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Abstract— Video is a rich source of information. It pro-
vides visual information about scenes. However, this infor-
mation is implicitly buried inside the raw video data, and is
provided with the cost of very high temporal redundancy.
While the standard sequential form of video storage is ad-
equate for viewing in a ”movie mode”, it fails to support
rapid access to information of interest that is required in
many of the emerging applications of video. This paper
presents an approach for efficient access, use and manipu-
lation of video data. The video data is first transformed
from its sequential and redundant frame-based representation
in which the information about the scene is distributed over
many frames, to an ezplicit and compact scene-based repre-
sentation, to which each frame can be directly related.

This compact reorganization of the video data supports
non-linear browsing and efficient indexing to provide rapid
access directly to information of interest. The paper describes
a new set of methods for indexing into the video sequence
based on the scene-based representation. These indexing
methods are based on geometric and dynamic information con-
tained in the video. These methods complement the more
traditional ”content-based indexing” methods which utilizes
image appearance information (namely color and texture
properties), but are considerably simpler to achieve and are
highly computationally efficient.

Keywords— video indexing, video browsing, compact video
representations, mosaics, video manipulation, video annota-
tion, video compression, video databases.

I. INTRODUCTION

The emergence of video as data and a source of informa-
tion on the computer opens the potential for new ways of
accessing, viewing and manipulating the contents of video.
These include direct non-linear access to video frames and
sequences of interest, new modes of viewing that gives the
viewer the control over how the video is viewed, the anno-
tation and manipulation of objects and scenes in the video,
and the merging of text and graphics with the video data.

While the standard manner of representing video as a se-
quence of frames is adequate for viewing it in a movie mode,
it does not support the type of interaction with video infor-
mation described above. Currently the only way to access
the information of interest is by sequentially scanning the
video. The only way to manipulate, annotate, or edit the
video is by processing the video frame-by-frame. This pro-
cess is both slow and tedious.

This paper presents a new approach for efficient access,
storage, and manipulation of video data. Our approach
is based on the fact that a video sequence contains many
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views of the same scene taken over time, either from a mov-
ing or a stationary camera. Hence, the information that is
common to all the frames is the scene itself. However, this
information is distributed over many frames, at the cost of
very high temporal redundancy, and is found only implic-
itly in the video data. We transform the video data from a
sequential frame-based representation, in which this com-
mon scene information is distributed over many frames, into
a single common scene-based representation to which each
frame can be directly related. This representation then al-
lows direct and immediate access to the scene information,
such as static locations and dynamically moving objects. It
also eliminates the redundancy between the different views
of the scene contained in the frames, and results in a highly
efficient and compact representation of the video informa-
tion. Hence, the scene-based representation forms the basis
for direct and efficient access to and manipulation of the
video information, and supports efficient storage and trans-
mission of the video data.

The scene-representation is composed of three compo-
nents: (i) extended spatial information: this captures the
appearance of the entire scene imaged in the video clip,
and is represented in the form of a few (often just one)
panoramic mosaic images constructed by composing the
information from the different views of the scene in the
individual frames into a single image, (ii) extended tempo-
ral information: this captures the motion of independently
moving objects in the scene (e.g., in the form of their tra-
jectories), and (iii) geometric information: this captures
the 3D scene structure, as well as the geometric transfor-
mations which are induced by the motion of the camera
and map the frames to the common mosaic image. Taken
together, these three components provide a compact de-
scription of the video data.

We construct the common scene-based representation by
measuring and interpreting the image motion within the
video clip. Regions of the video frames, corresponding to
the static and dynamic portions of the scene are deter-
mined. The geometric transformations and the 3D scene
structure are recovered as a part of this process. This pro-
cess is done automatically, without any information about
the camera calibration or the scene.

Once the common scene-based representation is con-
structed, it forms the basis for direct and efficient browsing,
indexing, and manipulation of the video data. Browsing is
done by skimming a collection of images that “summarize”
the video data. We refer to these images as visual sum-
maries. These summaries visually describe the video infor-
mation in a compact and succinct fashion, and can serve
as a visual table-of-contents for the video.



Since the mosaics capture the information that is com-
mon to all the frames, they provide the means to directly
index into and manipulate the individual frames. Both
the static and dynamic portions of the video sequence can
be accessed this way. These indexing methods are based
on geometric and dynamic information contained in the
video. These complement the more traditional approach to
”content-based indexing” which utilizes image appearance
information (namely color and texture properties) [9], [10],
[7], [26], but are considerably simpler to achieve and are
computationally highly efficient. The existing appearance-
based methods themselves can also be used more efficiently
within the scene-based representation, when applied di-
rectly to the mosaic image (i.e., to the appearance compo-
nent of our representation), rather than to the individual
video frames one-by-one.

The rest of the paper is organized as follows: Section II
presents the common and compact scene-based representa-
tion, to which each frame are directly related. Section III
explains how to use the scene-based representation to effi-
ciently and rapidly browse, index, and manipulate video
data. Section IV reviews the techniques used for con-
structing the scene-based representation from raw video
sequences. Section V concludes the paper.

II. FrRoM FRAMES TO SCENES

Video is a rich data source. It provides information
about scenes. However, this information is buried inside
the raw video data, and is provided with the cost of very
hight temporal redundancy (e.g., every scene point is dis-
played repeatedly in numerous consecutive frames). In this
section we first review the fundamental components of in-
formation in a video stream (Section II-A). Then we make
use of these information components to transform the video
from an implicit and redundant frame-based representation,
to an explicit and non-redundant scene-based representa-
tion, which is common to all frames (Section II-B).

A. The Three Fundamental Information Components of
Video

Video extends the imaging capabilities of a still camera
in three ways. First, although the field-of-view of each sin-
gle image frame may be small, the camera can be panned
or otherwise moved around in order to cover an extended
spatial area. However, the extended spatial information ac-
quired by the video is not available in a coherent form. It
is distributed among a sequence of frames, and is hard to
use.

Second, and perhaps the most common use of video is
to record the evolution of events over time. Once again,
however, this extended temporal information is not explic-
itly represented, but distributed over a sequence of video
frames. While it is natural for a human to view it as a
movie, this representation is not particularly suitable for
analytic purposes.

Third, a video camera can be moved in order to acquire
views from a continuously varying set of vantage points.
This induces image motion, which depends on the three-

dimensional geometric layout of the scene and the motion
of the camera. However, this geometric information is also
only implicitly present, and is not directly accessible from
the standard sequential video representation.

Thus, the total information contained in the video data
consists of the three scene components mentioned above.
However, this information is distributed among the frames
and is implicitly encoded in terms of image motion. There-
fore, a natural way to reorganize the video data is in terms
of these three scene components. Moreover, such a re-
organization removes the tremendous redundancy that is
present in the source video data. This scene-based organi-
zation is highly efficient, since it directly and uniquely maps
onto the information in the scene. Therefore, it facilitates
efficient interaction and manipulation, and supports very
efficient storage and transmission.

B. The Scene-Based Representation

To bring out the common scene information contained
in the video, and make it more directly accessible, we first
transform the video from its implicit and redundant frame-
based representation, to an ezxplicit and compact scene-
based representation. In this section we introduce the
scene-based representation. In Section IV we elaborate on
the details of the representation and explain how it is con-
structed from the video data.

The video stream is first temporally segmented into scene
segments, which are sub-sequences of the input video se-
quence. A beginning or an end of a scene segment is auto-
matically detected wherever a scene-cut or scene-change oc-
curs in the video. The scene cuts are characterized typically
by drastic changes in the frame content, which is directly
refelected in the distribution of color and the greylevels in
the image, or in the image motion (e.g., see [9], [37]). These
changes are relatively simple to detect.

Each scene segment is subsequently parsed into the
three fundamental components of video (see Section II-A),
namely, the static background scene, the dynamic moving
objects, the geometric information. These components are
organized as described below.

Corresponding to the three fundamental components,
the scene-based representation is divided into three parts.

1. A panoramic mosaic image, which captures an ex-

tended spatial view of the entire scene visible in the
video clip, in a single (or sometimes few) “snapshot”
image (e.g., see Figure 1). This image captures the
appearance of the static portions of the scene.

The mosaic image is constructed by first aligning all
the frames with respect to the common coordinate sys-
tem (which becomes also the mosaic coordinate sys-
tem), and then integrating all these frames to form a
single image. Different methods of integration can be
employed (e.g., temporal average, temporal median,
super-resolution, etc). These are described in more
detail in [12].

The mosaic representation removes the redundancy
contained in the overlap between successive frames and
represents each spatial point only once. Mosaics have



been previously used as an effective way of creating
panoramic views of a scene from video sequences [23],
[31], [32], [16], [20], [3]. However, until now they have
not been used as an information component within a
scene-based representation, which provides direct and
efficient access to video data.

Section IV describes a hierarchy of mosaic represen-
tations. The hierarchy corresponds to increasing com-
plexity levels in the camera motion and in the 3D scene
structure.

2. The geometric transformations that relate the dif-
ferent video frames to the mosaic coordinate system.
The geometric transformations contain the informa-
tion necessary to map the location of each scene point
back and forth between the panoramic mosaic im-
age(s) and the individual frames. Corresponding to
the hierarchy of the panoramic mosaic representations,
there exists a hierarchy of representations of the geo-
metric transformations. These range from global para-
metric 2D transformations to more complex 3D trans-
formations, and are described in Section IV.

3. The dynamic information, e.g., information about
moving objects, which are not captured by the static
panoramic mosaic image. Moving object information
is completely captured by representing the extended
time trajectories of those objects, as well as their ap-
pearance. Such a complete representation is needed,
e.g., for video compression (since the video frames need
to be reconstructed from the scene-representation).
However, to access, browse, index and annotate the
video (as presented in Section III), the trajectory in-
formation alone is sufficient. The trajectory of the
center-of-mass of each detected moving object (i.e.,
a single image-point per moving object per frame)
is maintained. These trajectories are represented in
the coordinate system of the mosaic image, which is
common to all the frames. In the common coordinate
system, time continuity, continuous tracking, and the
temporal behavior of the moving object, can be ana-
lyzed more effectively (see Figures 3 and 5).

Thus, the three components of our scene-based represen-
tation form a compact representation of the video clip. The
compactness results from the fact that every scene point is
presented only once in the mosaic image, while in the orig-
inal video clip it is observed in multiple frames. This com-
pactness of the scene-based representation facilitates very
high compression (and we have developed such algorithms
for VLBR compression [13]). In this paper, we focus on the
power of this representation for video indexing and manip-
ulation. Section III describes how this representation can
be used for efficiently accessing and manipulating the video
data. Section IV describes the methods for constructing
the scene-based representation.

III. FROM SCENES TO VISUAL SUMMARIES AND
INDEXING

Once a video sequence is transformed from the frame-
based representation to the scene-based representation, it

forms the basis for the user’s interaction with the video.
The user can initially preview the video by browsing
through visual summaries of the various video clips. These
visual summaries can serve as a visual table-of-contents of
the video data. When a scene of interest is detected by
the user, he/she can either request to view only that por-
tion of the video, or can further index into individual video
frames. The detected frames of interest can then be either
viewed or manipulated by the user.

A. Visual Summaries — A Visual Table of Content

There are two types of visual summaries of video clips
that a user can browse through. These are captured by
two types of mosaic images which are constructed from the
video clip of a scene:

o The Static Background Mosaic:

The video frames of a single video segment (clip) are
aligned and integrated into a single mosaic image.
This image provides an extended (panoramic) spatial
view of the entire static background scene viewed in
the clip in a single “snapshot” image and represents
the scene better than any single frame. This image
does not include any moving objects. The user can
visually browse through the collection of such mosaic
images to select a scene (clip) of interest.

Figures 1 and 2 display some examples of static back-
ground mosaic images.

e The Synopsis Mosaic:

While the static mosaic image effectively captures the
background scene, it contains no representation of the
dynamic events in the scene. To provide a summary
of the events, we create a new type of mosaic called
the synopsis mosaic. This is constructed by overlay-
ing the trajectories of the moving objects on top of
the background mosaic. This single “snapshot” im-
age provides a visual summary of the entire dynamic
foreground ewent that occurred in the video clip.
Figure 3 graphically illustrates the trajectory associ-
ated with a moving object in a synopsis mosaic.
Figure 2.c provides a summary of the entire event in
the baseball video clip.

To allow for comprehensive display of multiple tra-
jectories (corresponding to multiple moving objects),
the trajectory of each moving object is uniquely color
coded.

Figures 4 and 5 provide visual summaries of airborne
(UAV) video clips each with multiple moving objects.
Figure 4 shows a flying airplane and a moving car
on the road. Figure 5 shows a flying airplane, three
parachuters that were dropped from the plane, and a
moving car.

The natural mode of operation for the user is to first
browse through the visual summary mosaics to identify
a few scenes of interest. Once the user has identified a
scene (i.e., mosaic) of interest, he proceeds to directly ac-
cess and/or manipulate individual video frames associated
with only a portion of the scene which is of interest to
him. The scene-based representation supports this type
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Fig. 1. Static background mosaic of an airport video clip.

(a) A few representative frames from the minute-long video clip. The video shows an airport being imaged from the air with a moving
camera. The scene itself is static (i.e., no moving objects). (b) The static background mosaic image which provides an extended view of
the entire scene imaged by the camera in the one-minute video clip.

of indexing. Two new types of indexing methods are pre-
sented: (i) indexing based on location (geometric) infor-
mation, and (ii) indexing based on dynamic information.
These are made possible directly via the geometric coordi-
nate transformations that relate the different frames to the
mosaic image, and through the moving objects information
which was estimated in the formation of the mosaic-based
scene representation (Section II-B). The access and manip-
ulation of selected video frames is done directly from the
mosaic-based visual summaries. These location and dy-
namic indexing methods complement the more traditional

approach to ”content-based indexing”, which utilizes image
appearance information (e.g., color and texture) [9], [10],
[7], [26]. However, our methods are considerably simpler
to achieve and are highly computationally efficient.

The remainder of this section describes these modes of
video indexing and manipulation.

B. Location (Geometric) Based Indexing

Once a few scenes of interest (in the form of visual sum-
maries) have been selected, the user proceeds to access the
video frames themselves. The user selects a scene point (or



Fig. 2. Visual summaries of a baseball video clip.
(a) A few representative frames from the video clip. The video shows two outfielders running, while the camera is panning to the left
and zooming on the two baseball players. (b) The static background mosaic image which provides an extended view of the entire scene
captured by the camera in the video clip. The “missing” regions at the top-left and bottom-left were never imaged by the camera, because
at that point it was zoomed on the two players (e.g., frame 80). (c) The synopsis mosaic which provides a visual summary of the entire
event. It shows the trajectories of the two outfielders in the context of the mosaic image.

Raw
Video
Frames

Synopsis
Mosaic

Fig. 3. Synopsis of a Moving Object.
The trajectory of the moving object is depicted in the synopsis mosaic. This shows the motion of the moving object, after cancellation
of the background (camera-induced) motion. With each point on the trajectory is associated a frame number (i.e., the “time” when the
moving object was at that location).
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Fig. 4. The visual summary of a flying plane video clip.
(a) A few representative frames from the minute-long video clip. The video shows an airplane flying from right to left (during takeoff).
A car driving on a road is visible for a few frames. (b) The synopsis mosaic which provides a visual summary of the entire video clip,
showing the trajectories of all moving object in the context of the mosaic image. Each detected and tracked moving object is color coded

uniquely (plane: green. car: yellow).
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(b)
Fig. 5. The visual summary of a parachuters video clip.

(a) A few representative frames from the 30-second-long video clip. The video shows an airplane flying from left to right, dropping three
parachuters. A car driving on a road is visible for a few frames. The parachuters are very small (tiny white dots) and difficult to see
in a static image, but they are easily detectable in video, as they have different motion than the background. They are depicted in the
synopsis mosaic by the green, red, and blue trajectories. In the video sequence, they become visible gradually, as their parachutes open —
first the left parachuter, then the right one, and last the middle one. This becomes clearer in the annotated video displayed in Figure 10.
(b) The synopsis mosaic which provides a visual summary of the entire video clip, showing the trajectories of all moving object in the
context of the mosaic image. Each detected and tracked moving object is color coded uniquely (parachuters: green, red, blue. car:
purple. plane: yellow).



several points) in the mosaic image. The geometric coordi-
nate transformations map the selected scene point(s) from
the mosaic image to its location in the coordinate system
of each of the video frames. All frames containing the se-
lected scene point inside their field of view are therefore
instantaneously determined. The user can view the sub-
sequence of the video that contains only the frames with
the selected scene point (or points). When these frames
are not consecutive in time (e.g., if the selected portion
of the scene was revisited by the camera multiple times),
then multiple sub-sequences (corresponding to consecutive
frame groups) are displayed to the user.

Figure 6 demonstrates an indexing process. Selection of
a scene point in the mosaic image generates a display of
all frames whose field of view contains the selected scene
point. These are frames i, 7, and k. In the figure, these
frames are displayed as a collection of frames, but in reality,
they are displayed as a video sequence.

In addition to manual scene-point selection, this repre-

sentation also provides a basis for efficiently indexing into
the video using existing automatic detection methods. For
example, if a region is searched using an appearance-based
detection method (e.g., template correlation, or search
based on color or texture attributes [9], [10], [7], [26]), then
instead of applying these search methods individually to
each frame, it can be applied just once to the common mo-
saic image. Once it is detected in the mosaic image, the
location-based indexing mechanism can be used to retrieve
the corresponding frames.
Editing and Annotation: The compact mosaic represen-
tation can be used not only to access video frames, but also
to edit, annotate, and manipulate these frames. For exam-
ple, the same mechanism used for indexing is also used to
efficiently inherit annotations from the mosaic image onto
scene locations in the video frames.

The annotation is specified by the user just once on the
mosaic image, rather than tediously specifying it for each
and every frame. This can be further extended to efficiently
edit video clips, by inserting or deleting an object in the
mosaic image, hence inserting or deleting that object in all
corresponding video frames.

Figure 7 graphically illustrates a video annotation pro-
cess.

Figure 8 shows an example of annotating airborne video
of an airport scene.

C. Dynamic (Moving-Objects) Based Indezxing

Since the synopsis mosaic provides a snapshot view of an
entire dynamic event, it can be used for indexing based on
temporal events. In the synopsis mosaic, the motion of an
object is represented as a trajectory in the common coor-
dinate system, hence, the temporal event has been trans-
formed into a spatial representation. Marking a segment
on the trajectory is thus equivalent to marking a time in-
terval, which enables access and display of all frames in
this time interval.

More specifically, all frames containing a selected mov-
ing object can be immediately determined and accessed, as

well as the location of the moving object in each of these
frames. The user can select an object of interest whose
track is marked on the synopsis mosaic. Since the trajecto-
ries of the moving objects in the mosaic coordinate system
are precomputed (as well as which point on the trajectory
corresponds to which frame), all frames containing that ob-
ject are immediately accessed and viewed. The location of
that object in each frame is estimated through the basic
geometric coordinate transformations (the ones that corre-
spond to the camera-induced motion). In a similar manner,
the moving objects in the video frames are efficiently anno-
tated or manipulated by annotating the synopsis mosaic,
without the need for the user to repeatedly perform the
operation on a frame-by-frame basis.

Figure 9 shows an example of annotating moving objects
using the plane video, whose synopsis mosaic was shown
in Figure 4. The figure displays the selected annotations
on the synopsis mosaic. Representative output frames are
shown, in which the annotations are automatically inher-
ited from the mosaic. Note that the annotations “move”
together with the moving objects.

Figure 10 shows an example of video annotation using
the airborne parachuters video. The figure displays the se-
lected annotations on top of the synopsis mosaic image.
Both moving objects and stationary scene points are an-
notated. Representative frames from the automatically-
annotated video clip are also displayed. Note that anno-
tations of moving objects “move” together with the mov-
ing objects, while annotations of static scene points (e.g.,
“building”) remain stationary with respect to the back-
ground scene (i.e., they preserve the background motion
induced by the moving camera).

Note also that estimating the trajectories of moving ob-
jects in the common mosaic coordinate system allows more
reliable detection and tracking of moving objects, even
when they are very small (such as the three parachuters
in Figure 5). This is because a “temporal coherence” con-
straint can be used during moving object detection and
tracking after removal of the background motion. Assum-
ing that object velocities do not change too rapidly, the de-
tection of moving objects within each frame can be guided
by the trajectory of the objects in a few previous frames.
This leads to better separation between small moving ob-
jects and noise, as well as enables recovery from losing an
object for a few frames (e.g., due to occlusion or bad de-
tection). The missing portion of the trajectory is smoothly
interpolate/extrapolated from the neighboring frames.

IV. BUILDING THE SCENE-BASED REPRESENTATION

In Section II-B we introduced the basic components of
the scene-based representation. In this section we provide
the details of the scene-based representation (Section IV-
A), followed by a review of the methods used for its con-
struction (Sections IV-B and IV-C). This section serves
mainly as a review of methods which have been previously
published; these methods are briefly outlined here in order
to make the paper self contained.
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Selection of a scene point in the mosaic image generates a display of all frames whose field of view contains the selected scene point.
These are frames ¢, j, and k. In the figure, these frames are displayed as a collection of frames, but in reality, they are displayed as a

video sequence.

A. The Detailed Scene-Based Representation

1. The panoramic view of the scene is captured by
one or several mosaic images. We present a hierarchy
of such mosaic representations. The hierarchy corre-
sponds to increasing complexity levels in the camera
motion and in the 3D scene structure:

(a) The simplest representation is a mosaic image con-
structed by aligning all the frames to a single coordi-
nate system using 2D parametric coordinate trans-
formations. We refer to such a mosaic as a 2D para-
metric mosaic image. The cases when the camera
induced motion can be modeled as a 2D paramet-
ric transformation can be divided broadly into three
categories (see Section IV-B.1): (i) when the trans-
lational motion of the camera is negligible, i.e., cam-
era motion can be approximated by only 3D rota-
tions and zooms, (ii) when the scene is planar, or
(iii) when the 3D scene is sufficiently distant from

the camera, such that it can be approximated by a
nearly flat 2D surface. We refer to these scenarios
as 2D scenes.

The examples given in Section III belong to this
class of scenarios. For example, the baseball se-
quence (Figure 2) was captured by a panning cam-
era (i.e., pure rotation), while the other sequences
in that section (Figures 1, 4, and 5) were taken by
an airborne camera, hence the scene was sufficiently
distant from the camera and could be well approxi-
mated by a flat 2D surface.

(b) The next level of complexity arises when the 3D

deviations from the 2D planar surface approxima-
tion (when combined with the camera translation)
results in measurable parallax image motion relative
to the surface. In this case, the visual appearance of
the scene is still captured by a mosaic image as in
the previous case, while the geometric component of
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Fig. 7. Location Based Annotation.
Annotation of a selected scene point in the mosaic image leads to automatic annotation of all relevant frames (¢, j, and k) with the
selected annotation, and at the appropriate image coordinate, i.e., that which corresponds to the selected scene point in each of the

frames.

the representation also encodes the 3D parallax rela-
tive to the planar surface (see Section IV-B.2). The
parallax information is captured in the geometric
component of the representation and is taken into
account while combining the different frames into a
single mosaic [12]. We refer to this representation
as the plane+parallaz representation. The estima-
tion of the parallax motion is briefly described in
Section IV-B.2. An example of such a mosaic image
constructed from a real video sequence is shown in
[12]

(¢) The third level of complexity involves using multi-

ple layers of plane+parallaz representations to han-
dle scenes that may contain surfaces at different
depths. Each layer captures a collection of points in
the scene that when taken together can be approx-
imated by a planar surface with small fluctuations.
Points that are not on the planes are associated with
one of the layers based on their proximity in the 3D

scene to those planes. The visual appearance of each
layer is captured by a plane+parallaxr mosaic image
as in the case above. The same approach can also
be used to handle reflections and transparency.

2. The geometric transformations that relate the dif-
ferent video frames to the mosaic coordinate system
contain the information necessary to map the location
of each point between the panoramic mosaic image(s)
and the individual frames. Corresponding to the hier-
archy of the panoramic mosaic representations, there
exists a hierarchy of representations of the geomet-
ric transformation. Below we briefly summarize this
component of the representation. The details of their
estimation are described in Section IV-B.2.

(a) For the 2D parametric mosaic, the geometric trans-
formations consist of the 2D parametric trans-
formations that align each frame to the mosaic.
These transformations capture the effect of rota-
tions, translations, and zooms of the camera rela-
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Fig. 8. Annotation of the airport video clip.
(a) A stationary car is annotated once on the mosaic image (“car”). (b) A few representative frames from the video clip with the
annotations inherited from the mosaic image. The annotations are incorporated into the video frames automatically and instantly
through the geometric coordinate transformations that map each frame onto the mosaic image. Some video frames from the raw video
clip are displayed in Figure 1.

tive to a planar surface. They can be described by 6 (¢) In the multiple layer case, the geometric transfor-

or 8 parameters per frame. The estimation of these
transformations is reviewed in Section IV-B.1.

(b) The plane+parallax representation requires, in ad-

dition to the parametric transformation that aligns
a dominant plane in the scene, the information re-
quired to describe the 3D parallax of the points that
deviate from the plane. The residual parallax dis-
placements after 2D alignment, depend both on the
3D distance the scene points from the plane, as well
as the translational motion of the camera. These
can be represented in terms of a pointwise “rela-
tive structure” measure and the coordinates of the
camera epipoles with respect to the panoramic view.
The relative structure is once again a property of the
scene, which is common to all frames, and therefore
represented only once in the same coordinate system
as the mosaic. This is reviewed in Section IV-B.2.

mation information for each layer consists of the
following: (i) the parametric transformations associ-
ated with the dominant plane corresponding to that
layer, (i) a layer “ownership” map (typically a bi-
nary image) that indicates which points ”belong” to
that layer, and (iii) the 3D relative structure of the
points relative to the plane. The camera translation
is common to all the layers, and can be represented
in a number of different ways. Since the number
of layers is usually small, it is usually convenient to
repeat it for each layer.

3. The dynamic information, e.g., moving objects and
their trajectories, which are not captured by the static
panoramic view representations. Typically the moving
objects are small relative to the background and can
be represented as templates along with their motion



Label PI

Fig. 9. Annotation of the flying plane video clip.
(a) The annotations are defined once on the synopsis mosaic image. The moving objects are being annotated (“plane” and “car”).
(b) A few representative frames from the video clip with the annotations inherited from the mosaic image. The original video frames
are displayed in Figure 4. The annotations are incorporated into the video frames automatically and instantly through the geometric

coordinate transformations that map each frame onto the mosaic image.
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Fig. 10. Annotation of the parachuters video clip.
(a) The annotations are defined once on the synopsis mosaic image. Both static scene points (“building”) and dynamic scene points
(“plane”, “car”, “pl”, “p2”, “p3”) are being annotated. (b) A few representative frames from the video clip with the annotations
inherited from the mosaic image. The original video frames are displayed in Figure 5. The annotations are incorporated into the video
frames automatically and instantly through the geometric coordinate transformations that map each frame onto the mosaic image. The
parachuters become visible one-by-one, as their parachutes open: first the left parachuter (green), then the right one (blue), and last the

middle one (red).
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trajectories!.

The three levels of the representation described above
can capture the vast majority of situations effectively and
efficiently. However, there are situations for which our cur-
rent representation may not suffice, i.e., it will not produce
compact or visually meaningful representation. Such situa-
tions arise when a a camera is moving around an object (or
equivalently an object is rotating in front of the camera), or
when the scene contains significant 3D clutter, with many
objects at many different depths. These situations require
further study and treatment. An example of the type of
representations that may be useful in the future to handle
such scenarios is the ”manifold mosaic” method described
in [25], [27].

B. Estimating the Geometric Coordinate Transformations

To relate each frame to a common representation, we
need to determine the geometric coordinate transforma-
tions between the video frames. This is based on analyz-
ing and interpreting the image motion between the video
frames.

Existing methods for interpreting image motion can
broadly be classified into two groups: (i) 3D techniques [2],
[21], [34], [35], which try to model and interpret the camera-
induced motion in terms of the 3D components (namely,
3D camera motion components R and 7" and the 3D scene
structure Z(x,y)), and (ii) 2D techniques [14], [5], [6], [8],
[30], [24], [36], [3], which do not try to decompose the im-
age motion into its 3D components, but instead model the
camera induced motion as a single global 2D parametric
transformation (e.g., 2D affine, 2D quadratic, or 2D pro-
jective).

2D techniques have been proven to be very robust, even
in the presence of independently moving objects in the
scene [14]. As explained earlier (see Section IV-A), these
are, however, good models for the camera induced motion
only in a restricted set of scenarios (”2D scenes”).

3D techniques, on the other hand, can handle general
”3D scenes”, but their estimation is more difficult [33].
They require dense 3D information in the scene (i.e., lots
of depth variations), the frames need to be taken with a
large baseline (i.e., large camera translation), and are less
robust in presence of moving objects. More importantly, if
applied to the 2D scenarios, they fail, since these become
singular cases in the 3D analysis.

Our hierarchy of mosaic representations matches scenar-
ios that gradually increase in their complexity from 2D to
3D. The same approach of progressive complexity analysis
applies also to our estimation process. Our analysis of a
video clip always starts with 2D analysis. We first esti-
mate the dominant 2D geometric transformation between
frames (see Section IV-B.1). Such alignment completely
compensates for the camera induced motion in 2D scenes.
In 3D scenes, it locks and compensates for the image mo-

1In some cases, the objects may be large and each frame may only
view a portion of the object. In these cases, the object can be rep-
resented as a layer and a panoramic view may be created for these
objects as for the background.

tion of a dominant planar surface in the scene. The residual
parallax motion of the points that are not on the dominant
plane is then estimated via a 3D plane+parallax estimation
process (see Section IV-B.2). Thus our overall estimation
approach consists of two major steps: (i) the estimation of
2D parametric transformations, and (ii) the estimation of
residual planar parallax displacements. When the scene is
composed of several layers at a few distinct depths, multi-
ple 2D models with residual 3D parallax may be required.
The layered alignment is achieved via recursive 2D align-
ment [14].

B.1 The estimation of 2D parametric transformation

The instantaneous image motion of a general 3D scene
can be expressed as [22], [1]:

{u(m, y)} _ [—(T—X +Qy)+a 2 +yQ, —22Qy +ayQx

v(z,y) —(é—ﬂx)—xﬂz+y%—myﬂy+y29x

= (1)
where (u(z,y),v(z,y)) denotes the image velocity at image
location (z,y), T = (T'x,Ty,T7)! denotes the translational
motion of the camera, R = (Qx, 2y, Q)" denotes the cam-
era rotation, and Z denotes the depth of the scene point
corresponding to (z,y).

Although, strictly speaking, the above equations rep-
resent instantaneous image velocity fields, they are very
good approximations of interframe displacements even in
discretely time sampled images, provided the following re-
quirements concerning the camera motion and the 3D scene
are satisfied: (i) the field-of-view of the camera is small
(e.g., less than 30 degrees), (ii) the rotational motion be-
tween the frames is small (within a few degrees), and (iii)
the translational motion component along the optical axis
(Tz) is small relative to Z. Note that these conditions are
often satisfied in real video sequences sampled at 15 or 30
frames/sec.

The instantaneous image motion (Equation 1) can often
be approximated by a single 2D parametric transformation
of the form,

{ u(z,y)

(e, y)
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This approximation is valid under the following conditions
associated with the scene geometry and/or camera motion:
(i) A planar scene (Z(X,Y) = A+ B-X+C-Y): in
this case, the parameters (a,b,c,d, e, f, g, h) are functions
of the camera motion and the planar surface parameters
(A, B,C) (see [11]), (ii) Distant Scene: i.e., when the scene
is very distant from the camera (i.e., Z — 00), or when the
deviations from a planar surface are small relative to the
overall distance of the scene from the camera (AZ < Z),
(iii) Camera Rotation—i.e., when the camera undergoes a
pure rotational motion (i.e., T = 0) or when the camera
translation is negligible (|| < Z); the rotation will not
have any effect on the parameters b and f, and (iv) Cam-
era Zoom — when the camera zooms in or out, the image
undergoes a dilation. The resulting image motion field can
be still be modeled by Equation 2; the zoom will influence
the parameters b and f.



We refer to scenes that satisfy any combination of the
abovementioned conditions (and hence Equation (2) is ap-
plicable), as 2D scenes.

Under these conditions, we can use a previously devel-
oped method [4], [14] in order to compute the 2D para-
metric motion. This technique “locks” onto a “dominant”
parametric motion between an image pair, even in the pres-
ence of independently moving objects. It does not require
prior knowledge of their regions of support in the image
plane (see [14]). This computation provides only the 2D
motion parameters of the camera-induced motion, but no
explicit 3D shape or motion information. To make this pa-
per self-contained, we briefly outline the technique below.

We will refer to the two image frames (whose image mo-
tion is being estimated) by the names “inspection” image
and “reference” image, respectively. A Laplacian pyramid
is first constructed from each of the two input images and
then estimates the motion parameters in a coarse-fine man-
ner. Within each level the Sum of squared difference (SSD)
measure integrated over regions of interest (which is ini-
tially the entire image region) is used as a match measure.
This measure is minimized with respect to the unknown
2D image motion parameters.

The SSD error measure for estimating the image motion
within a region is:

E@) =Y (I(x,y,t) = I(z — u(w,y; @),y — v(z,y;d),t — 1))°

x

(3)
where I the (Laplacian pyramid) image intensity, & =
(a,b,c,d, e, f,g,h) denotes the parameters of the quadratic
transformation (Equation 2), (u(z,y; &), v(z,y; &)) denotes
the image velocity at the location (z,y) induced by the
quadratic transformation with parameters @. The sum is
computed over all the points within the region, often the
entire image.

The objective function E given in Equation (3) is min-
imized w.r.t. the unknown parameters (a,b,c,d,e, f,qg,h)
via the Gauss-Newton optimization technique. Let &; =
(a;, b, ci,d;, e, fi, gi, h;) denote the current estimate of the
quadratic parameters. After warping the inspection image
(towards the reference image) by applying the quadratic
transformation based on these parameters, an incremental
estimate S = (6a,6b,b6c,6d,be,6f,6g,6h) can be deter-
mined. After iterating a few times within a pyramid level,
the process continues at the next finer level. We refer to
this process as the iterative warp estimation process.

With the above technique, the reference and inspection
images are registered so that the desired image region is
aligned, and the quadratic transformation (2) is estimated.
The above estimation technique is a least-squares based
approach and hence possibly sensitive to outliers. However,
as reported in [5] this sensitivity is minimized by doing
the least-squares estimation over a pyramid. The pyramid
based approach locks on to the dominant image motion in
the scene.

A robust version of the above method [14] handles scenes
with multiple moving objects. It incorporates a gradual
refinement of the complexity of the motion model (ranging
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from pure translation at low resolution levels, to a 2D affine
model at intermediate levels, to the 2D quadratic model at
the highest resolution level). Outlier rejection is performed
before each refinement step within the multiscale analysis.
This robust analysis further enhances the locking property
of the abovementioned algorithm onto a single dominant
motion.

B.2 Residual 3D Parallax Motion Estimation

The key observation that enables us to extend the 2D
parametric registration approach to general 3D scenes is
the following: the plane registration process (using the
dominant 2D parametric transformation) removes all ef-
fects of camera rotation, zoom, and calibration, without
explicitly computing them [15], [18], [28], [29]. The residual
image motion after the plane registration is due only to the
translational motion of the camera and to the deviations of
the scene structure from the planar surface. Hence, the
residual motion is an epipolar flow field. This observation
has led to the so-called “plane+parallax” approach to 3D
scene analysis [17], [15], [18], [28], [29].

It can be shown (see [19], [15], [28], [29]) that the dis-
placement # of a pixel can be decomposed as follows:

i = il + i, (4)

where u, denotes the planar part of the 2D image motion
(which aligns a reference plane II in the scene). As noted
earlier, i, can be described by a quadratic transformation
as in Equation 2. [ denotes the residual planar parallaz
displacement?:

ﬁzv%@—%) ()

s

where p,, denotes the image point (in homogeneous co-
ordinates) in the first frame which results from warping
the corresponding point ;z;; in the second image, by the 2D
parametric transformation of the reference plane II. We
will refer to the first frame as the reference frame. Also,
d’ is the perpendicular distance from the second camera
center to the reference plane II, and € denotes the epipole
(or FOE), which is the point of intersection of the transla-
tional motion vector with the reference image plane. ~ is
a measure of the 3D shape of the point P. In particular,
v = %, where H is the perpendicular distance from the P
to the reference plane IT, and Z is the “range” (or “depth”)
of the point P with respect to the first camera. We refer
to v as the relative 3D structure of point 13, as it provides
3D structure relative to the plane II.

Equation 5 indicates that at each image point, the resid-
ual planar parallax displacement is a function of the 3D
relative structure v of the point, and the camera transla-
tion (as denoted by the epipole €). For points belonging
to the static background scene, the relative structure - is

2Whe£1 T. =0, the parallax motion (i has a slightly different form:
g = grt, where t = (Tx, Ty).
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constant over the entire sequence, hence common to all the
T,

frames, whereas the epipole €, and the scale factor 7= is
unique to each frame (but common to all the points in the
frame). Hence, the geometric transformation due to the
3D parallax motion for the entire sequence relative to the
dominant plane, can be represented by two components: (i)
a map 7y(z,y) of the relative structure, which is a “struc-
ture” mosaic (aligned with the panoramic mosaic image)
that represents the extended geometric information, and
(ii) for each frame, the epipole € and the scale factor 5—?.
The estimation of the camera translation (namely the
epipole) by analyzing the residual parallax motion is de-
scribed in [15], and the estimation of the 3D projective
structure v together with the epipole is described in [18].
The estimation technique is similar to the 2D parametric
estimation technique in that, (i) a multi-resolution coarse-
to-fine estimation strategy is used, (ii) at each pyramid
level, an SSD measure is used as a minimization criterion
(however in this case, the measure is a function of the un-
known «y(z,y) map and the epipole vector €, as opposed
to the parameter vector a) in Equation 3, and (iii) the
iterative warp-refine estimation strategy is used for obtain-
ing the solution. At each step of the iterative process, the
epipole vector €, and the projective structure map v(z,y)

are refined via the Gauss-Newton minimization technique.

C. Moving Object Detection and Tracking

The geometric coordinate transformations that relate the
frames to the mosaic image (and to each other) describe
the dominant detected motion. The dominant motion is
assumed to be that of the static portions of the scene (i.e.,
only due to camera motion). This is a strong assumption
which requires treatment in future work. However, this is
a valid assumption in a wide range of scenario scenarios,
when the camera is not zoomed in on a moving object. This
is especially true in airborne video or remote surveillance
type of applications.

After dominant-motion alignment, all static portions of
the scene are in full alignment, and the only remaining mis-
aligned portions of the image are those that move due to
independent motion. This is used for detecting potential
moving objects [14]. To verify the hypothesis and distin-
guish moving objects from noise, these image regions are
tracked over time. The tracking is performed at a sym-
bolic level, based on “blobs” that represent the misaligned
regions. No template correlation or flow estimation is used.
This has the benefit that it can effectively track even very
small moving objects (e.g., objects that may be a few pix-
els in size), textureless objects, and non-rigidly moving ob-
jects. The objects are required to be detected and tracked
over a minimum time period — typically a few (say 6) con-
secutive frames — before they are believed to be moving
objects.

Note also that estimating the trajectories of moving ob-
jects in the common mosaic coordinate system allows more
reliable detection and tracking of moving objects, even
when they are very small (such as the three parachuters
in Figure 5). This is because a ”temporal coherence” con-

straint can be used during moving object detection and
tracking after removal of the background motion. As-
suming that object sizes and velocities do not change too
rapidly, the detection of moving objects within each frame
can be guided by the trajectory of the objects in a few pre-
vious frames. This leads to better separation between small
moving objects and noise, as well as enables recovery from
losing an object for a few frames (e.g., due to occlusion or
bad detection). It also allows handling multiple moving ob-
jects with intersecting trajectories. The missing portion of
each trajectory is smoothly interpolated/extrapolated from
the neighboring frames.

V. CONCLUSION

This paper described a new approach for efficient access,
storage, and manipulation of video data. Our approach
is based on transforming the video data from a sequential
frame-based representation, in which the common scene in-
formation is distributed over many frames, into a single
common scene-based representation to which each frame
can be directly related. This representation then allows di-
rect and immediate access to the scene information, such
as static locations and dynamically moving objects. It also
eliminates the redundancy between the different views of
the scene contained in the frames, and results in a highly
efficient and compact representation of the video informa-
tion. Hence, the scene-based representation forms the basis
for direct and efficient access and manipulation of the video
data.

As part of the scene-based representation, panoramic
mosaic images are created, which provide a snapshot view
of the information available in the video data. Two types
of mosaics are described: a static mosaic, which captures
the appearance of the static background portions of the
scene, and a synopsis mosaic, which in addition visually
captures the trajectories of moving objects. These mosaics
allow the user to rapidly browse through a large collection
of video sequence, and can serve as visual table-of-contents
for a video database.

The paper also described two new types of indexing
methods, based on geometric and dynamic scene infor-
mation. While the major research effort in the area of
content-based video indexing is based on appearance infor-
mation (e.g., texture and color), the two methods described
in this paper have been overlooked. These methods are
complementary to the appearance based methods, and are
substantially simpler to achieve. The existing appearance-
based methods themselves can also be used more efficiently
within the scene-based representation, when applied di-
rectly to the mosaic image (i.e., to the appearance compo-
nent of our representation), rather than to the individual
video frames one-by-one.

The scene-based representation described in this paper is
intended to apply to all types of scenarios. However, there
are situations for which our current methods for construct-
ing panoramic views may not suffice, i.e., it will not produce
compact or visually meaningful representation. Such situ-
tations arise when a camera is moving around an object (or



equivalently an object is rotating in front of the camera), or
when the scene contains significant 3D clutter, with many
objects at many different depths. These situations require
further study and treatment.
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