong bias to keep tracking the same
object� Since additive noise is reduced in the the average image of the tracked object� and since
image gradients outside the tracked object decrease substantially� both segmentation and motion
computation improve signi�cantly�

In the example shown in Figure �� temporal integration is used to detect and track the domi�
nant object� Comparing the segmentation shown in Figure ��c to the segmentation in Figure ��d
emphasizes the improvement in segmentation using temporal integration�

Another example of detecting and tracking objects using temporal integration is shown in
Figure � In this sequence� taken by an infrared camera� the background moves due to camera
motion� while the car has another motion� It is evident that the tracked object is the background�
as all other regions in the image are blurred by their motion�

��� Tracking Other Objects

After detecting and tracking the �rst object� attention is directed at other objects� This is done by
applying the tracking algorithm once more� this time to the rest of the image� after excluding the
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a� b� c� d�

Figure �� Detecting and tracking the dominant object using temporal integra�
tion�
a�b� Two frames in the sequence� Both the background and the helicopter are
moving�
c� The segmented dominant object �the background� using the dominant a�ne
motion computed between the �rst two frames� Black regions are those ex�
cluded from the dominant object�
d� The segmented tracked object after a few frames using temporal integration�

�rst detected object from the region of analysis� The scheme is repeated recursively� until no more
objects can be detected�

In the example shown in Figure �� the second dominant object is detected and tracked� The
detection and tracking of several moving objects can be performed in parallel� with a delay of one
or more frame between the computations for di�erent objects�

a� b� c� d�

Figure � Detecting and tracking the dominant object in an infrared image
sequence using temporal integration�
a�b� Two frames in the sequence� Both the background and the car are moving�
c� The internal representation image of the tracked object �the background��
The background remains sharp with less noise� while the moving car blurs out�
d� The segmented tracked object �the background� using an a�ne motion
model� White regions are those excluded from the tracked region�

	



a� b� c�

Figure �� Detecting and tracking the second object using temporal integration�
a� The initial region of analysis after excluding the �rst dominant object �from
Figure �d��
b� The internal representation image of the second tracked object �the car��
The car remains sharp while the background blurs out�
c� Segmentation of the tracked car after � frames�

��� Segmentation

Once a motion has been determined� we would like to identify the region having this motion� To
simplify the problem� the two images are registered using the detected motion� The motion of
the corresponding region is canceled after registration� and the tracked region is stationary in the
registered images� The segmentation problem reduces therefore to identifying the stationary regions
in the registered images�

Pixels are classi�ed as moving or stationary using local analysis� The measure used for the
classi�cation is the average of the normal �ow magnitudes over a small neighborhood of each pixel
�typically a � neighborhood�� In order to classify correctly large regions having uniform intensity�
a multi�resolution scheme is used� as in low resolution levels the uniform regions are small� The
lower resolution classi�cation is projected on the higher resolution level� and is updated according
to higher resolution information when it con�icts the classi�cation from the lower resolution level�






� Improvement of Spatial Resolution

Once good motion estimation and segmentation of a tracked object are obtained� it becomes possible
to enhance the images of this object�

Restoration of degraded images when a model of the degradation process is given is an ill�
conditioned problem ��� �� ��� �� ��� ���� The resolution of an image is determined by the physical
characteristics of the sensor� the optics� the density of the detector elements� and their spatial
response� Resolution improvement by modifying the sensor can be prohibitive� An increase in the
sampling rate could� however� be achieved by obtaining more samples of the imaged object from a
sequence of images in which the object appears moving� In this section we present an algorithm
for processing image sequences to obtain improved resolution of di�erently moving objects� This is
an extension of our earlier method� which was presented in �����

While earlier research on super�resolution ���� ��� ��� ��� treated only static scenes and pure
translational motion in the image plane� we treat dynamic scenes and more complex motions� The
segmentation of the image plane into the di�erently moving objects and their tracking� using the
algorithm mentioned in Section �� enables processing of each object separately�

The Imaging Model� The imaging process� yielding the observed image sequence fgkg� is mod�
eled by� gk�m�n� � �k�h�Tk�f�x� y��� � �k�x� y�� � where

� gk is the sensed image of the tracked object in the kth frame�

� f is a high resolution image of the tracked object in a desired reconstruction view� Finding
f is the objective of the super�resolution algorithm�

� Tk is the ��D geometric transformation from f to gk� determined by the computed ��D motion
parameters of the tracked object in the image plane �not including the decrease in sampling
rate between f and gk�� Tk is assumed to be invertible�

� h is a blurring operator� determined by the Point Spread Function of the sensor �PSF�� When
lacking knowledge of the sensor�s properties� it is assumed to be a Gaussian�

� �k is an additive noise term�

� �k is a downsampling operator which digitizes and decimates the image into pixels and quan�
tizes the resulting pixels values�

The receptive �eld �in f� of a detector whose output is the pixel gk�m�n� is uniquely de�ned by its
center �x� y� and its shape� The shape is determined by the region of support of the blurring operator
h� and by the inverse geometric transformation Tk

��� Similarly� the center �x� y� is obtained by
Tk
����m�n���

An attempt is made to construct a higher resolution image �f � which approximates f as accu�
rately as possible� and surpasses the visual quality of the observed images in fgkg� It is assumed
that the acceleration of the camera while imaging a single image frame is negligible�
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Figure �� Schematic diagram of the super resolution algorithm� A
reconstructed image is sought such that after simulating the imaging
process� the simulated low�resolution images are closest to the ob�
served low�resolution images� The simulation of the imaging process
is expressed by Equation �

The Super�Resolution Algorithm� The presented algorithm for creating higher resolution
images is iterative� Starting with an initial guess f ��� for the high resolution image� the imaging

process is simulated to obtain a set of low resolution images fg
���
k g

K

k�� corresponding to the observed

input images fgkg
K
k��� If f ��� were the correct high resolution image� then the simulated images

fg
���
k g

K

k�� should be identical to the observed images fgkg
K
k��� The di�erence images fgk � g

���
k g

K

k��
are used to improve the initial guess by �backprojecting� each value in the di�erence images onto
its receptive �eld in f ���� yielding an improved high resolution image f ���� This process is repeated
iteratively to minimize the error function

e�n� �

vuut �

K

KX
k��

kgk � g
�n�
k k

�

�

The algorithm is described schematically in Figure ��
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The imaging process of gk at the nth iteration is simulated by�

g
�n�
k � �Tk�f

�n�� � h� � s ��

where � s denotes a downsampling operator by a factor s� and � is the convolution operator� The
iterative update scheme of the high resolution image is expressed by�

f �n��� � f �n� �
�

K

KX
k��

Tk
��
�
��gk � g

�n�
k � � s� � p

�
���

where K is the number of low resolution images� � s is an upsampling operator by a factor s� and
p is a �backprojection� kernel� determined by h and Tk as explained below� The average taking
in Equation ��� reduces additive noise� The algorithm is numerically similar to common iterative
methods for solving sets of linear equations ����� and therefore has similar properties� such as rapid
convergence �see next paragraph��

In Figure 	� the resolution of a car�s license plate was improved from �� frames�

Analysis and Discussion� We introduce exact analysis of the superresolution algorithm in the
case of deblurring� Restoring an image from K blurred images �taken from di�erent viewing posi�
tions of the object�� with ��D a�ne transformations fTkg

K
k�� between them and the reconstruction

viewing position� and without increasing the sampling rate� This is a special case of superresolution�
which is simpler to analyze� In this case the imaging process is expressed by�

g
�n�
k � Tk�f

�n�� � h

and the restoration process in Equation ��� becomes�

f �n��� � f �n� �
�

K

KX
k��

Tk
��
�
�gk � g

�n�
k � � p

�
� ���

The following theorems show that the iterative super resolution scheme is an e�ective deblurring
operator �proofs are given in the appendix��

Theorem ��� The iterations of Equation ��� converge to the desired deblurred image f �i�e�� an
f that ful�lls� �k gk � Tk�f� � h�� if the following condition holds�

k� � h � pk� �
�

�
K

PK
k�� kTkk�

�	�

where � denotes the unity pulse function centered at ��� ���
Remark� When the �	D image motions of the tracked object consist of only �	D translations and
rotations� then Condition �
� reduces to k� � h � pk� � � �

Proof� see appendix�

Theorem ��� Given Condition �
�� the algorithm converges at an exponential rate �the norm of
the error converges to zero faster than qn for some � � q � ��� regardless of the choice of initial
guess f ��� �
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a� b�

c�

Figure 	� Improvement of spatial resolution using �� frames� The
sampling rate was increased by � in both directions�
a� The best frame from the image sequence�
b� The license plate magni�ed by � using bilinear interpolation�
c� The improved resolution image�

Proof� see appendix�

It is important to note that the original high resolution frequencies may not always be fully
restored� For example� if the blurring function is an ideal low pass �lter� and its Fourier transform
has zero values at high frequencies� it is obvious that the frequency components which have been
�ltered out cannot be restored� In such cases� there is more than one high resolution image which
gives the same low resolution images after the imaging process� According to Theorem �� the
algorithm converges regardless of the choice of the initial guess� However� since there may be more
than one correct solution to the problem� the choice of the initial guess does determine which of the
solutions is reached� A good choice of the initial guess is the average of the registered low resolution
images of the tracked object in the desired reconstruction view� f ��� � �

K

PK
k�� Tk

���gk�� Such an
initial guess leads the algorithm to a smooth solution� which is usually a desired feature�

Another issue is the choice of the backprojection kernel p� Unlike h� which represents properties
of the sensor �the PSF�� there is some freedom in the choice of p� p is chosen so that Condition �	�
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holds� The smaller k� � h � pk� is� the faster the algorithm converges �see proof of Theorem ����
Ideally� if k� � h � pk� � �� then the algorithm converges in a single iteration� This� however�
means that p is the inverse kernel of h� which may not exist �as h is a low pass �lter�� or which
may numerically be unstable to compute� Permitting k� � h � pk� � � �but still within the bounds
of Condition �	��� allows p to be other than the exact inverse of h� and therefore increases the
numerical stability� but slows down the speed of convergence� In other words� there is a tradeo�
between the stability of the algorithm and its speed of convergence� determined by the choice of p�

The algorithm converges rapidly �usually within less than � iterations�� and can be implemented
on parallel machines� The complexity of the algorithm is low� O�KN logN� operations per itera�
tion� where N is the number of pixels in the high resolution image f � and K is the number of low
resolution images� Since the number of iterations is very small� this is also a good estimate of the
complexity of the entire algorithm� The algorithm can be implemented in real�time� as only simple
arithmetic operations are involved in the computation�
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� Reconstruction of Occlusions

When parts of a tracked object are occluded in some frames by another moving object� but these
parts appear in other frames� a more complete view of the occluded object can be reconstructed
���� �	�� The image frames are registered using the computed motion parameters of the tracked
object� and the occluded parts of that object are then reconstructed by temporally averaging gray
levels of all pixels which were classi�ed as object pixels in the corresponding segmentation masks�
This process ignores the pixels when they are occluded by another moving object in the foreground�
and the missing regions will be reconstructed even if they are occluded in most frames�

In the example shown in Figure 
� the background of the image sequence �the room scene�
was completely reconstructed� eliminating the walking girl from the scene� The background was
reconstructed in all frames� generating a new sequence with no trace of the moving girl�

�



a� b� c�

Figure 
� Reconstruction of occluded regions�
a� Five frames from the sequence� The camera is panning� and a girl
walks from right to left� The girl appears in all frames and occludes
parts of the background in each frame in the sequence�
b� Segmentation� black regions are those excluded from the tracked
background�
c� Full reconstructions of the background in all frames� The girl is
eliminated�

��



� Reconstruction of Objects in Transparent Motion

A region contains transparent motions if it contains several di�erently moving image patterns that
appear superimposed� For example� moving shadows� spotlights� re�ections in water� an object
viewed through another transparent object� etc� In this section� we present a method for isolating
and reconstructing tracked objects in transparent motion�

The presented scheme assumes additive transparency �such as in re�ections�� However� this
scheme could be applied also to cases of multiplicative transparency �as in moving shadows and
viewing through a semi�transparent media� by using the logarithm operation� Taking the logarithm
of the input images changes the multiplicative e�ects into additive e�ects� and once the tracking is
done� the exponent is taken to return to the original scale�

Previous analysis of transparency �	� �� ��� ��� �� assumed constant motion over several suc�
cessive frames� which excludes most sequences taken from an unstabilized moving camera� Some
methods �	� ��� �� elegantly avoid the segmentation problem� They require� however� high order
derivatives �the order increases with the number of objects�� which make them sensitive to noisy
data�

In our work we do not assume any motion constancy� We temporally integrate the image
frames rather than use temporal derivatives� This provides robustness and numerical stability to
the tracking algorithm� This approach not only tracks the moving transparent objects� but also
reconstructs them�

Transparent motions yield several motion components at each point� and segmentation cannot
be used to isolate one of the transparent objects� In practice� however� due to varying image
contrast� in many image regions one object is more prominent than other objects� and segmentation
can be used to extract pixels which support better a single motion in the region of analysis� We use
the temporal integration scheme described in Section �� to track the dominant transparent object�
The temporal averaging restores the dominant transparent object in its internal representation
image� while blurring out the other transparent objects� making them less noticeable� Comparing
each new frame to the internal representation image of the tracked object rather than to the previous
frame gives the algorithm a strong bias to keep tracking the same transparent object� as it is the
only object in the internal image that is still similar to its image in the new frame �Figure ���

For recovering the second transparent object� the temporal integration tracking technique is
applied once more to the sequence� after some delay� Let Av��t� denote the internal representation
image of the �rst transparent object� Starting at frame I�t�� the algorithm is applied only to pixels
for which the value of jI�t��Av��t�j is high� This di�erence image has high values in regions
which contain prominent features of transparent objects in I�t� that faded out in the internal
representation image Av��t�� and low values in regions which correspond to the �rst dominant
transparent object� Therefore� we use the values of the absolute di�erence image as an initial mask
for the search of the next dominant object in the temporal integration algorithm from Section ���
The tracking algorithm is applied once again to the original image sequence� and not to frame
di�erences as in �	�� Now that the algorithm tracks the second dominant object� the new internal
representation image Av��t� restores the second dominant transparent object� and blurs out the
other transparent objects� including the �rst dominant object�
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a� b�

c� d�

Figure �� Reconstruction of �transparent� objects�
a�b� The �rst and last frames in a sequence� A moving tripod is re�ected in
the glass of a picture of �owers�
c� The internal representation image of the �rst tracked object �the picture
of �owers� after �� frames� The picture of �owers was reconstructed� The
re�ection of the tripod faded out�
d� The internal representation image of the second tracked object �the re�ection
of the tripod� after �� frames� The re�ection of the tripod was reconstructed�
The picture of �owers faded out�

In Figure �� the reconstruction of two transparent moving objects in a real image sequence is
shown�
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� Concluding Remarks

Temporal integration of registered images proves to be a powerful approach to motion analysis�
enabling human�like tracking of moving objects� Once good motion estimation and segmentation
of a tracked object are obtained� it becomes possible to enhance the object images� Fusing informa�
tion on tracked objects from several registered frames enables reconstruction of occluded regions�
improvement of image resolution� and reconstruction of transparent moving objects�
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APPENDIX

The appendix contains proofs of Theorems �� and ��� The following notations will be used�

� T denotes the transformation from the deblurred image f to a blurred image g�

� �T denotes the respective ��D a�ne transformation describing the geometric transformation
of pixel coordinates from f to g� i�e��

�T�f�� �x� y� � f
�
�T���x� y�

�
�

Remarks�

�� �T is assumed to be invertible�

�� It is easy to show from this de�nition that T is a linear transformation of f �

� Since �T is a ��D a�ne transformation� it can be expressed in matrix notation by�

�T�x� y� � �d�M �

�
x

y

�
�

where �d is a �� � vector� and M is a �� � matrix�

� �MT denotes the linear transformation part of �T �on pixel coordinates�� which uses the matrix
M only �without the displacement �d�� i�e��

�MT�x� y� �M �

�
x

y

�
�

and respectively� MT is the linear transformation on images de�ned by�

�MT�f�� �x� y� � f
�
�M��
T
�x� y�

�
�

� det�M� denotes the determinant of the matrix M �

In order to prove Theorems �� and ��� we introduce the following two lemmas�

Lemma �

���a	 kTk� � j det�M�j
�

�

���b	 kT��k� �
�

jdet�M�j
�

�

���c	 kMTk� � j det�M�j
�

�

���d	 kMT��k� �
�

j det�M�j
�

�

Remark� It follows from this lemma that whenever the a�ne transformation �T is limited to �	D
translations and rotations� then kTk� � �� When the transformation contains a scaling by a factor
s� then kTk� � s�

��



Proof�

���a	

kT �f�k� �

�Z �

��

Z �

��
j �T �f�� �x� y�j� dx dy

��

�

�

�Z �

��

Z �

��
jf
�
�T���x� y�

�
j� dx dy

��

�

�

�Z �

��

Z �

��
jf�u� v�j� � j det�M�j du dv

��

�

� change of integral variables by �u� v� � �T���x� y� 	

� j det�M�j
�

� � kfk� �

Therefore�

kTk�
def
� Supkfk��� �kT �f�k��

� Supkfk���

�
j det�M�j

�

� � kfk�
�

� j det�M�j
�

� � Supkfk��� �kfk��

� j det�M�j
�

� �

���b	

It is easy to show that
�

T�� �x� y� � �T���x� y� � �M�� � �d � M�� �

�
x

y

�
� Therefore�

according to Lemma ��a� kT��k� � j det�M���j
�

� � �

j det�M�j
�

�

�

���c	

Since �MT �x� y� �M �

�
x

y

�
� then according to Lemma ��a kMTk� � j det�M�j

�

� �

���d	

It is easy to show that MT�� � MT
�� � Therefore� according to Lemmas ��b and ��c�

kMT��k� �
�

jdet�M�j
�

�

�

Lemma �

T �f� � f�� �
�

kTk�
� � �T �f�� �MT �f���

where � denotes the convolution operator�

��



Proof�

�T �f�� �MT �f��� �x� y� �
Z �

��

Z �

��
�T �f��� ��� 	� � �MT �f��� �x� �� y � 	� d� d	

�

Z �

��

Z �

��
f�

�
�T����� 	�

�
� f�
�
�M��
T �x� �� y � 	�

�
d� d	

�
Z �

��

Z �

��
f�

�
�T����� 	�

�
� f�
�
�M��
T �x� y�� �M��

T ��� 	�
�
d� d	

�

Z �

��

Z �

��
f�

�
�T����� 	�

�
� f�
�
�T���x� y�� �T����� 	�

�
d� d	

�
Z �

��

Z �

��
f��
� �� � f�

�
�T���x� y�� �
� ��

�
� j det�M�j d
 d�

� change of integral variables by �
� �� � �T����� 	� 	

� j det�M�j � �f� � f��� �T
���x� y��

� j det�M�j � �T �f� � f��� �x� y�

� kTk�
� � �T �f� � f��� �x� y� � using Lemma ��a 	

Theorem ���

Let Tk denote the transformation from the deblurred image f to the blurred image gk The iterations
of Equation ��� converge to the desired deblurred image f �i�e�� an f that ful�lls� �k gk �
Tk�f� � h�� if the following condition holds�

k� � h � pk� �
�

�
K

PK
k�� kTkk�

�	�

where � denotes the unity pulse function centered at ��� ���

Proof� Mathematical manipulations on the left hand side of Equation ��� yield�

f �n��� � f �n� �
�

K

KX
k��

Tk
��
�
�gk � g

�n�
k � � p

�

�
�

K

KX
k��

�
f �n� � Tk

��
�
�gk � g

�n�
k � � p

��

�
�

K

KX
k��

Tk
��
�
Tk�f

�n�� � �gk � g
�n�
k � � p

�

�
�

K

KX
k��

Tk
��
�
Tk�f

�n�� � gk � p� g
�n�
k � p

�

�
�

K

KX
k��

Tk
��
�
Tk�f

�n�� � gk � p� Tk�f
�n�� � h � p

�

��



�
�

K

KX
k��

Tk
��
�
Tk�f

�n�� � �� � h � p� � gk � p
�

Therefore�

f �n��� �
�

K

KX
k��

Tk
��
�
Tk�f

�n�� � �� � h � p� � gk � p
�

�
�

is another way of expressing the iterative scheme de�ned by Equation ����

It is easy to show that the desired f is a �xed point of Equation �
�� by replacing f �n��� and
f �n� with f � and gk with Tk�f� � h � Therefore�

f �
�

K

KX
k��

Tk
�� �Tk�f� � �� � h � p� � gk � p� � ���

We shall now show that limn�� f �n� � f �

kErr�n���k� � kf �n��� � fk�

� k
�

K

KX
k��

Tk
��
�
Tk�f

�n�� � �� � h � p� � gk � p
�
�

�

K

KX
k��

Tk
�� �Tk�f� � �� � h � p� � gk � p� k� � using �
	 and ��	 	

� k
�

K

KX
k��

Tk
��
�
Tk�f

�n� � f� � �� � h � p�
�
k�

� k
�

K

KX
k��

�
jdet�Mk�j � �f

�n� � f� �MTk
���� � h � p�

�
k�

� using Lemma � and Lemma ��b 	

� k�f �n� � f� �
�

K

KX
k��

�
jdet�Mk�j �MTk

���� � h � p�
�
k�

� kf �n� � fk� �
�

K

KX
k��

�
jdet�Mk�j � kMTk

���� � h � p�k�
�

� kf �n� � fk� �
�

K

KX
k��

�
jdet�Mk�j � kMTk

��k�k� � h � pk�
�

� kErr�n�k� � k� � h � pk� �
�

K

KX
k��

�
jdet�Mk�j � kMTk

��k�
�

� kErr�n�k� � k� � h � pk� �
�

K

KX
k��

�
jdet�Mk�j �

�

jdet�Mk�j
�

�

�
� using Lemma ��d 	

� kErr�n�k� � k� � h � pk� �
�

K

KX
k��

jdet�Mk�j
�

�

��



��� � unfolding the recursion 	

� kErr���k� �

�
k� � h � pk� �

�

K

KX
k��

jdet�Mk�j
�

�

�n��

According to Condition �	�� and Lemma ��a

k� � h � pk� �
�

K

KX
k��

jdet�Mk�j
�

� � � �

therefore

lim
n��

�
k� � h � pk� �

�

K

KX
k��

jdet�Mk�j
�

�

�n��

� � � ���

and therefore
lim
n��

kErr�n�k� � � �

This proves that limn�� f �n� � f �

Remark� When the ��D image motions of the tracked object consist of only ��D translations and
rotations� then Condition �	� reduces to k� � h � pk� � �� The reason for this is that j det�Mk�j � �
for such a�ne transformations �Tk� and therefore� according to Lemma ��a � kTkk� � ��

Theorem ���
Given Condition �
�� the algorithm converges at an exponential rate �the norm of the error converges
to zero faster than qn for some � � q � ��� regardless of the choice of initial guess f ��� �

Proof� Equation ��� con�rms the exponential speed of convergence� The proof of Theorem ��
shows that limn�� kErr�n�k� � � regardless of the magnitude kErr���k� � and therefore the
choice of the initial guess f ��� does not a�ect the convergence�
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