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Abstract. Algebraic Multigrid (AMG) methods were developed originally for nu-

merically solving Partial Differential Equations (PDE), not necessarily on structured
grids. In the last two decades solvers inspired by the AMG approach, were devel-

oped for non PDE problems, including data and image analysis problems, such as

clustering, segmentation, quantization and others. These solvers share a common
principle in that there is a crosstalk between fine and coarse representations of the

problems, with flow of information in both directions, fine-to-coarse and coarse-to-

fine. This paper surveys some of these problems and the AMG-inspired algorithms
for their solution.
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1. Introduction

Multigrid methods were introduced in the 1960s and developed extensively in

the 1970s [11], [12], [28], [29]. Originally devised for elliptic boundary value

problems on structured grids, variants were introduced during these early years that

were adapted to handling more and more complicated problems, including nonlinear

problems, constraints, discontinuous coefficients and eigenvalue problems. The early

1980s saw the development of a new multigrid approach with far-reaching implica-

tions, namely, Algebraic Multigrid (AMG) ( [13], [56], [50], [22], [14]). With this ap-

proach, the solvers were no longer restricted to problems defined on structured grids,

nor necessarily discretized PDEs.

The fundamental idea of AMG was to choose a basic iterative method, the relax-

ation, and then devise a coarse-grid correction process that will be effective for re-

ducing all error that was not efficiently eliminated by the relaxation. To this end, a
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heuristic algorithm was then developed for selecting a subset of the variables to be

designated as the coarse-grid variables, along with a suitable prolongation matrix, and

a Galerkin procedure was employed to project the problem onto the subspace spanned

by the coarse-grid variables. This was applied recursively, resulting in a complete mul-

tilevel algorithm, quite similar in spirit to the classical multigrid approach except that

all operations were defined algebraically without the need to consider an underlying

PDE or even a computational grid. In the time that followed, many AMG variants were

developed for various problems, but the large majority of these still aimed at solving

linear systems of equations [58], or, less often, eigenproblems [9], [39].

In more recent years, multilevel methods have been developed in an ad-hoc man-

ner for problems that are quite different in nature from those for which classical AMG

can be applied, and yet these methods have often been inspired by AMG. In this pa-

per we survey such algorithms for data analysis problems, mostly associated with Ma-

chine Learning and Image and Signal Processing. We focus on the problems of image

segmentation, clustering and quantization along with the closely related problem of

Voronoi tessellations, Markov Random Field (MRF) energy minimization, and Multi-

Dimensional Scaling (MDS). Common to all the methods we survey is the multilevel

structure and the cross-talk between the different scales associated with the problems.

The problems are reviewed in Section 2. Section 3 begins with a brief description of

the classical AMG algorithm, followed by a generic description of variational coarsening

for general convex functionals, leading to the classical FAS nonlinear multigrid algo-

rithm [11]. The methods inspired by AMG for data and image analysis applications are

described in Section 4. First, a FAS-like multigrid solver for MDS is reviewed, together

with an application. After this, we describe multilevel methods for scalar and vector

quantization and centroidal Voronoi tessellations, moving on to a multiscale algorithm

for MRF energy minimization and finally clustering and segmentation by multilevel

weighted aggregation. Each method is accompanied with a pseudo-code algorithm.

2. Applications and goals

2.1. Multidimensional scaling (MDS)

Multidimensional scaling is a generic name for a family of algorithms that embed

points in target metric space from approximate inter-point distances, measured in some

other metric space. MDS is widely used in dimensionality reduction, data analysis

and visualization applications such as representing complicated high-dimensional data

structures by low-dimensional ones [8], [40].

Problem definition. Let △ be a symmetric n × n matrix of geodesic distances δij
measured between n points of a Riemannian manifold. The goal is to find a set of points

x1, ...xn in R
m, such that the embedding error is minimal. A functional commonly used

in MDS literature is the stress function

s(X;△,W ) =
∑

i<j

wij(dij(X)− δij)
2, (2.1)
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where X =





xT1
...
xTn



 is an n × m matrix of coordinates in R
m and dij = ||xi − xj||.

The symmetric n×n matrix of weights W = (wij) determines the relative contribution

of distances to the embedding error criterion. It is quite challenging to minimize the

stress functional as it is non-convex and its structured Hessian is dense.

2.2. Quantization

Quantization is the process of representing continuum space with only a finite num-

ber of representatives or representing an initially rich amount of discrete data with

smaller amount of representatives. Rounding real numbers to the nearest integer is a

simple form of scalar quantization. Representing color images with a smaller amount of

colors is an example of vector quantization. For quantization in a variety of applications

see [42], [27], [45], [26].

Problem definition. Let Ω be some input domain and let p : Ω→ R be the probability

density function of some random process over Ω. Let n be a known positive integer. A

quantizer q : Ω→ Ω is defined by n representatives R = {~ri}
n
i=1 and n decision regions

{Di}
n
i=1, where for all i, ~ri ∈ Di, and ∪iDi = Ω. That is, q(Ω) is a piecewise constant

approximation of Ω, where all ~x ∈ Di are represented by ~ri.

In the continuum case, an optimal quantizer achieves minimal distortion, defined

as the expectation of the quantization error squared,

D(q) = E[‖~x− q(~x)‖22] =
n
∑

i=1

∫

Di

‖~x − ~ri‖
2
2 p(~x)d~x, (2.2)

where ‖ · ‖2 denotes the L2 norm. Note that the functional D depends on the represen-

tatives {~ri}
n
i=1 and the decision regions {Di}

n
i=1.

In the discrete case, where p(~x) is nonzero at only a finite number of points {~xi}
n
i=1,

a similar functional is minimized

D(q) = E[‖~x− q(~x)‖22] =
n
∑

i=1

∑

~xj∈Di

‖~xj − ~ri‖
2
2 p(~xj). (2.3)

Quantization and Voronoi tessellation ( [18], [60], [41]) are closely related. Given

an open set Ω ⊆ R
n, the set {Vi}

n
i=1 is called a tessellation of Ω if Vi ∩ Vj = ∅ for i 6= j

and ∪ni=1Vi = Ω̄. Given a set of points{~zi}
n
i=1 belonging to Ω̄, the Voronoi region V̂i

corresponding to the point ~zi is defined by

(

V̂i

)

= {~x ∈ Ω | ‖~x− ~zi‖2 < ‖~x− ~zj‖2 for j = 1, ..., n, j 6= i}. (2.4)

The points {~zi}
n
i=1 are called generators. The set {V̂i}

n
i=1 is a Voronoi tessellation, and

each V̂i is referred to as the Voronoi region corresponding to zi. Given the regions
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{V̂i}
n
i=1 we can define the mass centroids

~z∗i =

∫

V̂i
~yp(~y)d~y

∫

V̂i
p(~y)d~y

. (2.5)

Then, a tessellation for which the points zi that serve as generators for the Voronoi re-

gions V̂i are themselves the mass centroids of those regions is called a centroidal Voronoi

tessellation. As proved in [18] a necessary condition for D (2.2) to be minimized is

that the D′
is are the Voronoi regions corresponding to the r′is in the sense of (2.4) and

simultaneously, the r′is are the centroids of the corresponding V ′
i s in the sense of (2.5).

This determines the relation between quantization and centroidal Voronoi tessellation.

2.3. Minimization of Markov Random Field (MRF) energy

Discrete energy minimization problems, in the form of factor graphs, or equiva-

lently Markov or Conditional Random Field models (MRF/CRF) are ubiquitous in the

field of image analysis. Their applications are diverse and range from image denoising,

segmentation, motion estimation, and stereo, to object recognition and image editing.

Szeliski et al. [57] conducted a comparative study on a specific class: MRF models with

smoothness-based priors. Since then, the field has made rapid progress. Modern vision

problems involve more complex models, and use machine learning techniques to train

the model parameters and energies. These changes give rise to hard energy minimiza-

tion problems that are fundamentally different from the ones considered by Szeliski et

al. In particular, the pairwise interaction can be arbitrary, including contrast-enhancing

priors. A comparative study of modern discrete energy minimization problems is re-

viewed by [31].

Problem formulation. We consider discrete pairwise minimization problems defined

over a graph (V, E) of the form

F(L) =
∑

i∈V

φi(li) +
∑

(i,j)∈E

φij(li, lj), (2.6)

where V is the set of variables and E is the set of edges and L is a discrete assignment,

L ∈ {1, ..., l}n with n = |V| variables taking l possible labels. The main goal of dis-

crete optimization is finding an assignment L∗ which minimizes F(L) over all discrete

assignments. Generally speaking, when dealing with smoothness-based priors, the sum

over the pairwise terms, φij, measures the extent to which the labeling of the vari-

ables is not piecewise smooth, while the sum over the unary terms, φi, measures the

disagreement between x and the observed data. A classical example of a smoothness-

based prior problem, is the stereo problem. Given a rectified pair of images, i.e., images

which were transformed onto a common image plane, the goal is to find the disparity

of each pixel in the reference (left) image, i.e., the difference in the location of a pixel

seen by the left and right images. Each variable can take one of l discrete states, which
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represent the possible disparities at that point. For each possible disparity value, there

is a cost associated with matching the pixel in the reference image to the correspond-

ing pixel in the other (right) image at that disparity value. Typically, the cost of this

unary term is based on the intensity difference between the two pixels. It relates how

compatible a disparity value is with the observed intensity difference. The cost of the

pairwise term expresses the disparity compatibility between neighboring pixels, typ-

ically yielding to the sought piecewise smooth disparity assignment. As mentioned

above, in modern discrete energy minimization problems the model of smoothness-

based prior is not necessarily appropriate. The pairwise interactions can be arbitrary,

including contrast-enhancing priors.

Two main factors affect the difficulty of the optimization problem: the underlying

graph structure E (i.e., tree or cyclic) and the properties of the pairwise interactions

φij . When the underlying graph is a tree, belief propagation [48] recovers a global

optimum in a polynomial time. For graphs with cycles, recovery of global optimum can

be achieved when the pairwise potentials satisfy the submodularity property [51]. For

graphs with cycles and general pairwise potentials the problem is NP hard. However,

when the pairwise potentials are smoothness-preserving there are approximation algo-

rithms with theoretical guarantees on the quality of the approximation. A review about

the hardness of the problem can be found in [5]. Details about existing methods can

be found in Sec. 4.3 and in [10], [33], [57] and [31].

2.4. Data clustering and image segmentation

Clustering algorithms are useful in many fields, including machine learning, pat-

tern recognition, image analysis, information retrieval, bioinformatics and others [16],

[61], [59]. Generally, clustering is applied to a dataset, which is a collection of n
d−dimensional vectors (data points) representing d measured features per sample.

Given a data set, clustering algorithms seek a partition of the data to coherent groups,

in a sense that data points in the same group (cluster) are more similar to each other

than to those in other groups (clusters). Many approaches try to solve the clustering

problem by optimizing a global functional, expressed in terms of the local similari-

ties between data points. Spectral clustering methods start from the formulation of

the normalized cut functional and attempt to solve a related generalized eigenvector

problem [55], [46], [59]. In other words, spectral clustering algorithms typically start

from local information encoded in a weighted graph on the data and cluster according

to the global eigenvectors of the corresponding similarity matrix. Nadler et al. [43]

explore the fundamental limitations of spectral clustering, showing that the first few

eigenvectors of such similarity matrices cannot successfully cluster datasets that con-

tain structures at different scales of size and density.

Problem formulation. The clustering problem can be formulated as seeking coherent

groups in a weighted graph. The exact mathematical goal of the clustering problem is

usually determined as part of the proposed algorithm, e.g., k-means, average linkage,

hierarchical clustering, etc. Therefore, the problem formulation given below is quite
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related to the multilevel clustering algorithms which are described in this review.

Given a dataset of n points {xi}
n
i=1 ⊂ Rd and an adjacency matrix W which en-

codes the similarity weights between the data points, a weighted graph G = (V,W ) is

constructed as follows. Each data point i is represented by a graph node i ∈ V where

V = {1, ..., n}. For every two adjacent nodes i and j a weighted edge is constructed

with the corresponding weight wij (wii is set to zero). To evaluate the coherence of

the clusters, every cluster S ⊆ V is associated with a state vector u = (u1, ..., un)
representing the assignments of data points to it

ui =







1 i ∈ S

0 i /∈ S.
(2.7)

The coherence measure associated with S is defined by the normalized-cut like measure

Γ(S) =

∑

i>j wij(ui − uj)
2

∑

i>j wijuiuj
, (2.8)

i.e., it sums the weights along the boundaries of S divided by the total sum of the

internal weights. In matrix notation

Γ(S) =
2uTLu

uTWu
, (2.9)

where L is the graph Laplacian matrix whose elements are

lij =







−wij i 6= j
∑

k (k 6=i) wik i = j.
(2.10)

Clusters with small values of Γ(S) are considered coherent. Therefore, the aim in

a clustering task is to reveal groups of data points having small values of Γ(S). Note

that we are interested in clusters at different scales. In particular, clusters which are

not too big, e.g., (≤ |V |/2). Otherwise, the problem becomes relatively easy. Finally,

image segmentation is a special case of clustering, where the geometric layout, e.g.,

4−connected or 8−connected graph, is simple and known. Prominent works in image

segmentation are for example [55], [23], [2].

3. Methods

3.1. Classical algebraic multigrid (AMG)

“Algebraic multigrid (AMG) solves linear systems based on multigrid principles, but

in a way that depends only on the coefficients in the underlying matrix” [22].

Historically, Classical AMG was introduced by Brandt, McCormick and Ruge in 1982

[13]. It was explored early on by Stueben in 1983 [56], and popularized by Ruge and

Stueben in 1987 [50].



Methods Inspired by AMG 289

Algebraic multigrid is a method for solving linear systems based on multigrid prin-

ciples, that requires no explicit knowledge of the problem geometry. AMG determines

coarse grids, inter-grid transfer operators, and coarse grid equations based solely on

the matrix entries.

Derivation by variational coarsening

We are interested in solving the linear system

Au = f, (3.1)

where A is a real symmetric positive definite n × n matrix and u, f ∈ R
n. Clearly, we

need to answer the question how to choose the operators of the multigrid scheme, i.e.,

the interpolation (prolongation) P ∈ R
n×N , which maps the coarse grid to the fine

grid (with N denoting the number of coarse-grid variables), the restriction R ∈ R
N×n

which maps the fine grid to the coarse grid, and the coarse-grid operator Ac.

Let us recast the problem (3.1) as the following equivalent convex optimization

problem

u = argminv∈Rn(
1

2
vTAv − vT f). (3.2)

Assume that a current approximation ũ is obtained by a few local relaxation sweeps

over the original system (3.1). Then, the aim is to add a correction Pec that will reduce

the fine-grid functional as much as possible, where ec ∈ R
N denotes the realization

of the coarse grid variable vc. Note that the set of possible corrections is the space

spanned by the columns of P . Plugging v = ũ+ Pec into the functional (3.2) yields

ec = argminvc∈RN

1

2
(ũ+ Pvc)

TA(ũ+ Pvc)− (ũ+ Pvc)
T f (3.3)

⇐⇒

P TAPec + P T (Aũ− f) = 0. (3.4)

Therefore, given an interpolation matrix P , we can conclude that the coarse-grid oper-

ator is Ac = P TAP , known as Galerkin coarsening, the restriction operator is R = P T ,

and the coarse-grid problem is

Acec = P T r, (3.5)

where r = f − Aũ is the residual. Therefore, the update on the fine grid will be

ũ ← ũ + Pec. This multigrid scheme is known as the correction scheme. We still need

to choose the important component, which is the interpolation operator P , and to

determine the coarse grid. These details can be found in the book [14], and in the

paper [22].
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3.2. Variational coarsening for general convex functionals

In the previous section we considered the derivation of an AMG scheme for solving

a linear system of equations. This is analogous to the minimization of a quadratic func-

tional. In this section we consider the minimization of a general convex problem. While

the variational coarsening derivation for the minimization of a (convex) quadratic func-

tional yields the correction scheme (CS), the derivation of the variational coarsening

for general convex functionals yields the well-known full approximation scheme (FAS).

Below, we describe the derivation.

Our aim is to solve

u = argminv∈Rn(F (v)− vT f) (3.6)

⇐⇒

∇F = f, (3.7)

where F : Rn → R is a convex function. First, we introduce the coarse variable

uc = Rũ+ ec (3.8)

where R ∈ R
N×n is the restriction operator and ũ is the current approximation on the

fine level. Note that now the coarse variables approximate the full solution rather than

just the correction. Therefore, the update on the fine grid will be ũ← ũ+ P (uc −Rũ).
The optimal coarse functional is now

Fc(uc) , F (ũ+ Pec)

= F (ũ+ P (uc −Rũ))

= F ((I − PR)ũ+ Puc).

(3.9)

Hence, on the coarse grid one aims to solve

∇Fc(uc) = P T f

⇐⇒

∇ucF ((I − PR)ũ+ Puc) = P T f. (3.10)

If the structure of Fc is similar to the structure of the original functional F (as in the

quadratic case), then a recursion can be employed. Otherwise, an approximation of

Fc is employed by using a simple convex approximation F̂c to Fc. According to (3.9)

and (3.8)

Fc(uc) = F̂c(uc) + Fc(uc)− F̂c(uc)

= F̂c(uc) + F ((I − PR)ũ+ Puc)− F̂c(uc)

= F̂c(uc) + F (ũ+ Pec)− F̂c(Rũ+ ec).

(3.11)
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The derivation proceeds by expanding (3.11) to a first order approximation in ec, as

follows. The second term and the third term are approximated by a truncated Tay-

lor series around ũ and Rũ, respectively, yielding the convex approximate functional

F 1
c (uc)

F 1
c (uc) , F̂c(uc) + F (ũ)− F̂c(Rũ) + eTc (P

T∇F (ũ)−∇F̂c(Rũ)). (3.12)

Recall that uc = Rũ+ ec, therefore

∇F 1
c (uc) = ∇F̂c(uc) + P T∇F (ũ)−∇F̂c(Rũ). (3.13)

Then, the problem on the coarse grid becomes ∇F 1
c (uc) = P T f which yields

∇F̂c(uc) = P T (f −∇F (ũ)) +∇F̂c(Rũ). (3.14)

Essentially, this is the classical full approximation scheme (FAS) [11].

4. Methods inspired by AMG for data and image analysis applications

This section reviews papers that developed algorithms inspired by AMG, aiming at

solving the problems described in Sec. 2.

4.1. Multidimensional scaling (MDS)

A common method for large-scale MDS problem is SMACOF (Scaling by Majorizing

a Complicated Function), see Chapter 8 in [8]. SMACOF generally suffers from slow

convergence. However, a substantial performance improvement can be achieved by

embedding the SMACOF relaxation into a multigrid scheme. In this section, we first

sketch the basic optimization algorithm and then describe the multigrid multidimen-

sional scaling algorithm, presented in [15].

4.1.1. Scaling by majorizing a complicated function - SMACOF

SMACOF is a basic optimization algorithm for solving the problem of MDS, i.e., mini-

mizing the stress function (2.1). It has dual representations, one from the majorization-

minimization perspective and the other from the gradient-descent perspective.

The key idea of majorization methods is to replace iteratively the original compli-

cated non-convex function S(X) by an auxiliary function τ(X,Z), where Z is some

value that is fixed during each iteration. The function τ(X,Z) is called a majorizing

function of S(X) if it satisfies the following requirements.

• The auxiliary function τ(X,Z) should be simpler to minimize than S(X).

• The original function must always be smaller than or equal to the auxiliary func-

tion, i.e., S(X) ≤ τ(X,Z).
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• The auxiliary function should touch the surface at the supporting point Z, i.e.,

S(Z) = τ(Z,Z).

To understand the principle of minimizing a function by majorization, consider the

following. Start with initialization at Z, derive τ(X,Z) and let the minimum of τ(X,Z)
over X be attained at X∗. According to the majorization requirements above, the

following chain of inequalities is obtained, S(X∗) ≤ τ(X∗, Z) ≤ τ(Z,Z) = S(Z).

Therefore, an attractive property of the majorization algorithm is the generation of

a non-increasing sequence of the original function values.

By some algebraic manipulations it can be shown that the stress function (2.1)

satisfies

S(X) =
∑

i<j

wij(dij(X)− δij)
2

=
∑

i<j

wijδ
2
ij +

∑

i<j

wijd
2
ij(X)− 2

∑

i<j

wijδijdij

=
∑

i<j

wijδ
2
ij + Tr(XTV X)− 2Tr(XTB(X)X)

≤
∑

i<j

wijδ
2
ij + Tr(XTV X)− 2Tr(XTB(Z)Z) , τ(X,Z),

(4.1)

where the elements of V are

vij =







−wij i 6= j
∑

k (k 6=i)wik i = j,
(4.2)

and the elements of B(Z) are

bij =



















−wijδijd
−1
ij (Z) i 6= j and dij(Z) 6= 0

0 i 6= j and dij(Z) = 0

−
∑

k (k 6=i) bik i = j.

(4.3)

Therefore, the function τ(X,Z) is a simple majorizing function of the stress function

S(X). τ(X,Z) is a convex function which is quadratic in X. Its minimum can be

obtained analytically by setting the gradient of τ(X,Z) to zero, that is

2V X − 2B(Z)Z = 0. (4.4)

The iterative scheme which follows this relation,

X(k+1) = V †B(X(k))X(k), (4.5)
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converges to a local minimum of S(X) and is called SMACOF. Since, ∇S(X) = 2V X−
2B(X)X, it can be shown that a SMACOF iteration is equivalent to weighted gradient

descent with constant step size

X(k+1) = X(k) −
1

2
V †∇S(X(k)). (4.6)

4.1.2. Multigrid MDS (MG-MDS)

The optimization problem (2.1) minX S(X) is equivalent to the solution of the non-

linear equation ∇S(X) = 0. The concept of the multigrid algorithm in this case is to

solve the non-linear equation ∇S(X) = 0 using a sequence of approximate solutions

to non-linear problems of the form ∇S(X) = F , solved on coarse grids. The term F
arises from the residual transferred from finer levels. In the form of the optimization

problem, the minimization is a function of the form

S(X)− Tr(XTF ) (4.7)

whose gradient equals ∇S(X) − F . It turns out that the linear term makes the func-

tion S(X) − Tr(XTF ) unbounded from below. Therefore, in order to overcome this

problem, a localization term is introduced to the original stress functional yielding the

modified stress

Ŝ(X;△,W ) =
∑

i<j

wij(dij(X)− δij)
2 + λ

m
∑

j=1

(

n
∑

i=1

xij

)2

, λ > 0. (4.8)

Then, the function Ŝ(X)−Tr(XTF ) is bounded from below. Note that the localization

term resolves the translation ambiguity by restricting the center of mass to be at the

origin, but has no other effect on the solution.

The multigrid method described in this review paper is suitable for MDS problems

where the underlying geometry is explicitly available in addition to the matrix of dis-

tances △. However, this is not the general case. In general, the MDS problem can be

applied to the case in which only the matrix△ is given and the geometry of the original

points is not available. For further generalization of the multigrid MDS algorithm, one

can refer to the paper [15].

Hierarchy of grids. A hierarchy of grids Ω1 ⊃ ... ⊃ ΩR is constructed, where R is the

coarsest level. Denote by Nr the number of grid points at the rth level (N1 = n). The

selection of the grid points depends on the form in which the metric space is given. For

example, if the surface is given by a triangulation representation, a hierarchy of grids

can be constructed using the farthest point sampling algorithm [21].

Coarsening strategy. The restriction operator which transfers the information from

level r to the coarser level r + 1 is an Nr+1 × Nr matrix, denoted by P r+1
r . The inter-

polation operator from level r + 1 to the finer level r is an Nr ×Nr+1 matrix, denoted
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Figure 1: A grid hierarchy construction in the facial surface embedding problem, using the farthest point
sampling algorithm. Retrieved from [15].

by P r
r+1. These matrices are sparse and often chosen to satisfy P r+1

r = (P r
r+1)

T . In

the case of polyhedral representation, the triangulation is employed to determine the

neighbors of each grid point and construct P r+1
r and P r

r+1.

The optimization problem is transferred to the next coarser level by applying the

classical Galerkin coarsening (see Sec. 3.1) to the matrices△ and W , via the restriction

operator P̃ r+1
r (not necessarily equal to P r+1

r )

△r+1 = P̃ r+1
r △r(P̃

r+1
r )T

Wr+1 = P̃ r+1
r Wr(P̃

r+1
r )T . (4.9)

This coarsening strategy generates a hierarchy of problems of the form

Ŝr(Xr, Fr) , Ŝ(Xr;△r,Wr)− Tr(XT
r Fr) (4.10)

that need to be solved approximately at each level.

Relaxation. SMACOF-type iterations are used at the relaxation stage of the MG-MDS

algorithm. The gradient of a typical function (4.10) has two extra terms, attributed to

the quadratic localization term in the modified stress function and the linear residual

term. In matrix notation, the gradient of Ŝr has the form

2V X − 2B(X)X − F + λZ(X) (4.11)

where the elements of the matrix Z(X) defined as zij =
∑

k xkj. As in (4.6) an additive

update form is used.

See Algorithm 1 for a pseudo-code for the multigrid MDS algorithm.

Experiments - Embedding of a facial surface

The facial surface contains 5263 points. A hierarchy of grids with three resolution levels

(containing 1977, 492 and 128 points) was constructed by the farthest point sampling

algorithm, see Fig. 1.

The resulting embedding of a facial surface and a comparison of the stress function

convergence over different algorithms are shown in Figs. 2 and 3, respectively.
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Figure 2: Embedding of a facial surface: as few as three MG-MDS iterations are sufficient in order to obtain
a good expression-invariant representation. Retrieved from [15].

Figure 3: Convergence of the stress function of different algorithms in the facial surface embedding problem,
initialization with the original points in R

3. Retrieved from [15].

Algorithm 1: Multigrid MDS (MG-MDS) (FAS V-cycle), [15]

Input: △,W
Output: X
Init r ← 1// fine scale

Vcycle (Xr, Fr,△r,Kr,K
′
r)

if r=R then

solve minXR
(XR, FR) and return // coarsest level

else
Relaxation: Apply Kr SMACOF iterations to Sr(Xr, Fr) and return X ′

r

Compute:

G′
r = ∇Sr(X

′
r)

X ′
r+1 = P r+1

r X ′
r

G′
r+1 = ∇Sr+1(X

′
r+1)

Fr+1 = G′
r+1 − P r+1

r G′
r

Apply the Vcycle on level r + 1:

X ′′
r+1 ← Vcycle(Xr, Fr,△r,Kr,K

′
r) // Apply V-cycle on a coarser level

Correction:

Er = P r
r+1(X

′′
r+1 −X ′

r+1)
X ′′

r ← X ′
r + αEr

Relaxation: Apply K ′
r SMACOF iterations to Sr(X

′′
r , Fr) and return X ′′′

r
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Conclusion

The acceleration of the SMACOF relaxation by embedding it in a multiscale framework

is impressive but not as significant as in the case of multiscale PDE solvers. Unlike

PDEs, where the operators are local and therefore associated with sparse matrices, the

MDS operators are of a global nature associated with dense matrices. Consequently,

the smoothing properties of the SMACOF procedure is less effective than what we

commonly see in PDE solvers.

4.2. Quantization and Centroidal Voronoi Tessellation (CVT)

The development of multilevel algorithms for quantization and the closely related

(CVT) problems, emerged about a decade ago. This section reviews algorithms inspired

by AMG for solving the quantization problem, which are presented [19], [20], [17], [36]

and [37]. In Koren et al. [36], a non-linear multigrid algorithm was developed for the

scalar quantization problem. The approach is based on the FAS algorithm described in

Sec. 3.2, employing the classical Lloyd-Max iteration as a relaxation. In Du et al. [19],

new algorithms were developed for the CVT problem, including a Lloyd-Newton itera-

tion and a multilevel optimization approach.

4.2.1. Lloyd-Max (LM) iteration

A necessary condition for achieving minimal distortion (2.2) is the vanishing of the

gradient, i.e.,
∂

∂~ri
D(q) = 0 i = 1, ..., n

∂

∂Di

D(q) = 0 i = 1, ..., n.

(4.12)

These conditions yield

~ri =

∫

Di
~xp(~x)d~x

∫

Di
p(~x)d~x

i = 1, ..., n

Di = V (~ri) i = 1, ..., n,

(4.13)

where V (~ri) is the Voronoi cell corresponding to ri (the set of all points in the domain

Ω that are closer to the representative ~ri than to the other representatives). Lloyd-Max

iteration [37] is an alternating process between the two optimality equations,

Dl
i = V ((~ri)

l), (4.14)

(~ri)
l+1 =

∫

Dl
i
~xp(~x)d~x

∫

Dl
i
p(~x)d~x

, (4.15)
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that is, computing the Voronoi cells Di’s according to the representatives ~ri’s followed

by the centers of mass ~ri’s according to the new Di’s, and so on. This process converges

monotonically to a solution that satisfies (4.13).

4.2.2. The multilevel algorithm for the scalar quantization problem

In Koren et al. [36] the representative variables are eliminated from the Lloyd-Max

equations, resulting in a non-linear optimization problem for the decision regions. The

LM iteration, with suitable over relaxation, turns out to be very similar to an optimally

damped Jacobi relaxation for a non-linear Poisson-like equation. Therefore, it is an

extremely efficient smoother and can be incorporated successfully in a fairly standard

FAS scheme.

4.2.3. Vector quantization and CVT

In Du et al. [19] the Lloyd-Newton algorithm is introduced for the CVT problem. In

one approach the authors employ the classical AMG algorithm for solving the linear

systems obtained by a block Gauss-Seidel pre-conditioner for the linearized problem.

The authors refer to this approach as a global linearization method with an inner multi-

grid scheme. In a second approach the global linearization is avoided. Instead, a space

decomposition technique is applied along with a successive subspace correction algo-

rithm. Each step in this algorithm involves solving approximately a system of non-linear

equations employing the Newton iteration as in the first approach, and updating the

overall approximation successively. In Du et al. [20], the authors analyze a similar

method for the scalar quantization problem and a rigorous uniform convergence the-

ory. In Di et al. [17] the authors employ the MG/OPT approach [44]. In this approach

a prescribed optimization method (opt) is used as a relaxation within a multilevel op-

timization algorithm. The coarse scale problem supplies a descent direction which is

interpolated to the fine grid, and supplemented by a line search. This ensures a mono-

tonic reduction of the fine grid functional, provided that opt itself is monotonically

convergent.

An alternative multiscale approach was investigated in Koren et al. [37]. The au-

thors define a wealth measure, which should asymptotically tend to a uniform function

in an optimal quantizer. This measure is used to transfer representatives from dense

regions to sparse regions. The density is defined in a multiscale manner: the region

is considered dense if the wealth function is relatively high at all scales. The wealth

function is a global measure, and thus it enables this approach to seek solutions that

are better than those yielded by classical methods in problems with many local minima.

See Algorithm 2 for a pseudo-code for the MG/OPT algorithm to the CVT. The

specific instantiation of the MG/OPT algorithm of [17] features simple injection as the

restriction of the solution, standard full-weighting as the restriction of the gradient

(residuals), linear interpolation as the prolongation and a truncated-Newton algorithm

as the relaxation (whereby the Newton step direction is computed approximately using
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Table 1: One dimensional example. Average residual reduction rate per iteration for the density function

p(x) = 6x2e−2x3

. Retrieved from [36], and [17]. The convergence rate of MG/OPT is better, but the cost
per iteration is higher than that of FAS, primarily due to the use of a much more elaborate relaxation.

number of representatives Lloyd-Max FAS [36] MG/Opt [17]

16 0.9900 0.1725 0.0023

32 0.9973 0.1782 0.0177

64 0.9993 0.1847 0.0551

128 0.9998 0.1962 0.0673

Table 2: One dimensional example. Average convergence factor per iteration for the uniform density function,
where OPT is the truncated-Newton method. Retrieved from [17].

number of representatives OPT MG/Opt [17]

16 0.1803 0.0234

32 0.2094 0.0440

64 0.2897 0.0952

128 0.4839 0.0604

256 0.6474 0.1174

512 0.8129 0.0932

1024 0.9076 0.0796

2048 0.9403 0.0728

4096 0.9679 0.0757

several Conjugate Gradient iterations).

Numerical experiments

Results of numerical experiments are given in the tables 1, 2 and 3.

Conclusion

The multilevel framework strategy is shown to be effective for the quantization prob-

lems considered in this section, in the sense that the convergence to a local minimum

is fast. Indeed, the rate of multilevel convergence is comparable to that of multigrid

PDE solvers.

4.3. Minimization of Markov Random Field (MRF) energies

In this section we first describe common energy minimization methods. We then

review [35], [3] and [4] that developed algorithms which integrate these methods

into a multiscale scheme, gaining improved performance.
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Table 3: Two-dimensional example. Comparing convergence factor of 2-dimensional triangular domain with
uniform density. Retrieved from [17].

number of representatives Lloyd-Max OPT MG/Opt [17]

10 0.8323 0.0871 0.0127

55 0.9554 0.1378 0.0231

253 0.9891 0.1957 0.0121

1081 0.9973 0.4055 0.0092

Algorithm 2: MG/OPT to the CVT (V-cycle), [17]

Input: K,Φ0(y), k1, k2
Output: z0 // The K representatives

Init // fine scale

r ← 0 vr ← 0 // initial estimate

z0r
zj+1
r ←MG/Opt (zjr , vr, k1, k2)

if r=R then

// solve the optimization problem on the coarsest level

zj+1
r ← Opt(Φr, vr, z

j
r)

else

Pre-smoothing: z̃r ← Opt(Φr, vr, z
j
r , k1)

Compute:

z̃r+1 = Ir+1
r z̃r

ṽ = ∇Φr+1(z̃r+1) + Îr+1
r (vr −∇Φr(z̃r))

// Apply MG/Opt to the surrogate model at level r + 1
z+r+1 ← MG/Opt(Φr+1, ṽ, z̃r+1)
// Compute the search directions

er+1 = z+r+1 − z̃r+1 and er = Irr+1er+1

// Use a line search to determine α
z+r = z̃r + αer satisfying Φr(z

+
r ) ≤ Φr(z̃r)

Post-smoothing: zj+1
r ← Opt(Φr, vr, z

+
r , k2);

where Opt is a convergent optimization algorithm in the following sense,

limj→∞ ‖∇Φ(z
j)‖ = 0 where {zj} are the iterates computed by Opt. z+ ←

Opt(Φ, v, z̃, k) applies k iterations of the convergent optimization algorithm to the

problem minz Φ(z)− vT z with initial guess z̃ to obtain z+.

4.3.1. Iterated Conditional Modes (ICM)

Iterated conditional modes [7] uses a deterministic “greedy” strategy to find a local

minimum. It starts with an estimate of the labeling, and then, for each variable in turn,

it chooses the label giving the largest decrease of the energy function. This process

is repeated until convergence, which is guaranteed to occur, and, in practice, is very
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rapid. However, the process is very sensitive to the initial estimate, cannot employ

large moves and therefore tends to get stuck at local minima.

4.3.2. Large moves by graph cuts

The two most popular graph-cut algorithms, called the swap-move algorithm and the

expansion-move algorithm, were introduced in [10]. Both algorithms work by repeat-

edly computing the global minimum of a binary labeling sub-problem in their inner

loops. Solving each binary sub-problem lies in computing the minimum cut, which

is done via max flow. The graph-cuts algorithms converge rapidly to a strong local

minimum, in the sense that no “permitted move” will produce a labeling with lower

energy.

The expand and swap moves are considered large scale operations because they

allow the label of more than one variable to be changed at each step. It turns out that

these algorithms perform large-scale moves and therefore can be considered as very

large neighborhood search techniques. The α−expand move can be described in the

following way: the set of labels is traversed and at each step a label α is selected. Then

all variables in the model are allowed to either keep their current label or change their

label to α. The α − β swap algorithm operates similarly: at each step selecting two

labels, α and β and allowing variables with these labels to either keep their current

assignment or swap to the other label.

Essentially, the swap-move and expansion-move algorithms differ by the binary sub-

problem they solve. For a pair of labels α, β, the binary step of the swap-move considers

whether to retain the current label of a variable or switch between the labels. An

expansion-move for a label α considers for each variable whether to retain its current

label or flip it to label α. In the original work by Boykov et al. [10], the expansion-

move algorithm was shown to be applicable to any energy where the pairwise term

is a metric, and the swap-move algorithm, to any energy where the pairwise term is

a semi-metric (a metric except that the triangle inequality may not hold). The work

by Kolmogorov et al. [33] subsequently relaxed these conditions and showed that the

expansion-move algorithm can be used if for all labels α, β and γ

Φij(α,α) + Φij(β, γ) ≤ Φij(β, α) + Φij(α, γ) (4.16)

and the swap-move algorithm can be used if for all labels α and β

Φij(α,α) + Φij(β, β) ≤ Φij(α, β) + Φij(β, α). (4.17)

It is shown in [33] that under these conditions the pairwise terms which are constructed

by the binary assignment sub-problems satisfy the submodularity property, i.e.,

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0). (4.18)

Then, a global minimum of each binary sub-problem can be computed in polynomial

time by the minimum cut.
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However, in many applications, none of these conditions is satisfied ((4.16) or

(4.17) in a multilabel problem or (4.18) in a binary problem). Minimizing functions

with arbitrary pairwise term is a very challenging task (in general, NP-hard). Rother

et al. [49] suggested a successful method, called QPBO(I), which can be applicable to

non-submodular binary problems.

The multiscale algorithm, which is described in the next section, can handle arbi-

trary pairwise terms, either multilabel or binary.

4.3.3. Multiscale algebraic MRF coarsening

Here we consider a pairwise MRF of the form

F(L) =
∑

i∈V

φi(li) +
∑

(i,j)∈E

wij · φ(li, lj). (4.19)

The multiscale scheme for MRF coarsening suggested in [3] and [4] relies on an al-

gebraic representation which is equivalent to the pairwise MRF. This equivalent al-

gebraic representation forms the basis of the principled algorithm presented below,

inspired by AMG. A related work by Komodakis [35] provides an algebraic multigrid

formulation for MRF minimization in the dual space. However, despite the presenta-

tion of general formulation the paper provides examples using regular diadic grids of

smoothness-preserving energies, i.e., energies which satisfy one of conditions ((4.16),

(4.17), (4.18)).

The algebraic representation starts with the substitution of the assignment vector L
in (4.19) by an equivalent binary matrix representation U ∈ {0, 1}n×l. The rows of U
correspond to the variables, and the columns correspond to labels: Uiα = 1 iff li = α.

Expressing the energy (4.19) using U yields

E(U) = Tr(DUT +WUV UT ) (4.20)

s. t. U ∈ {0, 1}n×l,

L
∑

α=1

Uiα = 1,

where W = {wij}, D ∈ R
n×l with Diα , φi(α), and V ∈ R

l×l with Vαβ , φαβ, α, β ∈
{1, ..., l}. Let (nf , l,Df ,W f , V ) be the parametrization of the fine energy scale. We

wish to generate a coarser representation (nc, l,Dc,W c, V ) with nc < nf . This repre-

sentation aims to approximate E(uf ) with fewer variables, i.e., U c is composed of nc

rows and l columns. An interpolation matrix P ∈ [0, 1]n
f×nc

with
∑

j Pij = 1 ∀i maps

coarse assignment U c to fine assignment PU c. Assume for now that the interpolation

matrix P is known. Then, for any fine assignment Uf that can be approximated by a
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coarse assignment U c, i.e., Uf ≈ PU c, the energy Uf can be approximated as follows.

E(Uf ) = Tr(DfUfT

+W fUfV UfT

)

≈ Tr(DfU cTP T +W fPU cV U cTP T )

= Tr((P TDf )U cT + (P TW fP )U cV U cT )

= Tr(DcU cT +W cU cV U cT ) , E(U c)

where Dc , P TDc and W c = P TW fP.

(4.21)

Thus, the coarse energy E(U c) parametrized by (nc, l,Dc,W c, V ) approximates the

fine energy E(Uf ). This coarse energy is of the same form as the original energy, thus

allowing to apply the coarsening procedure recursively to construct an energy pyramid.

As in other multiscale schemes, the performance of the approximation heavily depends

on the interpolation matrix P . Poorly constructed interpolation matrices will fail to

expose the multiscale landscape of the functional. Below, we describe a principled

energy-aware method for computing the interpolation matrix.

Energy-aware interpolation. Clearly, the suggested multiscale scheme approximates

the original energy functional using a decreasing number of degrees of freedom, thus

excluding some solutions from the original discrete search space. Which solutions are

excluded is determined by the interpolation matrix P . A good interpolation tends not

to exclude low energy assignments at coarse levels. The matrix P can be interpreted

as an operator that aggregates fine scale variables into coarse ones. Aggregating fine

variables i and j into a single coarser variable excludes from the search space all as-

signments for which li 6= lj. This aggregation is undesired if assigning i and j to

different labels yields low energy. However, if assigning li = lj yields low energy, then

aggregating them together allows for efficient exploration of low energy assignments.

Therefore, we need to answer the non-trivial question how to estimate the label agree-

ment between variables.

A naive approach would assume that neighboring variables are always in agreement

(e.g., [24], [35]). This assumption clearly does not hold in general and may yield a

poor interpolation matrix. Recent work suggests using the energy itself to estimate

variable agreements [32]. However, the suggested method is incapable of balancing

the effect of the unary and pair-wise terms of the energy. Indeed, it is not straightfor-

ward to decide which term dominates and how to fuse these two terms together. [3]

suggests an empirical scheme for agreement estimation that naturally integrates the

influence of both unary and pair-wise terms. This is done by generating several sam-

ples with locally low energy assignments, and measuring the label agreement between

neighboring variables in these samples. Starting with K random initializations of label

assignments and employing t Iterated Conditional Modes (ICM) [7] iterations for each

start, provides K samples {Lk}Kk=1. Utilizing the label disagreement cost encoded in

the matrix V , the disagreement between neighboring variable i and j is estimated as
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dij = 1
K

∑

k Vlk
i
,lk
j
, where lki is the label of variable i in the sample Lk. The agreement

is determined as cij = exp(−
dij
m
), where m is proportional to the maximum value en-

coded in V . Now, we can think of the agreements {cij}(i,j)∈E as a new set of weights

of the graph. The next step is to select coarse nodes and to construct the interpola-

tion matrix. This is done in the same manner as in the case of the multiscale graph

coarsening, see Sec. 4.4.

See Algorithm 3 for a pseudo-code for the MRF energy minimization.

Algorithm 3: MRF energy minimization (F-cycle), [3]

Input: Energy (n0, l,D0,W 0, V ).
Output: U0

Init s← 0// fine scale

// Energy pyramid construction:

while ns ≥ 10 do
Estimate pair-wise agreements cij at scale s
Compute interpolation matrix P s

Derive coarse energy (ns, l,Ds,W s, V )
s++

// Coarse-to-fine optimization:

while s ≥ 0 do

U s ← Relax (Ũ s)
Ũ s−1 = P sU s// interpolate a solution

s−−

where Relax (Ũ s) uses “off-the-shelf” algorithm to optimize the energy

(ns, l,Ds,W s, V ) with Ũ s as an initialization.

Numerical experiments

The multiscale scheme for MRF coarsening suggested in [3] and [4] is evaluated on

synthetic and real datasets. The protocol of the experiments follows [57] that uses

the lower bound of TRW-S [34] as a baseline for comparing performance of different

optimization methods. The reported results are the ratio between the resulting energy

value and the lower bound (in percents), closer to 100% is better.

Synthetic results An arbitrary synthetic energy defined over a 4−connected grid

graph of size 50×50 and 5 labels. The terms in (4.20) are drawn from the following dis-

tributions: the unary term D ∼ N (0, 1), the pairwise term Vαβ = Vβα ∼ U(0, 1)(Vαα =
0) and wij = wji ∼ λ · U(−1, 1). The parameter λ controls the relative strength of

the pairwise term, stronger (i.e., larger λ) results with more challenging energies to

optimize (see [34]). Table 4 shows results averaged over an ensemble of 100 experi-

ments. The multiscale algorithm ( [3] and [4]) is compared to ICM, swap-move with

binary sub-problem solved by QPBO, expansion-move with binary sub-problem solved

by QPBO and TRW-S, which is considered a state-of-the-art method.
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Table 4: Synthetic energies: showing percent of achieved energy value relative to the lower bound (closer to
100% is better) for varying strengths of the pairwise term (λ = 5, 10, 15, stronger → harder to optimize.).
Retrieved from [4].

ICM Swap(QPBO) Expand(QPBO)
TRW-S

λ Multiscale single scale Multiscale single scale Multiscale single scale

5 112.6% 115.9% 108.9% 110.0% 110.5% 110.0% 116.6%
10 123.6% 130.2% 118.5% 120.2% 121.5% 121.0% 134.6%
15 127.1% 135.8% 122.1% 124.1% 124.6% 125.1% 138.3%

Table 5: Chinese character inpainting energies: (a) mean ratios of achieved energy value relative to baseline
of Nowozin et al. [47] (lower is better, less than 100% = lower than baseline) (b) percent of instances for
which strictly lower energy than the baseline was achieved. Retrieved from [4].

ICM QPBO
TRW-S

λ Multiscale single scale Multiscale single scale

(a) 114.0% 114.0% 97.8% 106.2% 108.6%
(b) 7.0% 7.0% 77.0% 34.0% 25.0%

Chinese character inpainting A non-submodular binary energy whose parameters

are learned from a training set containing 100 instances over 64−connected grid. These

energies were designed and trained to perform the task of learning Chinese calligra-

phy [47]. As presented in Table 5, the multiscale algorithm ( [3] and [4]) is compared

to ICM, QPBO and TRW-S.

Conclusion

We see that it is possible to obtain relatively low energy values when applying an appro-

priate AMG-like strategy to MRF minimization problems, particularly when minimizing

challenging energies. As demonstrated in Table 5, the performance of the solver de-

pends heavily on the relaxation module, (e.g., ICM vs. QPBO). Moreover, the scheme

presented here is a coarse-to-fine scheme. We believe that a two-way scheme (fine-to-

coarse and coarse-to-fine) will allow improving the performance significantly, and this

is currently under investigation.

4.4. Multiscale graph coarsening by AMG-like scheme

Here we review works in the fields of image segmentation and data clustering that

employ multiscale graph coarsening by AMG-like scheme. The works appeared in a se-

quence of papers, [52], [53], [25] and [54], introducing boundary and texture consid-

erations to the multiscale scheme. A further probabilistic multiscale graph coarsening

and a new benchmark dataset are presented in [1]. Lastly, a work [30] in the field

of cell microscopy introduced a scale-invariant saliency measure, related to the coher-

ence measure (2.8), and applied the multiscale graph coarsening to segmentation and

tracking of cells.
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The AMG-like scheme seeks coherent clusters (image segments), i.e., groups of data

points (pixels) with low values of Γ(S) (2.8), by considering the similarity of the data

points (pixels) at different resolutions, from fine scales to coarser ones. A key point in

this approach is the calculation and incorporation of scale-dependent global properties

such as the density, shape and orientation of a collection of data points as well as the

average color and color variations of collection of pixels. These properties are called

aggregative features. These aggregative features affect the formation of the coherent

clusters (segments). To our best understanding it should be difficult to employ such

use of multiscale aggregative features by any uniscale procedure, or by a formulation

of the problem as a functional minimization problem, including spectral clustering on

the fine scale data.

Starting from the given graph G[0] = G, the AMG-like scheme recursively coarsens

the coherence measure Γ(S), creating a sequence of graphs G[1], ..., G[k] of decreasing

size, yielding approximate solutions to low values of Γ(S). Each node, at a certain scale,

represents an aggregate which is the weighted collection of the original data points

(pixels). Any low-Γ node emerging at a certain scale as a single node is considered a

cluster (segment), i.e., coherent aggregate.

Similar to the classical AMG setting, the choice of the coarse variables, the design of

the fine-to-coarse aggregation (or the coarse-to-fine interpolation), and the derivation

of the coarse problem, are determined automatically. More precisely, the construction

of a coarse graph from a given one is performed in three stages:

1. A subset of the fine nodes is chosen to serve as the coarse nodes or the seeds of the

aggregates.

2. The rules for interpolation are determined, thereby establishing for each non-seed

node to what fraction it belongs to each aggregate.

3. The weights of the edges between the coarse nodes are calculated.

Selection of coarse nodes. The formation of the set of seeds C and its complement,

denoted by F = V \C, is guided by the principle that each F−node should be “strongly

coupled” to C, i.e., ∀i ∈ F , the following relation should be satisfied
∑

j∈C wij ≥
α
∑

j∈V wij , where α is a predefined parameter. This can be achieved either by a greedy

approach or by an appropriate Integer Programming optimization.

Interpolation matrix. Each node in the chosen set C becomes the seed of an aggre-

gate that will constitute one coarse scale node. For each node i ∈ F , its neighborhood

in the coarse graph is determined, Ni = {j ∈ C,wij > 0}. Let I(j) be the index in the

coarse graph of the node that represents the aggregate around a seed whose index at

the fine scale is j. The interpolation matrix P (of size n×N , where N = |C|) is defined
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by

PiI(j) =



















wij∑
k∈Ni

wik
for i ∈ F, j ∈ Ni,

1 for i ∈ C, j = i,

0 otherwise.

(4.22)

By selecting “strongly coupled” coarse nodes followed by establishing an appropri-

ate interpolation matrix we ensure that a low Γ aggregate with a state vector u =
(u1, ..., un) will be well represented via the interpolation P of a corresponding coarse

level state vector U = (U1, ..., UN ), i.e., u ≈ PU .

The coarse problem. Following the construction of P , the coherence measure can be

approximated by the coarse state variable U = (U1, ..., UN ) as follows

Γ =
2uTLu

uTWu
≈

2UTP TLPU

UTP TWPU
. (4.23)

Therefore, in order to keep the same general formulation, inspired by the Galerkin

coarsening (see Sec. 3.1), the coarse problem can be determined by W coarse = P TWP
and Lcoarse = P TLP . However, in practice the coarse problem is determined slightly

differently by applying the weighted aggregation scheme [54], [38]. The weighted

aggregation scheme allows to keep the structure of the graph constructed at coarse

levels. An edge connecting two coarse aggregates p and q is assigned with the coupling

weight

wcoarse
pq =







(P TWP )pq p 6= q

0 p = q.
(4.24)

Intuitively, the coupling weight between a pair of coarse aggregates is the weighted

sum of the coupling weights between their sub-aggregates. Exploiting the sparseness

of the interpolation matrix P , the calculation of W coarse is inexpensive and Lcoarse is ap-

proximated by the relation (2.10). This coarsening procedure is performed recursively.

See Algorithm 4 for a pseudo-code for the multiscale graph coarsening for clustering

and image segmentation. Note that in this case, there is no relaxation (or smoothing)

step.

Experiments

In this section we demonstrate segmentation and clustering results, obtained using the

multilevel graph coarsening. See Figs. 4, 5 and 6.

Conclusion

The AMG-like graph coarsening strategy enables us to treat data which contains clus-

ters (segments) at different scales. Moreover, the calculation and integration of the
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Figure 4: Image segmentation. A hierarchy composing a segment and its background. The leopard segment
(III) is shown along with two out of ten levels of aggregates composing it (I, II). The original image is shown
at the top. Retrieved from [54].

aggregative features as the graph coarsening proceeds affect significantly the forma-

tion of the coherent clusters (segments). This property distinguishes the AMG-like

graph coarsening from other clustering methods.



308 M. Galun, R. Basri, I. Yavneh

Figure 5: Clustering of data points in 2D. Inaccurate bottom-up clustering and cured top-down clustering:
after first bottom-up process obtained with misclassifications (left), by applying top-down density refinement
the background noise is separated from the clusters (right). Retrieved from [38].

Figure 6: Clustering of data points in 3D. Inaccurate bottom-up clustering and cured top-down clustering:
after first bottom-up process obtained with misclassifications (left), by applying top-down density refinement
the background noise is separated from the clusters (right). Retrieved from [38].

Algorithm 4: Multiscale graph coarsening for clustering and image segmenta-

tion, [54] and [38].

Input: similarity matrix W
Output: salient clusters (segments) at different scales

Init s← 1// fine scale

// Create coarser level graph

while ns > 1 do

Initialize the set of seeds (C) and its complement (F ): C = ∅, F = V s−1

for all nodes i ∈ F do

If
∑

j∈C ws−1
ij < α

∑

k∈V s−1 w
s−1
ik then C ← {C ∪ {i}}; F ← {F\{i}}

Calculate P s−1
s the interpolation matrix

Calculate aggregative properties

Calculate W s coarse-level couplings by weighted aggregation and modify ac-

cording to similarity in aggregative properties

s++

// extract salient clusters (segments)

while s ≥ 1 do
Evaluate coherence measure of the clusters (segments)

Determine the support of salient clusters (segments) by a top-down process

s−−
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5. Conclusion

In this review we survey AMG-like algorithms for data and image analysis appli-

cations. We focus on the problems of clustering, image segmentation, quantization,

discrete energy minimization and multi-dimensional scaling. Common to all the meth-

ods is the AMG-like structure and the fine-to-coarse and coarse-to-fine cross talk be-

tween the different scales. We believe that other applications, in signal processing for

example, can be inspired by the AMG frameworks that we described.
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