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Abstract We present a rich and highly dynamic technique
for analyzing, visualizing, and exploring the execution traces
of reactive systems. The two inputs are a designer’s inter-
object scenario-based behavioral model, visually described
using a UML2-compliant dialect of live sequence charts
(LSC), and an execution trace of the system. Our method
allows one to visualize, navigate through, and explore, the
activation and progress of the scenarios as they “come
to life” during execution. Thus, a concrete system’s run-
time is recorded and viewed through abstractions provided
by behavioral models used for its design, tying the visu-
alization and exploration of system execution traces to
model-driven engineering. We support both event-based and
real-time-based tracing, and use details-on-demand mecha-
nisms, multi-scaling grids, and gradient coloring methods.
Novel model exploration techniques include semantics-
based navigation, filtering, and trace comparison. The ideas
are implemented and tested in a prototype tool called the
Tracer.
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1 Introduction

The design and development of reactive systems [28], dis-
crete-event systems that maintain ongoing interaction with
their environment, involves complex and challenging tasks.
To list a few, these include the elicitation and formalization of
the system’s requirements, the translation of the requirements
into a specification, the creation of an executable artifact,
and the development of methods for checking that the result-
ing system indeed meets its requirements, specifically those
related to the behavior of the system over time. One way to
address these challenges is to use visual formalisms to model
and describe the system’s behavior. Among other things, such
visual models provide a means to describe the system at var-
ious levels of abstraction and from different viewpoints, to
communicate the system’s description between stakeholders,
to formally analyze the system and reason about its proper-
ties, and, in some cases, to directly generate an executable
artifact. Two complementary approaches to model the behav-
ior of reactive systems have been proposed—state-based
intra-object modeling [20] and scenario-based inter-object
modeling [15]—with the corresponding visual languages of
statecharts and live sequence charts, respectively.

In this paper—as a natural extension of the idea of using
visual formalisms for the modeling itself—we present a tech-
nique for the visualization and exploration of execution traces
of such models. Our approach is different from previous
approaches, most of which consider execution traces at the
code level, look for interaction patterns in the traces, or gen-
erate concrete sequence diagrams from recorded execution
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traces. In contrast, we take an inter-object scenario-based
behavioral model given by the designer as input, and visu-
alize the activation and progress of the charts therein as
they “come to life” during the execution of a reference pro-
gram of a concrete system. Thus, a concrete system’s run-
time is recorded and viewed through abstractions provided by
behavioral models used for its design. We illustrate the ideas
using a UML2-compliant dialect of live sequence charts
(LSC) [15,24].

Our technique belongs to the domain of model-based
dynamic analysis. In contrast to static analysis, which inves-
tigates a system by analyzing its code or model—with-
out executing it, dynamic analysis considers, in addition to
the system’s code and model, runtime input coming from
concrete executions of the system under development and
investigation. Model-based dynamic analysis includes tasks
related to the investigation of the relationships between a sys-
tem’s execution traces and its models, such as testing whether
a system run satisfies a property that a certain model spec-
ifies, measuring how various model features materialize in
a system run, and finding the differences between two or
more system runs, in the context of model-level debugging
or evolution.

Major challenges in model-based dynamic analysis are
the complexity and length of the models and execution traces.
Visualization in general, and our scenario-based trace version
in particular, attempt to address these challenges by creating
a scalable and visually appealing solution. That is, they assist
the engineer in comprehending and analyzing the trace, the
relationships between the model and the concrete application
at hand, and the relationships between the different parts of
the model itself. Our way of doing this is by adapting clas-
sical visualization paradigms and techniques to the specific
needs of model-based dynamic analysis tasks.

Specifically, our work links the static and dynamic fac-
ets of the system, and supports synchronic and diachronic
trace exploration, multiplicities (concurrently active scenario
instances), and event-based and real-time-based tracing.
It uses overviews, filters, details-on-demand mechanisms,
multi-scaling grids, and gradient coloring methods. Novel
exploration techniques include semantics-based trace nav-
igation, horizontal and vertical filtering, and various trace
comparison mechanisms. Together, these provide a novel,
rich, and highly dynamic interface for model-based dynamic
analysis.

In order to evaluate our ideas, we have implemented them
in a prototype tool we call the Tracer. We have tested the
Tracer on a number of case study programs, spanning vari-
ous application domains. Screenshots and screencasts of the
Tracer are available at the Tracer website [9]. Our experience
in using the Tracer is reviewed in Sect. 7, which also includes
a list of lessons learned and a critical evaluation of our work
and its limitations.

A necessary prerequisite for the analysis and visualiza-
tion of scenario-based execution traces is the effective gen-
eration of the traces. We build here on earlier work of ours,
namely the transformation of modal scenario-based specifi-
cations into aspects [45] and its implementation in the S2A
compiler [22], which (among other things), enables the auto-
matic generation of scenario-based traces. We briefly recall
this work in Sect. 2.2.3.

The visualization of execution traces, as a topic within
software visualization in general, has been suggested and
implemented before. Most previous execution trace visuali-
zation work, like ours, is based on a two-dimensional repre-
sentation. Time goes along one axis, and a certain hierarchy
that is based on the structure of the system’s implementa-
tion is depicted on the other axis (e.g., packages, classes,
objects). In contrast, our hierarchy comes from the scenario-
based specification model, which consists of use cases and
sequence diagrams. These reflect the requirements perspec-
tive or the specification perspective of the system. They do
not necessarily correspond to elements of the structure and
the implementation of the system under investigation. We
discuss and compare our ideas with earlier related work in
Sect. 8.

While we concentrate on inter-object modal scenario-
based specifications given in LSC, and take advantage of their
expressive power with regard to temporal liveness/safety and
polymorphic interpretation, our ideas are applicable also to
intra-object state-based specifications, as well as to model-
based traces [43] in general. We discuss the concept of
model-based traces in Sect. 2.2.1. The applicability of our
ideas to general model-based traces is discussed in Sect. 9.

1.1 Example application

The examples throughout the paper are based on a model of
the classic PacMan game, the Java implementation of which
can be found in [5]. The PacMan game has been used in
the past as an example in computer science research (see,
e.g., [12,18,37]).

PacMan’s game board consists of a maze, filled with dots,
power-ups, fruit, and four ghosts. A human player controls
PacMan, whose goal it is to collect as many points as possi-
ble by eating the objects in the maze. When a ghost collides
with PacMan, the latter loses a life. When no lives are left,
the game is over. However, if PacMan eats a power-up, it is
temporarily able to eat the ghosts, thus reversing roles. When
a ghost is eaten, it must go back to its cage at the center of
the maze before leaving again to chase PacMan. When all
dots are eaten, the game advances to the next—more diffi-
cult—level. Figure 1 shows a screenshot from the PacMan
game.

We consider the PacMan game to be a well-known,
intuitive, relatively small, and yet complex enough reactive
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Fig. 1 A screenshot from the PacMan game

system. Hence it is a good choice for the purpose of demon-
strating the model-based trace visualization techniques we
present in this paper.

1.2 Paper organization

The paper is organized as follows. In the next section we
provide background material on LSC and on scenario-based
traces. The next three sections consist of the main ideas of our
work: Sect. 3 presents the basics of scenario-based trace visu-
alization; Sect. 4 continues with more advanced visualization
features, including multiplicities, time-based versus event-
based views, metrics, and completions; and Sect. 5 describes
trace exploration features, covering navigation, filtering, and
comparisons. Sect. 6 presents possible usage examples in the
context of model-based dynamic analysis tasks. Section 7
describes the Tracer prototype implementation and provides
an evaluation of our work by reviewing experience in apply-
ing it to traces from a number of applications. Following
Sect. 8, which discusses related work, Sect. 9 discusses future
work and Sect. 10 concludes.

2 Preliminaries

This section provides background material on live sequence
charts and scenario-based traces.

2.1 Live sequence charts

Live sequence charts (LSC) [15] is a visual formalism
for inter-object scenario-based specifications. The language
extends the partial order semantics of classical message
sequence charts (MSC) [32] mainly by adding universal/exis-
tential interpretations and must/may (hot/cold) modalities. It

thus allows the specification of inter-object behaviors that
may happen, must happen, or should never happen.

A UML2-compliant variant of LSC is defined in [24], and
a translation of LSC into various temporal logics appears
in [38]. An operational semantics for LCS, termed play-out,
was defined and implemented in [26,27]. The language has
been the subject of research in the areas of scenario-based
programming, synthesis, verification, specification mining,
and testing (see, e.g., [23,36,40,42,45]).

We give here only a brief background on LSC and its
semantics, specifically covering the parts most relevant to
the present paper. More thorough definitions of the language
appear in [15,24,26].

An LSC consists of a set of lifelines, representing system
objects, and events, specifically method calls and conditions,
involving these objects. Lifelines are drawn using vertical
lines, and each is labeled with a name and a type; method
calls are drawn using horizontal arrows from locations on
caller to callee lifelines and each is labeled with the method
signature; conditions are drawn using hexagons and each is
labeled with a Boolean expression. Like classical MSC, an
LSC induces a partial order on its events; events covering
the same lifelines are fully ordered from top to bottom, but
events covering disjoint lifelines may be unordered.

Each event in an LSC, a method call or a condition, has a
mode, which may be either hot or cold. Hot events are drawn
using red lines; cold events are drawn using blue lines. The
mode of an event carries a semantic meaning, as described
below.

An important concept in the semantics of LSC is the cut,
which is a mapping from each lifeline to one of its locations,
representing the state of an active scenario during execu-
tion. A cut induces a set of enabled events—those immedi-
ately after it in the partial order defined by the scenario. All
events that appear in the chart but are not currently enabled
are violating events (the intuition being that their occurrence
violates the required behavior). However, events that do not
appear explicitly in the chart are not restricted to occur or
not to occur during a run, including in between the events
that do appear explicitly in the chart. A cut is hot if at least
one of its enabled events is hot and is cold otherwise. A hot
cut represents an unstable state—one which, according to
the specification, the system must eventually leave. A cold
cut represents a stable state, in which the system may stay
forever.

Whenever a scenario’s minimal event occurs in a run of
the system, a new instance of it is activated. An occurrence of
an enabled event, or a TRUE evaluation of an enabled condi-
tion, causes the cut to progress. An occurrence of a violating
event from the chart, or a FALSE evaluation of an enabled
condition, does not cause the chart to progress; instead, if
the cut is cold, the scenario instance closes gracefully (we
call this a cold violation); if the cut is hot, this is considered a
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Fig. 2 An example LSC from the PacMan model: PacmanEats-
Ghost. Note the black dashed line indicating a cut drawn at location
〈2, 4, 2, 0〉

violation of the specification (a hot violation); in a run adher-
ing to the specification, no hot violations should occur. When
the cut reaches maximal locations on all lifelines, the chart
instance closes with a completion.

Another important feature of the variant of LSC used in
our work is its semantics of symbolic instances [48], spe-
cifically with its universal polymorphic interpretation [44].
Thus, an LSC lifeline labeled with the name of a class (or
an interface) may represent any object whose class directly
or indirectly inheriting from this class (or implementing the
interface). This allows the definition of succinct and expres-
sive specifications in the context of object-oriented system
models.

Figure 2 shows an example LSC taken from our PacMan
application. Roughly, it specifies that ‘whenever the Gam-
eControll tells aghost it has collided with PacMan, and
the ghost’s is Eaten() method returns TRUE, the game
control must tell the player to eat the ghost, the player
must tell the ghost it has been eaten, and the ghost’s
state should be equal to EATEN. If and when the ghost
goes to jail, it must inform the GameModel when it enters
the jail, etc.’. Note how the difference between hot and cold
events and conditions is reflected in the semantics of this
chart. Also note the use of symbolic lifelines and the appli-
cation of the polymorphic interpretation: the chart refers to
any of the four ghosts participating in the game. In the figure,
a cut is drawn at location 〈2, 4, 2, 0〉 (note the tiny location
numbers on the lifelines), which comes immediately after
the hot evaluation of the ghost’s state. A single enabled event
is induced by this cut, namely the ghost’s self method call

goToJail(). This cut is cold, since it has no enabled hot
events.

Finally, a scenario-based specification model consists of
a number of LSCs, divided between one or more use cases. In
our settings, use cases do not carry semantic meaning. They
are used as means for the designer to organize the scenarios
into groups of related functionality.

2.2 Scenario-based traces

Scenario-based traces constitute a specialization of model-
based traces. We start by describing model-based traces and
their features in general and then continue with scenario-
based traces.

2.2.1 Model-based traces

Model-based traces, introduced in [43], are aimed at trac-
ing behavioral models of a system’s design during its exe-
cution, allowing one to combine model-driven engineering
with dynamic analysis. Specifically, model-based traces fol-
low the activation and progress of models as they come
to life at runtime, during an execution of a reference pro-
gram. Thus, a system’s runtime is recorded and viewed
through abstractions provided by behavioral models used for
its design.

An important feature of model-based traces is that they
provide enough information to reason about the executions
of the system and to reconstruct and replay an execution
(symbolically or concretely), exactly at the abstraction level
defined by its models. This level of model-based reflection
seems to be a necessary requisite for the kind of visibility
into a system’s runtime required for model-based dynamic
analysis.

The following features of model-based traces are note-
worthy. First, they can be generated and defined based on
partial models; the level of abstraction is defined by the
modeler. Second, the models used for tracing are not nec-
essarily reflected explicitly in the running program’s code.
Rather, they define a separate viewpoint, which, in the pro-
cess of model-based trace generation, is put against the con-
crete runtime of the program under investigation. Third, the
same concrete runtime trace may result in different model-
based traces, based on the models used for tracing; and vice
versa, different concrete runtime traces may result in iden-
tical model-based traces, if the concrete runs are equivalent
from the more abstract point of view of the model used for
tracing.

2.2.2 Scenario-based traces

Scenario-based traces constitute a specialization of model-
based traces. Given a scenario-based specification consisting
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Fig. 3 The four different entry types in a scenario-based trace

Fig. 4 Part of a textual representation of a scenario-based trace of PacMan

of a number of LSCs, a scenario-based trace includes
the activation and progress information of the scenarios,
relative to a given program run. A trace may be viewed as the
projection of the full execution data onto the set of methods
in the specification, plus, significantly, the activation, bind-
ing, and cut-state progress information of all the instances of
the charts (including concurrently active multiple copies of
the same chart).

Thus, our scenario-based traces may include the following
types of entries:

– Event occurrence, representing the occurrence of an
event. Events are timestamped and are numbered in order
of occurrence. Only the events that explicitly appear in
one of the scenarios in the model are recorded in the
trace (one may add identifiers of participating objects,
i.e., caller and callee, and parameter values).

– Binding, representing the binding of a lifeline in one of
the active scenario instances to an object.

– Cut change, representing a cut change in one of the active
scenario instances.

– Finalization, representing a successful completion or a
violation in an active scenario instance.

Figure 3 shows the syntax we use for the different entries.
Figure 4 shows a short snippet from a scenario-based trace
of PacMan. Note the different types of entries that appear in
the trace.

2.2.3 Generating scenario-based traces

A necessary prerequisite for the analysis and visualization of
scenario-based execution traces is their effective generation.
We build here on previous work of ours, described briefly
below.

S2A [22] (for Scenarios to Aspects) is a compiler that
translates live sequence charts, given in their UML2-compli-
ant variant using the modal profile [24], into AspectJ code [7,
35]. It thus provides full code generation of reactive behav-
ior from visual declarative scenario-based specifications. The
S2A compiler implements the transformation/compilation
scheme presented in [45], in which each sequence diagram
is translated into a scenario aspect, implemented in AspectJ.
The scenario aspect simulates an automaton whose states
correspond to the scenario cuts. Transitions are triggered by
AspectJ pointcuts, and corresponding advice is responsible
for advancing the automaton to the next cut state. More-
over, following the play-out algorithm of [27], we construct
another generated aspect, a coordinator, which collects cut-
state information from all active scenarios, uses a strategy to
decide on the next event to execute, and executes the selected
event using inter-type declarations.

Most important in the context of this paper, though, is that
in addition to scenario-based execution (which follows the
play-out algorithm of [27]), S2A provides a mechanism for
scenario-based monitoring and runtime verification. Indeed,
the scenario-based trace shown in Fig. 4 is taken from an
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actual execution log of a real Java program of the PacMan
game adapted from [5], (reverse) modeled using a set of live
sequence charts (drawn inside IBM Rational SA [3] as modal
sequence diagrams), and automatically instrumented by the
AspectJ code generated by S2A.

More on S2A and its use for scenario-based execution can
be found in [6,45].

3 Trace visualization: the basics

We now set out to present our approach to trace visualiza-
tion and exploration. Many elements of the description refer
to the actual displays in the Tracer. Thus, the principles and
concepts we present are intermixed with, and demonstrated
using, certain high-level aspects of the prototype tool.

3.1 The main view

Basically, we visualize a scenario-based program execution
trace using a hierarchical Gantt chart, where time goes from
left to right and the hierarchy is defined by the containment
relation of the use cases and the sequence diagrams in the
specification model. Thus, each leaf in the hierarchy repre-
sents a different sequence diagram; the horizontal rows rep-
resenting specific active instances of a diagram (which we
call scenario instances), and the bars therein showing the
durations of being in the relevant cut states.

The horizontal axis of the main view allows one to eas-
ily follow the progress of specific scenario instances over
time, to identify the events that caused progress, and to locate
completions and violations. The vertical axis provides a clear
view of the synchronic characteristic of the trace, by showing
exactly what goes on at any given point in time.

The main view uses color coding to visually distinguish
between stable (cold) and unstable (hot) cuts: cold cuts are
colored blue and hot cuts are colored red. A textual encod-
ing of the cut into a tuple of integers representing locations
on specific lifelines may be displayed on each bar. Further
details about a specific cut (e.g., the signature of its preced-
ing event) are displayed in a tooltip over the bar. Alternative
rendering functions are also available, e.g., displaying the
scenario instance’s serial number in the trace, displaying its
real-time duration, or avoiding text labels entirely to reduce
visual clutter.

Figure 6 shows a representative screenshot of the Tracer’s
main view. Note the hierarchy of use cases and sequence
diagrams on the left and the red and blue horizontal bars rep-
resenting hot and cold cut states. Also note the name of the
currently loaded model and trace on the application’s window
caption (top left corner) and the status line (bottom), among
other things showing the total number of events in the trace
and the range of events currently visible in the main view.

Fig. 5 The fourth instance of the GhostEatsPacman LSC, opened
as a result of double-clicking the corresponding bar in the trace shown
in Fig. 6

3.2 Zooming in: additional details on demand

Additional details are available to the user on demand.
First, when double-clicking a bar, a window opens, dis-

playing the corresponding scenario instance as a sequence
diagram, together with its dynamic cut state. Identifiers of
bound objects and values of parameters and conditions are
displayed when applicable in tooltips over the relevant ele-
ments in the diagram. In addition, one can travel back and
forth along the cuts of the specific opened instance (using the
keyboard or the arrows in the upper left part of the window).

Figure 5 shows an example scenario instance view, opened
as a result of double-clicking the corresponding bar in the
trace of Fig. 6. Note the cut, drawn as a dashed black line,
and the toolbar icons allowing to browse back and forth along
the different cuts.

Multiple windows displaying a dynamic view of several
different scenario instances can be opened simultaneously to
allow, e.g., for a more global synchronic (vertical) view of a
specific point in the execution, or for a diachronic (horizon-
tal) comparison between the executions of different instances
of the same scenario.

Second, the user may select an entire column—represent-
ing a global cut—and open a dialog window that presents
the selected global cut’s properties. The dialog shows the
list of local cut states of all the scenarios that were active at
the global cut represented by the selected column. Figure 7
shows an example of a global cut properties dialog, which
was opened for a user-selected column.
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Fig. 6 The Tracer main view and Overview. Note the hierarchy of use
cases and sequence diagrams on the left, and the red and blue horizontal
bars representing hot and cold cut states. When double-clicking the red

horizontal bar shown in the 69th location, a window opens, displaying
the corresponding scenario instance of the GhostEatsPacman LSC,
together with its dynamic cut state (see Fig. 5)

Fig. 7 An example of a global cut properties dialog, which was opened for a user-selected column. The selected column is visible in the main
view, behind the opened dialog, highlighted with a yellow background
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Fig. 8 A screenshot of the multiplicity view. Note the four concurrent active copies of the GhostFleeing scenario, displayed in the lower view
as a result of double-clicking the corresponding gray bar in the main view

3.3 Zooming out: the overview

The Overview supporting view, which appears in the bottom
part of the application window, displays the main execution
trace in a smaller pixel-per-event scale, based on a user
defined ratio. Thus, it shows a zoomed-out overview of the
execution trace that can assist in, e.g., identifying long scale
behaviors, repeated patterns, etc. As expected, the Overview
is synchronized with the main view over horizontal scrolls.
In addition, it has a moving window frame that shows the
borders of the time interval—the range of events—currently
visible in the main view. This becomes critical for user ori-
entation when visualizing real-world scale long traces that
feature thousands of events.

For example, see the bottom part of Fig. 6. Note how the
zoomed-out overview allows the user to identify the repeated
behavioral pattern between the scenarios in the GhostBe-
haviour use case: after the power up is eaten, the scenar-
ios for ghosts fleeing, starting and stopping, become active.
During the activation period of these scenarios, some ghosts
may be eaten by PacMan (see the bottom-most LSCGhost-
Eaten). This high-level repeated pattern, exposing relation-
ships between several scenarios, with variations, is difficult
to identify from the main view but is clearly visible in the
Overview.

4 Trace visualization: advanced features

This section presents some of the more advanced visualiza-
tion features of our work, including multiplicities, time-based
and event-normalized tracing, and metrics.

4.1 Handling multiplicities

Multiple instances of the same diagram, where lifelines bind
to different objects, may be simultaneously active during pro-
gram execution (see [48]). Consider the scenario PacMan-
EatsGhost from Fig. 2: PacMan may eat a second ghost
before the first one eaten has entered jail. In this case, two
instances of the PacManEatsGhost diagram, where the
lifeline ghost binds to different objects, will be active simul-
taneously.

As a means to handle multiple concurrent instances in the
trace’s visualization, we introduce a supporting view called
Multiplicity. On the main view, we hide the details of the
multiplicity from the user: we use a single gray bar to cover
the row representing the static scenario over the period where
more than one of its instances has been active. When the user
double-clicks the gray bar, the corresponding instances are
displayed in the supporting view. Thus, details about multiple
copies of active scenario instances are given on-demand. This
feature can be considered a special kind of semantic zoom-
to-details from classes to instances, where classes here are
‘classes of scenarios’ and instances are ‘active scenarios’.

Figure 8 shows a sample screenshot of the multiplicities
view. There are four concurrent active copies of the Ghost-
Fleeing diagram, which are displayed in the lower view
as a result of double-clicking the corresponding gray bar in
the main view.

As an alternative solution, we could have extended the
hierarchy of the specification model (use cases, sequence
diagrams) with leafs representing scenario instances. When
only one scenario is active, the row representing the static
diagram would suffice, while when multiple scenarios of the
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Fig. 9 A screenshot of the event-normalized view. Note the differ-
ent scales represented by the variable density of the vertical grid lines.
For example, consider the different scales between the 2,524th and
2,564th ms, and between the 2,584th and the 5,678th ms. In the former,
40 ms have passed between two consecutive events, but in the latter,

more than 3 s. In the real time-based view (not shown here), where
every millisecond gets a fixed width, these differences in event density
would result in a display that is very difficult to comprehend and browse
visually

same diagram are simultaneously active, they would appear
as sibling rows under the diagram’s row.

This may be considered to be simpler and perhaps more
user-friendly than our solution, since the user would not need
to look for details in other views: all the information about
the concurrently active scenarios would be available in the
main view. Our solution, however, is more scalable. When
the number of concurrently active scenarios grows, the view
described in the alternative solution above may become diffi-
cult to browse. By displaying the details about the active cop-
ies in a separate supporting view, our solution keeps the main
view more abstract, and thus easier to browse and understand.

4.2 Time-based and event-normalized tracing

The building blocks of reactive-system traces are discrete
events. Indeed, the Tracer’s basic view is event-based: the
trace progresses if and when an event occurs (and only then),
and all events are allocated the same horizontal distance on
the view. In other words, although the input trace includes
time-related data (note the timestamps on events in Figs. 3,
4), the time is abstracted away from the basic visualization
of the trace; only the order remains.

This kind of abstraction is not new and is typically
reflected in the language chosen to specify a system’s behav-
ior. For example, the basic variants of temporal logics, LTL
(linear temporal logic) and CTL (computation tree logic),
indeed do not consider the actual durations of happenings
but only their order [17]. Similarly, the variant of LSC used
in our work does not consider real-time. For example, the
LSC shown in Fig. 5 specifies that whenever a collision hap-

pens, eventually the ghost should eat PacMan, but it does
not specify how much time, at most or at least, may elapse
between the two events.

In many systems however, the real-time aspect of the trace
is important and is then reflected in the specification lan-
guage chosen, e.g., TPTL [11]; also, the full version of LSC
supported by the Play-Engine includes a powerful notion of
time (see [25,26]). For example, one may require that not
only every request be eventually granted but also that the
duration between the requesting and granting events will not
exceed a certain duration, specified in actual time units. To
support the real-time aspect of the trace, we offer, in addition
to the default event-based view, a time-based view, where
the horizontal axis accurately reflects the progress of time,
regardless of event occurrences.

This time-based view correctly reflects the trace’s progress
over time. However, in many cases, due to high variability
in event duration and density, which can often span several
orders of magnitude, the view may be formally accurate but
very difficult to comprehend and browse visually. Such high
variability, i.e., short periods with many events and lengthy
periods with very few events, is typical to many real-world
reactive systems that interact with their environment.

To alleviate this problem, we provide a novel hybrid view,
which we term event-normalized. This view combines the
event-based and time-based presentations by allocating a
fixed horizontal interval to each event (more precisely, to each
set of events having the same timestamp), while program-
ming the grid appearing in the background to draw vertical
lines at every fixed time unit. As a result, the displayed time-
based vertical lines are unevenly spaced: in periods where
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Fig. 10 The metrics view, without values on the left and with values and in a different scale on the right. Note the dark colored bar for the 149th
event in the duration metric (bottom right), indicating a relatively long period of more than 21 s, where no event relevant to the progress of the trace
has occurred

very few events occurred, the lines are dense, while in peri-
ods where many events occurred, they are sparse. See Fig. 9.

4.3 Metrics

The Metrics view of the Tracer, shown in Fig. 10, displays
various specification-wide synchronous (so called ‘vertical’)
statistics, such as the total number of concurrently active
scenarios (the scenario bandwidth), the total number of sce-
narios affected by the most recent event, etc. Some of these
metrics may be relevant to performance and resource allo-
cation analysis, and others may be relevant to better under-
standing of the relationships between the scenarios and the
system’s objects.

The metrics are displayed using color gradients. We
believe they are appropriate, since for most purposes it is the
metric’s relative qualitative values, e.g., high/medium/low,
that are of interest, not the precise values. The user may
switch between two display modes, with or without the actual
number values.

One of the more interesting metrics we have is duration.
As explained earlier, in the basic event-based tracing mode
grid lines are evenly spaced between events and the data about
the real durations is abstracted away. The duration metric
compensates for this abstraction. It displays the real dura-
tion of the periods between events, visually overlaying the
real-time dimension onto the fixed event-based view.

Figure 10 shows two possibilities of the metrics view:
without values on the left and with values and in a different
scale on the right. Note the dark colored bar for the 149th

event in the duration metric (bottom right). This clearly indi-
cates a long period with no events, more precisely, a period in
the execution with no event occurrences that are relevant to
the progress of any of the scenarios in the specification model.
This time-related information about the trace is otherwise
abstracted away in the event-based view.

4.4 Completion-related metrics

We use three notions to formalize and summarize the rela-
tionship between the scenario-based specification model and
the trace.

A scenario is considered completed in a trace, if it has at
least one instance that has reached its maximal cut state and
no instance with a hot violation (an instance of a scenario is
defined as a completion of this scenario if it reaches its max-
imal cut state). A scenario that has at least one hot violation
in the trace is considered violated, even if it also has comple-
tions. Vacuous scenarios are those that are neither completed
nor violated. Completion, violation, and vacuity information
are aggregated from the scenario level through the use case
level up to the entire specification model level.

Note that not all scenario instances are completed or vio-
lated. Some instances may be closed gracefully with a cold
violation before reaching their maximal cut state. Moreover,
since the trace is finite, at the end of the trace some instances
may be truncated without closing.

The completion properties of all the scenarios and use
cases in the specification model are summarized and visual-
ized using representative symbols, optionally displayed on
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Fig. 11 The main view with completion information. Note the × and
√

symbols representing violations and completions, respectively, at the end
of scenario instances bars. Also note the aggregated completion status information represented by similar symbols on the icons in the specification
hierarchy on the left

Fig. 12 Model and Trace Properties window, showing the properties
of a selected use case. The second column on the right shows the value
without the application of filters and the value with the application of
current filters (in parenthesis)

the specification model tree itself and at the end of every sce-
nario instance in the main view of the trace. An example of
these is shown in Fig. 11. In addition, completion-related
metrics for the entire trace (e.g., the number of vacuous
scenarios) are shown in the scenario, use case, and model
properties windows (see, e.g., Fig. 12). Additional comple-
tion-related features are briefly described in Sect. 5 below,
as part of the general discussion on trace exploration tech-
niques.

Finally, we define the completion coverage of a trace vis-
à-vis a model (or a use case) to be its ratio of completed sce-
narios; that is, the number of completed scenarios, divided by
the total number of scenarios in the model (or the use case).
One may view this ratio as providing a high-level yardstick by
which to measure the “quality” of an execution trace versus
a scenario-based specification model. The completion cov-

erage ratio is displayed in the use case and model properties
windows (see Fig. 12).

Note that the completion-related metrics are defined for
the trace as a whole, not for a single point in time. Thus, in
contrast to the metrics of Sect. 4.3, the completion-related
metrics are ‘horizontal’ rather than ‘vertical’.

Taken together, the completion-related metrics provide an
overview of the trace’s characteristics in relation to the spec-
ification model. They may be useful in the context of testing,
where LSCs are used to specify required testing scenarios.
They may also be useful in the context of scenario-based
programming, as they can help in identifying redundancies
in the specification or other gaps between expected and actual
executions.

5 Trace exploration

Our work goes beyond static visualization techniques and
presents various interactive trace exploration features, includ-
ing navigation, filtering, and comparisons.

5.1 Navigation and additional information

We consider three modes of navigation features: general,
semantics-based, and metric-based.

General navigation features include basic ‘go to’s to
next/previous views and beginning/end of trace. In addition,
the user may navigate to a specific location on the trace by
specifying its number.

Additional navigation features are semantics-based;
allowing the user to navigate the trace by specifying a seman-
tic criteria related to the trace, including, e.g., ‘go to next hot
violation’, ‘go to last completion’, ‘go to first instance’ etc.
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Fig. 13 Aggregated metric properties and search

These navigation options can be applied at each of the three
levels: a selected scenario level, a selected use case level, or
the entire model level. The selected level defines the scope
by which the semantic criteria is evaluated.

Finally, the user may ask for aggregated information about
the vertical metrics, including maximal, minimal, average,
median, and most common value for each metric, as com-
puted over the complete trace (see Fig. 13). This additional
information has corresponding metric-based navigation fea-
tures, such as ‘go to next maximum’, ‘go to last minimum’
etc. (available from a context menu), and a ‘search for’
first/previous/next/last occurrence feature for user-defined
values, per metric. For example, one can navigate to the
location with the maximal cut-state duration, or to the next
location on the trace where no scenario was active.

Together, these navigation features support a convenient
and focused trace browsing experience, assisting the user in
quickly finding locations of interest on the trace. The use
of the different navigation features is critical for effective
exploration of long and complex traces.

5.2 Filtering

Filtering is used to exclude elements from the view, allowing
the user to hide certain elements or parts of the trace in order
to better focus on ones that are relevant to a specific task. We
consider two general types of filters—horizontal and verti-
cal—each of which may be custom-defined by the user or
pre-defined and calculated based on semantic criteria.

5.2.1 Horizontal filtering

Horizontal filters deal with the exclusion of scenario
instances, scenarios, or entire use cases from the view.

Custom user-defined exclusion of scenarios or use cases
is done in a rather standard way, by selecting specific items
directly from the model.

Pre-defined semantics-based criteria for the filtering may
also be employed. They include, for example, the exclusion
of all scenarios (entire rows) with no hot violations, which
renders visible only the scenarios that have been violated
at least once during the recorded run, or hiding all com-
pleted instances, which leaves the trace with violating and
incomplete (vacuous) instances only. Filtering is applied to
the entire trace, automatically removing from the view all
use cases, scenarios or instances meeting the filter’s criteria.

Figure 14 shows a sample screenshot of a PacMan trace
after the application of several filters.

5.2.2 Vertical filtering

Vertical filters deal with the exclusion of ranges of trace loca-
tions from the view.

Custom user-defined vertical filters are set by selecting
ranges of columns directly on the trace or by choosing loca-
tion range numbers in a dedicated dialog window.

Fig. 14 Horizontal and vertical filters. Note that the first use case,
HighLevelGameEvents, and two of the scenarios in the last use
case, GhostBehaviour, have been filtered out from the view. Com-

pare with the complete specification model shown in Fig. 6. Also note
the application of vertical filters, between locations 105 and 117 and
between locations 155 and 183

123



On tracing reactive systems

Pre-defined semantics-based criteria for vertical filtering
may also be employed. Such filters include, for example,
the exclusion of all ranges where no instance of a selected
scenario was active, or the exclusion of all ranges where no
multiple instances of a selected scenario were simultaneously
active.

Excluded ranges are removed from the view and are
replaced by dashed vertical lines. A dashed vertical line is
headed by a label showing the location numbers of the hid-
den range. An example trace view with two hidden ranges is
shown in Fig. 14.

5.2.3 Visual versus logical filter application

The filters described above are primarily visual; that is, they
are used to exclude elements or parts of the trace from the
view. Yet, one may consider not only the visual impact of
these filters but also their possible logical impact. In other
words, the filters may be employed also as logical abstrac-
tion mechanisms over the model and trace. We consider this
to be in important facet of our work.

To support the application of filters as logical abstraction
mechanisms, all properties of the model, trace, global cut
states, and metrics, may be calculated with and without the
applied filters. For example, Fig. 12 shows the properties of
a selected use case. The second column on the right shows
the value without the application of filters and the value with
the application of current filters (in parenthesis).

The application of filters as a logical abstraction mecha-
nism allows the user to find answers to ‘what-if’ questions
over the model and trace. Examples include the following:
If I exclude this scenario or that use case, will the trace still
include violations? If I ignore this range of the trace, would
the trace still include concurrently active scenarios?

5.3 Comparisons

It seems clear that a lot can be learned about a system
under investigation by comparing different traces, especially
model-based ones. Obviously, we are not interested in a
Boolean comparison, which tells only whether two traces are
equal or not, but in much richer kinds of comparisons that
cover various similarities and differences between traces and
their elements.

The need for trace comparison capabilities may arise in
practice in various contexts. For example, for evolution and
version control, one may be interested in comparing various
traces related to different yet very similar models—different
versions of the same model. On the other hand, the same
program may yield very different execution traces based on
its initial configuration and environment inputs or behavior
over time. Thus the need also arises to compare different
execution traces of the same model.

Our work is deliberately limited to the abstraction level
defined by the specification model used for tracing, and the
kinds of comparisons we are discussing here are no excep-
tion; they are carried out with respect to the same abstraction.
Thus, as mentioned in Sect. 2.2.1, different concrete runtime
traces may result in identical model-based traces—in our
case, scenario-based traces—if the concrete runs are equiv-
alent from the more abstract point of view of the model used
for trace generation. Our comparison features indeed reveal
this important property.

When a model and a trace are opened, the Tracer allows
the opening of a second (reference) trace, and compares it
with the main (master) trace. Below we describe a number
of features related to various aspects of trace comparison.

5.3.1 Comparing global cut states

A comparison of selected global cut states, one from the mas-
ter trace and one from the reference trace, can reveal vari-
ous similarities and differences. For example, showing which
scenarios were active in one but not the other, showing which
scenarios were active in both, and showing the synchronous
metrics of the two selected cuts side by side to allow for
visual comparison. Figure 15 shows an example screenshot
from the dialog window responsible for the global cut-state
comparison.

5.3.2 Searching for equivalent global cuts

One way to relate two traces is to look for locations where
they are equivalent. Equivalence is defined modulo the
abstraction induced by the scenario-based model; that is, by
comparing active scenario local cut states.

To this end, the user may select a column—representing
a global cut—in the master trace, and ask the Tracer to find
all equivalent global cut states in the reference trace. These
may then be used as starting points or anchors for further
investigation of the similarities and differences between the
traces (see Fig. 16).

Note that global cuts equivalence can be calculated with
or without the application of filters (see Sect. 5.2.3). This
may be of interest, since two global cuts may be concretely
different but equivalent under a stronger abstraction defined
by certain filters (horizontal filters in this case).

5.3.3 Searching forward/backward

As a kind of a generalization of searching for equivalent cuts,
we can start with two equivalent selected global cut columns
used as anchors. The Tracer then can look for maximal for-
ward or backward ranges of trace locations where the equiv-
alence still holds. That is, given equivalent locations on the
two traces, the Tracer finds the closest differing location.
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Fig. 15 Compare Global Cuts window, showing a comparison between
two selected global cuts. The arrows on the right allow the user to browse
backward and forward for global cuts on the master and reference traces

The search results are presented to the user by highlight-
ing the equivalent ranges found in the two traces. Like the
other comparison features, searching forward and backward
differences can be performed with or without the application
of filters.

5.3.4 Comparing trace metrics and completion coverage

The master and reference traces may also be compared with
respect to global horizontal properties. These include the
comparison between, e.g., the total number of instances
throughout the trace, the minimal, maximal and average cut-
state duration, and the traces’ completion coverage. Again,
the user can choose to employ the comparison with or without
the application of filters.

6 Usage examples

To demonstrate the utility of our approach in supporting
model-based dynamic analysis tasks, we briefly discuss two
examples of specific usages: scenario-based testing and pro-
gram evolution review. Similar usages of the Tracer’s features
apply to program comprehension and requirements traceabil-
ity tasks.

6.1 Scenario-based testing

In scenario-based testing, the engineer defines one or more
scenarios and captures them as LSCs, each of which specifies
an expected or a forbidden behavior of the system under test.
Using the S2A compiler, the scenarios are transformed into
aspect code, which, at runtime, drives and monitors the pro-
gress of the specified testing scenarios, producing a scenario-
based trace, which is given to the Tracer as input together with
the set of scenarios.

In the Tracer’s main view, the engineer follows the instan-
tiations of the different testing scenarios during the run, and
identifies completions and violations (see, Sect. 4.4; Fig. 11).
When a violation is identified—representing a testing sce-
nario that has failed to complete as expected—the engineer
may zoom-in for more details by double-clicking the corre-
sponding bar and opening the violated scenario instance (see
Sect. 3.2; Fig. 5).

If the trace is long, as is usually the case, the Overview
supporting view (see Sect. 3.3; Fig. 6) assists the engineer’s
orientation. Moreover, the semantics-based navigation fea-
tures, such as ‘go to next violation’ (see Sect. 5.1), are used
to quickly navigate between locations of interest.

The filters described in Sect. 5.2, such as the horizontal fil-
ter that excludes all scenarios with no hot violations, are used
to delete irrelevant information from the view. These can help
the engineer focus on the parts relevant to the investigation of
the test results at hand; that is, the violated testing scenarios.

Finally, aggregated summary data about the test results
(e.g., the total number of violations), are available in the
Model and Trace Properties window (see Fig. 12).

6.2 Program evolution review

The goal of a program evolution review is to identify the
differences between two versions of a program under inves-
tigation. In the context of our work, we are not interested in
the syntactic differences between the two versions of the pro-
gram at the code level but in the different behaviors that the
two versions admit during their execution. Thus, we would
like to compare an execution of one version of a program
with an execution of another version of the same program,
and want the results of the comparison to be presented at the
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Fig. 16 Comparing traces of the same model. Note the highlighted
columns at locations 99 and 51 of the master (left) and reference (right)
traces, respectively, indicating that the Tracer has found them equiv-
alent. Note also that the two traces seem to remain equivalent until
15 locations later, at location 66 of the reference trace (an instance
of PacManEatsFruit starts only in the reference trace). This can

be verified by using the highlighted cuts as anchors and choosing the
Tracer’s ‘search forward difference’ feature. Also, it may be the case
that if the PacManEatsFruit scenario is filtered out, the next global
cut states would become equivalent. Again, this can be checked by the
Tracer

level of abstraction of the models used in the design of these
programs. The syntactic difference at the code level may be
known and perhaps simple, but we are interested in the effect
this difference may have on the program’s behavior.

The engineer defines a model consisting of a set of scenar-
ios specifying different behavioral properties of the program
under investigation. The model is used to instrument the code
of the two program versions at hand, so that their execution
creates two scenario-based traces (if the program interacts
with the environment, it may be necessary to simulate the
same environment behavior during the two runs). The two
traces are loaded into the Tracer as master and reference
traces (see Sect. 5.3).

To start off, the engineer may ask the Tracer to find the
first difference between the two traces, starting from their
initial global cut state. If no difference is found, it means
the two traces are equivalent from the point of view of the
model used for tracing. Otherwise, if a difference is found,
the engineer can identify the differencing scenario instance
or instances, zoom-in for further investigation or continue
looking for differences along the two traces.

In some cases, several differences between the two traces
are known a-priori, and are thus of not much interest (except
to confirm that indeed a required change was made). Using
the various filters presented in Sect. 5.2, the engineer can
ask the Tracer to abstract away and ignore these differencing
scenarios or fragments of the trace in the comparison. Then,
additional differences that may be unexpected or accidental
could be revealed, hinting at some program behaviors the
engineer was not aware of.

7 Evaluation

7.1 The Tracer prototype implementation

In order to evaluate and test our ideas we have implemented
a prototype tool called the Tracer. All screenshots shown in
this paper are taken from the Tracer. Additional documen-
tation, including screenshots and screencasts of the Tracer
demonstrating its various features, are available on our Tracer
website [9].

The Tracer reads UML2 models containing sequence dia-
grams extended with the modal profile of [24]. Its input sce-
nario-based traces are given in a simple text format, similar to
the one shown in Fig. 4. As mentioned earlier, we have gen-
erated such traces from various applications using the S2A
compiler and the Play-Engine.

The Tracer is written in Java, using SWT. It uses the
Eclipse UML2 project API [2] to read the UML models. The
Gantt charts are based on the jaret timebars component of [8].

We have made an effort to render the Tracer’s prototype
implementation scalable, allowing it to handle long traces of
rather complex models. As the examples below show, the
current implementation can handle traces of 10K events,
spanning 50 different sequence diagrams with a total of
approximately 500 scenario instances, on a regular personal
computer, while maintaining very reasonable user experi-
ence. We acknowledge, however, that industrial usage will
involve longer and more complex traces. These will require
special technical solutions for optimized, scalable perfor-
mance, which are beyond the scope of the present work.
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7.2 Experience

We describe some of our experience in experimenting with
the Tracer on a number of applications. We deliberately
choose to present here three cases from different application
domains and of different technologies: a desktop application
written in Java and executed using code generated by the
S2A compiler [22]; a Nokia smartphone application writ-
ten in C++, executing scenario-based test aspects generated
by S2A; and a biological system simulated by the Play-
Engine [26]. Selected screenshots from the different expe-
riences described in short below are available in [9].

7.2.1 Case study 1: an RSS News Ticker

We have used the Tracer to visualize some execution traces
of an RSS News Ticker application, previously developed
as an example case study for scenario-based execution using
the S2A compiler [22]. The News Ticker is a small desktop
application; it downloads RSS news from user defined web-
sites and presents them to the user as continuously scrolling
text. Additional features include switching between horizon-
tal and vertical presentation modes, switching between sev-
eral predefined scrolling speeds, changing the URL for the
RSS feeds, and, when a headline is clicked, opening the cor-
responding news item in the browser window. The model and
source code for the News Ticker are available from the S2A
website [6].

The model for the News Ticker application consists of
seven scenarios divided into two use cases. The typical traces
we used were 8K–10K events long. These rather long traces
are due mainly to repeated time tick and text scrolling events.
Other events, such as the ones involved in changing the scroll-
ing speed, are relatively rare. By applying the pre-defined
vertical filter option ‘hide inactive ranges’ to the use case
in which these more rare scenarios are grouped, we were
able to automatically exclude most of the trace from the
view, leaving a filtered trace showing only the very few and
relatively short ranges where the scenarios of interest were
active. When this filter was not applied, given the length of
the trace, the Overview supporting view and the semantics-
based navigation options such as ‘go to next instance’ were
helpful in browsing the lengthy trace and looking for loca-
tions of interest.

7.2.2 Case study 2: testing a Nokia smartphone

In [47], a modified version of the S2A compiler, which gen-
erates AspectC++ code rather than AspectJ code, was used to
execute and monitor scenario-based test cases of a C++ appli-
cation running on Symbian OS inside a Nokia smartphone
(specifically, Nokia model N96). In this work, the Tracer was

used to visualize and explore the progress and results of the
different test execution traces.

Most relevant features in this context included the comple-
tion information displayed on the main view, which allowed
us to identify completed, violated, and vacuous test scenarios,
and the Model and Trace Properties window, showing aggre-
gated completion-related information for the entire trace.
Thus, we could easily answer questions such as which test
scenarios have been violated during a run (if any), how many
times has each test scenario been completed, etc.

The semantics-based filters, specifically the ones related
to completion metrics, allowed us to hide the completed sce-
narios from the view and focus on the violated ones—those
representing tests that have failed and hence require further
investigation.

7.2.3 Case study 3: simulation of a biological system

Finally, we have used the Tracer to visualize and explore
different execution traces of the biological system model
described in [34], which deals with the process of vulval
precursor cell fate determination in the development of the
C. elegans nematode worm. The model was implemented in
the Play-Engine tool. It consists of more than 400 scenarios,
divided into 22 use cases. Typical traces are 300–400 events
long, and involve 40–80 different scenarios from the model.

Due to the large number of scenarios in the C. elegans
model, using the various horizontal filters proved crucial.
Moreover, typical traces included several periods with large
numbers of multiple active instances of the same scenario
(up to 30 such). The Multiplicities supporting view helped
us in exploring the details of these multiple copies.

We examined a number of execution traces of this model.
Differences between the traces were due to the probabilistic
choices inside the LSCs in the model, as played-out by the
Play-Engine, and due to our use of different initial config-
urations, simulating experiments with the worm’s wild-type
and the various mutations and cell ablations that appear in the
C. elegans literature. Using the trace comparison features, we
were able to find where such different ‘experiments’ show
different behavior and where their behaviors are equivalent.

7.3 Limitations and challenges

Some limitations of our approach in general and its imple-
mentation in the Tracer in particular are important to note.

First, following the scenario-based approach to modeling,
we focus on inter-object reactive behavior, that is, on the
temporal properties of the interactions between the objects
in the system as they materialize at runtime in the method
calls between them. Except for the use of conditions (and
guards in interaction fragments, and methods’ arguments)
within scenarios, we do not cover data, in particular, data
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structures and their creation, and manipulation at runtime.
Thus, our approach is not suitable for visualizing the exe-
cution of data-intensive computations, e.g., sorting, graph
traversals, numerical algorithms, etc. If tracing and visuali-
zation mechanisms for data and data structures manipulation
are developed, perhaps they can be integrated with our work
to create a combined solution.

Second, as with any dynamic analysis approach, the value
of our technique depends first and foremost on the informa-
tion embedded in the traces provided to the Tracer as input.
The Tracer is limited to analyzing the concrete traces it gets
as input; it cannot be used to check invariants or to extract
properties that apply to all possible executions. For example,
if a scenario is not violated in any of the traces analyzed by the
Tracer, one cannot infer that it will never be violated in any
trace of the system under investigation. Furthermore, impor-
tant issues, such as the consistency and completeness of the
scenario-based specification model, are not covered at all.

Third, the dependency of our work on input traces lim-
its its applicability to systems for which adequate tracing
mechanisms are available and where the tracing mechanism
itself does not significantly affect the resulting execution.
Our work uses S2A for automatic instrumentation of trac-
ing code from input models, using generated aspects. The
general availability, efficiency, and scalability of the trace
generation mechanisms, although important, are outside the
scope of our work.

Finally, here are some of the challenges we identified dur-
ing our experiments with the Tracer. Some of them relate to
the future work directions we suggest in Sect. 9.

One feature we found missing is a link back to the execut-
ing code. That is, given a location in the trace, we would like
the tool to open up the original program at the exact point
in the code corresponding to it. We note that this requires
more information to be saved in the trace, but it is indeed
possible. A related feature that is missing is on-line tracing,
possibly when running the reference program in debug mode.
In this case, trace visualization may be done in real-time and
the link back to the code may take advantage of debugging
information, such as the program’s stack trace. In the case
of traces generated from an interpreter-style simulation tool,
such as the Play-Engine [26], the link back to the model
may reproduce the configuration corresponding to the user-
selected global cut, so that execution can actually continue
from that point on. We leave these for future research work.

Another feature we found missing is the ability to analyze
and aggregate statistics from multiple traces. We typically
have many traces of the same model; summarizing their sim-
ilarities and differences in a concise way could have been
helpful.

In terms of exposing the information embedded in the
traces, we found the objects and events perspective somewhat
lacking. That is, the Tracer provides good tools for naviga-

tion and exploration, from the scenarios’ point of view. How-
ever, some basic, more traditional information is not easily
accessible. For example, we would like to have the event and
object information more readily available. This may include
additional navigation and filtering features, such as ‘go to
next occurrence of…’ for a user-selected event, or ‘hide all
instances involving object…’ for a user-selected object.

Some other usability features seem natural to add, such as
a bookmarking feature (so that the user can mark locations of
interest on the traces with notes), or adding views persistence
(the ability to save and reload specific views). We leave these
too for future implementation.

In Sect. 7.2 we described our experience with the Tracer, in
different application domains and for different purposes. We
acknowledge, however, that further experiments, in particu-
lar, with software engineers, are required in order to better
assess the value of our work to specific engineering tasks.
Such experiments would certainly provide us with a more
realistic evaluation of the advantages and limitations of our
work as it may be applied in practice.

8 Related work

We now discuss related work in the areas of execution trace
visualization, scenario-based programming, and time-series
data visualization.

8.1 Execution trace visualization

Software visualization [16,60], is a research field concerned
with the visual representation of information about soft-
ware systems. It is aimed at supporting software engineering
tasks, such as development, comprehension, and analysis,
mainly by providing visual representations of the structure,
the behavior, and the history of a software system’s code.

The visualization of execution traces, as a topic within
software visualization in general, has already been suggested
and implemented (for a survey, see [19]). However, most
trace extraction and visualization efforts to date (e.g., [14,
31,33,49,53,56,57]) consider the trace at the code level. In
contrast, our traces are abstracted to the model level; we only
trace events that are relevant to the model defined by the user,
and our traces embed information about the progress of the
model, its states etc., which do not always exist explicitly in
the code of the reference program. In this way, our approach
combines tracing with model-driven design.

Moreover, instead of looking for interaction patterns in
the extracted traces (as in, e.g., [33]), or visualizing parts
of the recorded trace using a sequence diagram (as in, e.g.,
VET [49], Eclipse TPTP [1], or IBM Rhapsody [4]), we take
the scenario-based specification given by the user as input,
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and visualize the activation, progress, and interaction of the
specified inter-object scenarios during the execution of the
reference program. Finally, we consider not only the partial-
order semantics of sequence diagrams in general, but signifi-
cantly also the modal, hot/cold semantics of the live sequence
charts language (in its UML2-compliant variant) and its sym-
bolic polymorphic interpretation. These allow for stronger
expressive power with regard to temporal, functional, and
structural properties.

Some previous work in the area of execution trace visu-
alization considers the data at the level of the code’s actual
syntax (see, e.g., [52]), referencing source code statements
and line numbers. In contrast, our work abstracts away from
the source code; we do not differentiate between two calls
to the same method coming from different locations in the
source code of the same class. Moreover, due to the poly-
morphic interpretation, we do not differentiate even between
two calls to the same method coming from or implemented
in different classes, as long as the method appears in the
specification model on symbolic lifelines whose (ad hoc)
polymorphic interpretation covers the same concrete objects
involved in the interaction.

Regardless of the level of abstraction used, most previ-
ous execution trace visualization work, like ours, is based
on a two-dimensional representation. Time goes along one
axis, and a certain hierarchy that is based on the structure
of the system’s implementation is depicted on the other axis
(e.g., packages, classes, objects). In contrast, our hierarchy
comes from the scenario-based specification model, which
consists of use cases and sequence diagrams. These reflect
the requirements perspective or the specification perspective
of the system. They not necessarily correspond to elements of
the structure and implementation of the system under inves-
tigation. We consider this to be a fundamental differentiating
aspect of our work.

Other work uses a graph representation, where nodes rep-
resent participating objects and edges represent the calls
between them (see, e.g., [39]). Some recent work com-
bines extended variations of the two representations, the two-
dimensional representation and the graph representation (see,
e.g., [14]). It may be interesting to examine the visualization
of scenario-based traces using these techniques.

Recent work by Reiss [55] proposes visualizing program
execution by following the states of a user-defined autom-
aton on the traces. This is very interesting work that has
some similarities with ours. Indeed, it seems that our work
and [55] share the intuition that using a user-defined behav-
ioral model as the basis for tracing has important advantages:
trace generation focuses only on events that are relevant to
the model and thus results in a reduced runtime overhead,
and the generated traces are presented at a level of abstrac-
tion that is meaningful and useful for the engineer analyzing
the program.

That said, some key differences between our work and the
work described in [55] should be noted. First, we use a visual
language to specify the user-defined behavioral models. Sec-
ond, the models we use for tracing have rich semantics (e.g.,
stable/unstable cold/hot cut states, conditions, polymorphic
interpretation). Third, our work contains many additional
features, e.g., the details-on-demand link from the bars to
the diagram displaying the cut, the event/time-based viewing
combinations, the multiplicities and metrics views, the hor-
izontal and vertical filters, and the various comparison fea-
tures. Fourth, [55] emphasizes the performance of the trace
generation technology, which is important when considering
large and distributed systems. Since the focus of our work is
on trace visualization and exploration, we consider neither
trace generation performance issues nor tracing technologies
for distributed systems. Our tracing technology was briefly
presented in Sect. 2.2.3, with the relevant references, and its
details are outside the scope of the present paper.

8.2 Scenario-based program visualization

The Play-Engine [26] is an interpreter-style simulation
engine built in our group for LSCs, based on the play-in/play-
out approach [27]. The Play-Engine and the Tracer are very
different: while the Play-Engine focuses on execution of
LSCs, that is, by implementing the play-out mechanism,
the Tracer does not execute a scenario-based specification.
The input for the Tracer includes a recording of a “scenario-
based” run (generated by a program created using S2A or by
the Play-Engine or by some other mechanism) and the Tracer
focuses on analyzing and visualizing that run.

As the simulation progresses, the Play-Engine follows and
displays all the active LSCs and their cuts. User experience
shows, however, that in terms of execution comprehension,
the result is often information overload: when many LSC
windows open and close rapidly during execution, the effec-
tiveness of the visualization decreases. The approach pre-
sented in this paper and implemented in the Tracer seems to
constitute a much-needed aid for such comprehension. Thus,
for example, we allow the user to choose a preferred level
of detail and to zoom from the black-box Gantt view to the
detailed view where the active scenarios complete sequence
diagrams and their cut-state information are visually shown
(and these cuts can be viewed diachronically in the context of
the execution’s past and future). In addition, the Play-Engine
is an LSC-specific closed environment. In contrast, the Tracer
can be used for the scenario-based analysis and visualization
of third-party programs, written, e.g., in Java, provided that
an appropriate scenario-based tracing mechanism (such as
the one implemented by S2A) is available.

SIV [29] (for scenario inter-dependency visualization) is
a tool aimed at visualizing inter-dependencies between sce-
narios in a scenario-based specification. Based on input from
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the Play-Engine, SIV displays a graph, where each node rep-
resents a scenario and edges between nodes represent var-
ious types of dependencies, such as possible causality and
synchronization relations. The tool supports a number of fil-
tering and aggregation operations on the graph. It thus allows
the presentation and exploration of aspects of the specifica-
tion that are otherwise hidden or difficult to identify. While it
has some dynamic aspects, SIV focuses on a static (or a snap-
shot-based) view of a scenario-based specification model. In
contrast, the Tracer focuses on specific ‘runs’ of the model
and their progress over time. Thus, the two tools may be
viewed as complementary.

8.3 Time-series data visualization

Finally, the analysis and visualization of program execution
traces is related to the exploration and visualization of time-
series data in general. Time-series visualization has been
the subject of much previous work in the context of infor-
mation visualization and data mining, e.g., of financial or
health care related data; see, e.g., [10,41,61]. One recent
approach is [30], where Hochheiser and Shneiderman pres-
ent Timeboxes; rectangular widgets used in direct-manipula-
tion graphical user interfaces to specify query constraints on
time-series data sets. It is an interesting direction for future
work to combine TimeBoxes with the Tracer, making it possi-
ble to apply time-related direct-manipulation graphical user
interfaces techniques to our model-based execution traces
(both event-based and time-based). This will yield dynamic
querying capabilities and greater visual insight into the exe-
cution of complex reactive systems.

9 Future work

Some of the ideas for future work we now discuss follow the
challenges described earlier, in Sect. 7.3.

9.1 Richer scenario-based traces

Enriching our scenario-based traces with additional informa-
tion is a natural possible extension of the work. That is, we
would like to handle a larger subset of the LSC language dur-
ing trace generation and in the visualization and exploration
phase, which includes, for example, values of variables and
method parameters.

In [13], the syntax and semantics of the LSC language is
extended to support the classical notion of object composi-
tion. Specifically, the extended language allows the speci-
fication and interpretation of scenario hierarchies—trees of
scenarios—which are based on the object composition hier-
archy in the underlying structural model. The work has been
recently implemented as an optional extension to the S2A

compiler. It would be interesting to consider the possible
visualizations of scenario-based traces in the context of these
hierarchies.

9.2 State-based traces

Going beyond scenario-based traces to other model- based
traces, specifically state-based ones (see [43]), is another
natural extension of our work. That is, while the main con-
cern of the present paper is the visualization of execution
traces induced by inter-object scenario-based specifications,
the ideas can be applied to intra-object state-based specifica-
tions as well. We now sketch such an adaptation.

We propose to generate state-based execution traces, i.e.,
ones that include information about the states of (selected)
objects during a run of the program. These can then be
visualized using an appropriate variant of the Tracer, where
the hierarchy reflects the object composition relation, and
the horizontal bars represent the duration of being in the
states of specific object instances, as they change over time.
Moreover, if the object based variant of Statecharts [21]
(the so-called UML state machines) is used to describe the
intra-object behavior of the system (as in, e.g., Rhapsody [4]),
the trace visualization would further reflect the orthogonal
components of an object’s Statechart as sibling nodes in the
Gantt hierarchy, while the depth of the states would be indi-
cated on the horizontal bars themselves.

This state-based trace visualization can take advantage
of many of the techniques described here, such as handling
multiplicities, details-on-demand (from a horizontal bar on
the Gantt to a Statechart diagram where the current state is
highlighted), event-based and time-based tracing etc.

9.3 Filtering and comparison techniques

Regarding filtering, our work on horizontal and vertical pre-
defined calculated filters, reported on in Sect. 5.2, calls for
generalization and formalization. Specifically, we may con-
sider defining a query language for model-based traces,
which would allow us to formally express properties that can
be used as constraints over model-based traces. The language
should come with efficient means for computing its queries,
so that it may be used as the formal basis for a generic navi-
gation and filtering tool.

In the context of comparison techniques, we consider the
extension of the trace comparison features reported on in
Sect. 5.3 with techniques based on best alignment algorithms.
Specifically, it seems that one can adapt and apply algorithms
inspired by the classical diff algorithm [50] or by variants of
global and local sequence alignment algorithms (popular in
bioinformatics [51,59]) to support various best alignment
features between two or more model-based traces or parts
thereof. Like our current comparison features, these can be
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exploited in the context of maintenance and version control
tasks. Applying best alignment algorithms to model-based
traces, in general, seems interesting due to the multi-layer
characteristics of the traces and the rich semantic informa-
tion that is embedded in them. We leave this too for future
work.

Additional comparison techniques may be developed to
compare not traces but scenario instances. For example, one
may be interested in a succinct summary of the different
instances of the same scenario over a trace, specifically to
find the differences between completed and violated ones. An
example would be a question like, “what are the differences
between the execution fragments that caused one instance to
be completed while another instance to be violated?”

10 Conclusion

The main contribution of our work is in providing new
techniques for model-based (specifically, scenario-based)
visualization and exploration of reactive system execution
traces. By considering traces not at the code level but at
a higher abstract behavioral level, we are able to connect
dynamic analysis with model-driven development. Addi-
tional contributions include the separate event-based and
time-based tracing modes, as well as the combined event-nor-
malized multi-scale visualization mode, the various seman-
tics-based filters and model- based traces comparisons and
the vertical and horizontal metrics.

Our technique follows the classic overview first, zoom and
filter, details-on-demand paradigm [58], and the concept of
semantic zooming [54], in a number of ways. First, by the use
of the Overview supporting view and its main view frame,
and second, by the zoom from classes to instances (of con-
current scenarios) to scenario instance details on demand.
In addition, the event-normalized time-based view with the
multi-scale presentation may be considered a special kind
of automated semantic zooming: although the real duration
between events is explicitly displayed, fragments of the exe-
cution trace receive horizontal space according to the level
of activity they contain, rather than according to their real-
time duration. Finally, the various horizontal and vertical
semantics-based automated filters are additional examples
of semantic zooming.

Moreover, our approach fits into an end-to-end visual
framework for model-driven development, focusing on
model-driven dynamic analysis tasks. First, the specification
of the model is done using a diagrammatic language. Sec-
ond, the code implementing the model-based trace genera-
tion through instrumentation is automatically generated from
the visual specification model and is weaved into the program
under investigation. Finally, the generated model-based exe-
cution traces are presented and investigated visually. Neither

writing code nor browsing textual files are involved in the
process. We consider this end-to-end visual characteristic
of both model specification and model-based execution trace
analysis to be an important feature of our work. It is designed
to render the use of models in program analysis tasks more
effective by making it more accessible, attractive, and usable
to engineers.

Finally, our work shows the potential of using visualiza-
tion and interaction techniques in support of model-based
dynamic analysis tasks. We believe that the Tracer, or a sim-
ilar tool based on the ideas of this paper, can be used effec-
tively to improve the activities involved in the development of
complex reactive systems, specifically in model-based test-
ing and simulation.
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