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A conformal map, between planar domains, is a function that
infinitesimally preserves angles. The derivative of a conformal map
is everywhere a scalar times a rotation.

Riemann’s mapping theorem states that any open simply
connected domain of the Euclidean plane admits a bijective
conformal map to the open unit disk.



Riemann’s theorem and probability

In the 1940's Shizuo Kakutani observed that two dimensional
Brownian motion is conformal invariant, up to a time
reparametrization. Therefore the scaling limit of simple random
walks on the Euclidean grid is conformal invariant.
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in 2000 Stas Smirnov proved that the scaling limit of critical site
on the triangular lattice is conformal invariant.



Riemann surfaces uniformization

Poincaré (1907) proved that every simply connected Riemann
surface is conformally equivalent to one of the following three
surfaces: the open unit disk, the Euclidean plane, or the Riemann
sphere. In particular it admits a Riemannian metric of constant
curvature. This classifies Riemannian surfaces as elliptic (the
shpere), parabolic (Euclidean), and hyperbolic (negatively curved).
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Poincaré (1907) proved that every simply connected Riemann
surface is conformally equivalent to one of the following three
surfaces: the open unit disk, the Euclidean plane, or the Riemann
sphere. In particular it admits a Riemannian metric of constant
curvature. This classifies Riemannian surfaces as elliptic (the
shpere), parabolic (Euclidean), and hyperbolic (negatively curved).

The uniformization theorem is a generalization of the Riemann
mapping theorem from proper simply connected open subsets of
the plane to arbitrary simply connected Riemannian surfaces.
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Uniformization and random process

Conformal invariance of Brownian motion extends to the context
of the uniformization. A simply connected Riemann surface is
conformally equivalent to the hyperbolic plane iff the Brownian
motion is transient.

How does surface uniformiztion manifest itself in the context of
percolation?
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degrees of the vertices in G are bounded and the random walk on
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He and Schramm (1995): Let G be the 1-skeleton of a
triangulation of an open disk. If the random walk on G is recurrent,
then G is circled packed in the Euclidean plane. Conversely, if the
degrees of the vertices in G are bounded and the random walk on
G is transient, then G is circle packed in the unit disc.

With Oded Schramm (1995) we used an extended version of the
Brooks, smith, Stone and Tutte (1940) square tiling theorem, —a
related discrete uniformization theorem for graphs using squares.



The square tiling and the circle packing of the 7-regular
hyperbolic triangulation
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Discrete uniformization and random walks

Using discrete uniformization, with Oded (1995) we showed : A
bounded degree transient planar graph admits non constant
bounded harmonic functions.

Corollary: Z3 is not planar.

Carmesin and Georgakopoulos (2015) relaxed the condition of
bounded degree in several natural cases. E.g. for non amenable
planar graphs.



The space of bounded harmonic functions

Moreover the Poisson boundary of a planar graph coincides with
the boundary of its square tiling and with the boundary of its circle
packing.

Recent works by Georgakopoulos and by Angel, Barlow,
Gurel-Gurevich and Nachmias respectively.
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Uniformization and percolation?

Let G be the 1-skeleton of a bounded degree triangulation of an
open disk.

Conjecture

Assume G is transient, then 1/2-Bernoulli site percolation on G
admits an infinite cluster a.s.

Start by showing it for some fixed p > 1/2.



One reason to be skeptical about the is that for critical
percolation on the triangular lattice, the probability the cluster of
the origin reaches distance r decays polynomially in r, while there
are transient triangulations of volume growth r2log3 r.



Motivation for the . a short detour

Tile the unit square with (possibly infinity number) of squares of
varying sizes so that at most three squares meet at corners. Color
each square black or white with equal probability independently.



Motivation for the . a short detour

Tile the unit square with (possibly infinity number) of squares of
varying sizes so that at most three squares meet at corners. Color
each square black or white with equal probability independently.

Conjecture

Show that there is a universal ¢ > 0, so that the probability of a
black left right crossing is bigger than c. And as the size of the
largest square goes to 0, the crossing probability goes to 1/2.
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If true, the same should hold for a tiling, or a packing of a
triangulation, with a set of shapes that are of bounded Hausdorff
distance to circles.
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If true, the same should hold for a tiling, or a packing of a
triangulation, with a set of shapes that are of bounded Hausdorff

distance to circles.

At the moment we don't have a proof of the conjecture even when
the squares are colored black with probability 2/3.



Comments on the tiling conjecture

Behind the tiling conjecture is a rough version of conformal
invariance. That is, the crossing probability is balanced if the tiles
are of uniformly bounded distance to circles (rotation invariance),
and the squares can be of different sizes, (dilation invariance).



From the tiling to the conjecture

Let G the 1-skeleton of bounded degree transient triangulation of
an open disk. By discrete uniformization it admits a circle packing
with similar properties as the tiling in conjecture. And if the
conformal invariance heuristic holds, we will a.s. see macroscopic
crossings for 1/2-Bernoulli site percolation.



Non uniqueness at 1/2

Moreover by same reasoning we will see unboundely many
macroscopic clusters for 1/2-Bernoulli percolation, suggesting that
if G is a 1-skeleton of bounded degree transient a triangulation of
an open disk, then there are a.s. infinitely many infinite clusters for
1/2-Bernoulli site percolation?



Non uniqueness at 1/2

Moreover by same reasoning we will see unboundely many
macroscopic clusters for 1/2-Bernoulli percolation, suggesting that
if G is a 1-skeleton of bounded degree transient a triangulation of
an open disk, then there are a.s. infinitely many infinite clusters for
1/2-Bernoulli site percolation?

Since we believe that p. < 1/2 for such G's we conjecture that
pu < 1 and uniqueness monotonicity.



Further comments

We believe that p. > 1/2 for polynomial growth triangulations of
the open disk. Note that if all degrees are at least 6, polynomial
growth implies that vertices of higher degrees are polynomially
sparse, this suggests that their critical probability for percolation is
1/2, as of the triangular lattice. For nonamenable transitive or
sofic triangulations p. < 1/2, remove the transitivity assumption?
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What about a converse to 7 Does recurrence implies no
percolation at 1/27



iff?

What about a converse to 7 Does recurrence implies no
percolation at 1/27

Study similar questions in the context of magnetization.






