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Non-Parametric Detection of the Number of Signals:
Hypothesis Testing and Random Matrix Theory

Shira Kritchman and Boaz Nadler

Abstract—Detection of the number of signals embedded in noise
is a fundamental problem in signal and array processing. This
paper focuses on the non-parametric setting where no knowledge
of the array manifold is assumed. First, we present a detailed sta-
tistical analysis of this problem, including an analysis of the signal
strength required for detection with high probability, and the form
of the optimal detection test under certain conditions where such a
test exists. Second, combining this analysis with recent results from
random matrix theory, we present a new algorithm for detection
of the number of sources via a sequence of hypothesis tests. We
theoretically analyze the consistency and detection performance of
the proposed algorithm, showing its superiority compared to the
standard minimum description length (MDL)-based estimator. A
series of simulations confirm our theoretical analysis.

Index Terms—Detection, number of signals, random matrix
theory, statistical hypothesis tests, Tracy–Widom distribution.

I. INTRODUCTION

D ETECTION of the number of signals impinging on a col-
lection of sensors is a fundamental problem in statistical

signal and array processing and still a subject of ongoing re-
search [3], [6], [34], [29]. It is typically a first step prior to com-
putationally demanding parametric procedures that depend on
this input, such as direction of arrival estimation, blind source
deconvolution, etc.

Before proceeding, we mention that a similar, if not identical
problem, also appears in other scientific fields, such as chemo-
metrics, econometrics, population genetics, and classical statis-
tics [23], [21], [31], [13], [27]. Examples include determining
the number of different chemical components in a mixture, the
number of multiplicative components in two way tables of in-
teraction, and the order of an autoregression.

In the signal processing literature, the most common ap-
proach to solving this problem is by using information theoretic
criteria, and in particular minimum description length (MDL),
Bayesian information criterion (BIC) and Akaike information
criterion (AIC); see [34] and their improvements such as [35],
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[9]. The paper [33] provides a review of these methods. While
the MDL estimator is consistent as sample size [38], as
noted in various works [34], [37], [4], it fails to detect signals
at low signal-to-noise ratio (SNR), hence underestimating the
number of signals at small sample sizes. In contrast, while the
AIC estimator is able to detect low SNR signals, regretfully it is
not consistent as , having a non-negligible probability
to overestimate the number of signals for . Furthermore,
both estimators are based on large sample asymptotics, so
none of them perform well when the number of sensors is
comparable to the number of observations. Finally, neither of
these estimators is applicable to large aperture arrays with a
number of sensors larger than the number of samples, .

Various theoretical and practical questions arise with respect
to these results: 1) Given the presence of noise, what is the signal
strength required for reliable detection (i.e., with high proba-
bility)? 2) Is there an improved estimator, which enjoys both
high detection performance at low SNR (similar to the AIC es-
timator) and (near) consistency at large sample sizes (similar to
the MDL estimator)?

In this paper, we present a statistical analysis of the problem
of detection of the number of signals, and present and analyze
a new estimation algorithm, which together provide answers to
the two questions raised above. The main tools used in our anal-
ysis are recent results in random matrix theory (RMT) regarding
both the distribution of noise eigenvalues and of signal eigen-
values in the presence of noise. For the paper to be self-con-
tained, these results are reviewed in Section II. One of these re-
sults shows that in the joint limit there is a phase tran-
sition phenomenon, where only signals stronger than a certain
threshold can be detected by the largest eigenvalue. We further
show that the detection threshold of the MDL estimator is sig-
nificantly larger than this asymptotic threshold, thus suggesting
that the MDL procedure may not be an optimal one.

In Section III, we advocate a different approach for estimating
the number of signals, via a sequence of hypothesis tests, at each
step testing the significance of the th eigenvalue as arising from
a signal. To motivate this approach, we analyze a simple setting,
in which the likelihood ratio test is an optimal procedure. We
show that when deciding between the two hypotheses

no signals vs. one signal of known strength

with known noise variance and using only the sample covari-
ance matrix, asymptotically as , only the largest sample
eigenvalue should be used. Similarly, when testing
signals versus signals (with known noise variance and signal
strengths), asymptotically only the th sample eigenvalue
should be used. Our proposed approach, of testing a single
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eigenvalue at a time, is similar in spirit to [4], [5], and [27], and
is closely related to the classical largest root test proposed by
Roy [22].

The asymptotic properties of our algorithm, as well as its per-
formance for finite values of and , are analyzed in Section IV.
We show that for finite it has a detection threshold much
smaller than that of the MDL estimator. Furthermore, our algo-
rithm attains the asymptotic limit of detection when .
Since the proposed method employs multiple tests with a fixed
confidence level, it has a small probability of overestimation,
that can be controlled by the user. This provides a positive an-
swer to the second question raised above. We conclude our anal-
ysis by considering the case and the joint limit ,
and compare our algorithm to two recently suggested methods
for estimating the number of signals under this setting [30], [32].
Section V presents simulations supporting the theoretical anal-
ysis. Section VI is summary and discussion.

The algorithm presented here was developed by us in a dif-
ferent context, that of rank determination in analytical chem-
istry, where the rank typically corresponds to the number of
chemical components present in a mixture [23]. This paper ex-
tends our initial work with a detailed statistical analysis of the
problem and of the performance of our proposed algorithm in
comparison to the MDL and other estimators. Preliminary par-
tial results were presented at the 2008 Asilomar Conference on
Signals, Systems and Computers.

II. NON-PARAMETRIC SIGNAL DETECTION, RANDOM MATRIX

THEORY AND INFORMATION THEORETIC CRITERIA

Notation: Vectors and matrices are denoted by lowercase and
uppercase bold letters, as in and , respectively. The conju-
gate transpose of is denoted denotes the identity ma-
trix of order and denotes the trace of a matrix . The
Gaussian distribution with mean and covariance is denoted

. An estimate of a parameter is denoted . Almost
sure convergence of random variables, also known as conver-
gence with probability one (w.p.1), is denoted . Conver-
gence in distribution is denoted .

A. Problem Formulation

We consider the following standard model for signals im-
pinging on an array with sensors. Let denote

-dimensional i.i.d. observations of the form

(1)

sampled at distinct times , where is the
steering matrix of linearly independent -dimensional

vectors. The vector represents
the random signals, assumed zero mean and stationary with full
rank covariance matrix. is the unknown noise level, and
is a additive Gaussian noise vector, distributed
and independent of .

Under these assumptions, the population covariance matrix
of has a diagonal form,

(2)

in an unknown basis of (or for real-valued signals),
where . We denote by the sample
covariance matrix of the observations from the model (1),

and denote by its eigenvalues.
In this paper we consider the problem of estimating the un-

known number of sources given the observations
under the nonparametric setting, where no prior information is
assumed about the matrix beyond it being of rank . Further-
more, we only consider methods to infer the number of signals
that use the eigenvalues of the sample covariance matrix

, rather than the original observations.
The problem at hand is thus a model selection problem, e.g.,

to determine which of the possible models of the form (2) is
most likely given the sample eigenvalues .

B. Mathematical Preliminaries: Random Matrix Theory and
Asymptotic Limit of Detection

The key principle in nonparametric estimation of the number
of sources is that for sufficiently large , in the presence of

sources, the first largest sample eigenvalues correspond
to signals, whereas the remaining eigenvalues correspond to
noise. Here we review some mathematical theory relevant to the
problem at hand, in particular results from random matrix theory
regarding the behavior of the largest eigenvalue of a pure noise
matrix, and results about signal eigenvalues in the presence of
noise.

In the absence of signals, the matrix follows a Wishart
distribution with parameters . While there is no simple ex-
plicit expression for the distribution of its largest eigenvalue, in
recent years, its exact distribution under a certain asymptotic
limit was derived [7], [14], [15] :

Theorem 1: Let denote the sample covariance matrix of
pure noise vectors distributed . In the joint limit

, with , the distribution of the largest
eigenvalue of converges to a Tracy–Widom distribution

(3)

where for real valued noise and for complex-
valued noise. The centering and scaling parameters, and

, respectively, are functions of and only.
For real valued noise, the following expressions provide

convergence rate in (3):

(4)

(5)

Explicit expressions for complex valued noise, having a similar
yet more involved form, appear in [7]. These expressions pro-
vide good approximations for finite as long as

and the ratio or is not too large [8].
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Assuming the noise variance is known, one possible test
for the presence or absence of a signal, known as Roy’s largest
root test [22], is to check the significance of the largest eigen-
value, as follows:

For this test to have a false alarm (type I error) with asymptotic
probability as , the threshold should satisfy

(6)

The value of can be calculated by inverting the
Tracy–Widom distribution. As there is no explicit closed
form expression for the TW distribution, this inversion can be
done numerically, for example using the software package1 .
However, for values , from the asymptotics of the Airy
function it follows that [15]

Therefore, for sufficiently small , approximate explicit thresh-
olds are

(7)

We stress that (7) is valid only for , with the approxima-
tion more accurate for real valued noise .

In addition, we will use the following non-asymptotic bound
on the largest eigenvalue of complex-valued noise observations
(see [20, p. 187, (2.4)]).

Theorem 2: Let be the largest eigenvalue as in Theorem 1,
then

(8)

where

(9)

with and .
Next, we consider the behavior of signal eigenvalues in the

presence of noise. As , and so the sample
eigenvalues converge w.p.1 to the corresponding population
eigenvalues. Hence, as any (positive) signal strength
can be eventually detected w.p.1 by inspection of the sample
eigenvalues. The interesting question is which signal strengths
can be identified with high probability, for given finite values
of and . For finite but large values of , from (4) it
follows that the largest eigenvalue due to noise is approximately

. Thus, a weak signal cannot be detected by
the largest sample eigenvalue, since the variance in its direction

1Available [online]: http://math.arizona.edu/~momar/research.htm

will be smaller than the largest variance in a random direction
due to noise.

In the joint limit with fixed, there is a
phase transition, where signals can be detected by the largest
eigenvalues if and only if they are above a certain deterministic
threshold [2], [28], [25]:

Theorem 3: Let denote the sample covariance matrix of
observations from (1) with a single signal of strength . Then,
in the joint limit , with , the largest
eigenvalue of converges w.p.1 to

(10)

Due to its importance, we denote this threshold as the non-para-
metric asymptotic limit of detection,

(11)

Finally, the following lemma considers the influence of a signal
on the largest noise eigenvalue [23].

Lemma 1: Consider a setting with a single signal, .
Then, in the asymptotic limit , the
second largest sample eigenvalue (which corresponds to noise)
has asymptotically the same Tracy–Widom distribution as the
largest eigenvalue of a pure noise Wishart matrix, with parame-
ters .

By induction, the Proof of Lemma 1 can be generalized to any
number of signals. Hence, in the case of (sufficiently strong)
signals, in the joint limit , the th eigenvalue
follows a Tracy–Widom distribution, with parameters .

C. Previous Work: Information Theoretic Criteria

In the seminal paper [34], Wax and Kailath proposed the fol-
lowing minimum description length criteria to determine the
number of sources,

This estimator was proven to be strongly consistent [38], namely
that

(12)

These two properties, simplicity and consistency, made the
MDL estimator the standard tool for detection of the number
of signals.

D. Detection Performance of the MDL Estimator

The performance of the MDL estimator is analyzed in var-
ious works [36], [10], [26]. In the non-parametric case, the dif-
ference is asymptotically Gaussian
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Fig. 1. Required signal strength � for detection with probability 1/2 for the
MDL and RMT algorithms (with � � ���%) as a function of sample size
�, for � � �� or � � ��, and � � �. Comparison of simulation results with
(14) for MDL and (25) for the RMT algorithm.

distributed with explicitly known approximate formulas for the
mean and variance. In case of signals, where the th signal
has strength and with , the following holds,
up to terms [26]:

(13)

From (13), the approximate signal strength detectable by the
MDL estimator with probability can be derived as fol-
lows. For large the detectable signal strength is small. A
Taylor expansion of the logarithms in (13) for small gives that

if where

(14)

This formula is in close agreement with simulation results, as
shown in Fig. 1. The key point of (14) is that the detection
threshold of the MDL estimator is significantly larger (by a
factor of approximately ) than the asymptotic limit of
detection, (11). Indeed, as noted in [10], while the goal of MDL
is to minimize the description length, in detection problems the
goal is to minimize the probability of misdetection of the true
number of signals. Hence, (14) is not necessarily the lowest pos-
sible detection threshold.

In this paper we present and analyze a new algorithm for es-
timating the number of sources. To detect the presence of all
signals, the smallest signal eigenvalue should satisfy

where is a constant independent of . Thus, the proposed
algorithm, described below, can detect much weaker signals
than the MDL estimator. Furthermore, in the joint limit

it attains the asymptotic limit of detection of (11).

III. NON-PARAMETRIC SIGNAL DETECTION BY STATISTICAL

HYPOTHESIS TESTS

A. Motivation: Likelihood Ratio Asymptotics

In the previous section we saw that the detection threshold
of the MDL estimator is larger by a factor of approximately

compared to the asymptotic limit (11). An interesting
question is what is the optimal procedure to detect the number
of signals and what is its detection performance.

Regretfully, since determining the number of sources in-
volves testing multiple composite hypotheses, there is no
optimal statistical procedure for any prescribed false alarm rate

. However, one can gain insight into this problem by studying
a specific case where an optimal procedure does exist, and that
is the case of testing one simple hypothesis against a simple
alternative.

We hence analyze the following scenario: consider testing the
simple hypothesis versus a simple alternative , defined as

vs.

where the noise variance is assumed known, , and under
the hypothesis there is a single Gaussian distributed signal
with an a priori known variance . In this setting, the eigen-
values of the sample covariance matrix are suffi-
cient statistics, and for any finite values of and , there are
only two possible densities for them. By the Neyman–Pearson
Lemma, for any false alarm probability , the likelihood ratio
test is the optimal procedure to distinguish between the two hy-
potheses, namely

(15)

where the constant is chosen such that reject
.

For simplicity, we consider the case of real-valued samples.
Recall that the joint density of all eigenvalues of a sample
covariance matrix of multivariate real-valued Gaussian
observations with a population covariance is given by

(16)

where is a normalization constant, ,
and is the information matrix with
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the eigenvalues of . is the hypergeometric function
with matrix argument, given by

where is the invariant measure on the group of
orthogonal matrices.

Under , no signals are present , and

(17)

Under , a single signal of strength is present. Here there is
no simple explicit expression for the hypergeometric function.
However, its asymptotic expansion for large is [24]

(18)

Combining (15)–(18) and taking logarithms gives

Hence, asymptotically in sample size, we accept if

The key point of this analysis is that as with fixed,
distinguishing between and should be based only on the
largest sample eigenvalue . The same conclusion holds also
for complex-valued observations, where the density of sample
eigenvalues has a slightly different formula. Hence, the optimal
procedure to detect a single signal is closely related to Roy’s
largest root test for sphericity, originally derived by the union-
intersection principle [22], [16].

A similar analysis, using formula (3.5) from [24], shows that
to distinguish between the two hypotheses

signals vs. signals

with a priori known noise variance and signal strengths, asymp-
totically the LRT depends to leading order only on .

B. An RMT Based Estimation Algorithm

Motivated by the above analysis, we now present an estimator
for the number of signals based on a sequence of hypothesis
tests, each time testing the significance of the th sample eigen-
value , as arising from a signal rather than from noise.2 This
algorithm was developed by us in a different context [23], of

2Matlab code of our algorithm can be downloaded from http://www.wisdom.
weizmann.ac.il/~nadler/

chemical rank determination in analytical chemistry, where typ-
ically . For this paper to be self contained we present a
brief description of the algorithm, and then focus on its analysis
in the typical setting for signal processing applications, where

. Later on we also present some results where .
Further results in the latter setting can be found in [23].

The algorithm works as follows: For
, we test

at most signals vs. at least signals

Under the null hypothesis, arises from noise. Thus, we reject
if is too large,

where is an estimate for the unknown noise level
[see (22) below] and depends on the confidence level

chosen by the user. Roughly speaking, is de-
termined such that if only signals are present, and the th
eigenvalue is due to noise, then

reject

Hence, controls the probability of model overestimation. We
stop at the smallest index where the above condition fails,
i.e., the first time we accept . Our estimate of the number
of signals is then .

Using Theorem 1 and Lemma 1 from Section II, for large
enough, under the null hypothesis of signals, approxi-
mately follows a TW distribution with negligible influence from
the first signals. Hence, we set the threshold to

with given by (6).
To conclude, our estimator is defined by

(19)

We refer to this as the RMT estimator.

C. Noise Estimation

To apply (19), an accurate estimate of the unknown noise
level is required. Under the assumption of signals, a simple
estimator of the noise level is via maximum likelihood [34]

(20)

As discussed below, this estimator has a negative bias, which
may lead to overestimation of the number of signals, specifically
for small sample sizes [23].

To develop a more accurate noise estimator, an analysis
of the interaction between signal and noise eigenvalues is
needed. Specifically, let be an orthogonal basis
which diagonalizes the population covariance matrix [see
(2)] where Span is the signal subspace and
Span is the orthogonal noise subspace. Let
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denote the sample variance in the direction . Assuming
signals, all projections for contain only noise

contributions, and hence, averaging over all noise realizations,
. Therefore, an unbiased estimator of is the

average of

(21)

Unfortunately, the diagonalizing basis is unknown, and to
estimate , we need an estimate for in (21).
We now readily see that the simple estimator (20) follows by
neglecting this positive term altogether, leading to a negative
bias.

In [23], we developed an improved noise estimator using a
matrix perturbation approach. The key idea is that an estimate of
noise level depends on the bias of the signal eigenvalues, which,
in turn, depends on the unknown noise level. Specifically, denote
by the basis which diagonalizes the signal subspace of the
sample covariance matrix . In this new basis,

. . .

. . .

where the matrix captures the interactions between the signal
and the noise subspaces. We view the matrix as a small pertur-
bation, expand the eigenvalues and eigenvectors of in terms
of its entries, and take averages of the various random variables
appearing in the resulting expressions. This principle yields an
approximately self-consistent method to estimate the noise level
via solution of the following non-linear system of equations:

(22)

We solve this system iteratively starting from an initial guess
given by (20). The second equation defines each as a function
of , where we take the larger root of the quadratic equation.
Note that a real valued solution exists for any

. Our next estimate is then

It can be shown that for any , and
so . If then by definition
and so . Thus, if , then the sequence

of refined guesses is guaranteed to monotonically converge
to a solution . Otherwise, for some we
get , no real-valued solution exists, and
our noise estimator is the current guess. In simulations the se-
quence typically converges within a few iterations, so that
the computational load of the improved noise estimator is neg-
ligible compared to the complexity of eigenvalue calculations.
As described in [23], whereas for fixed the relative bias of the
maximum likelihood estimator (20) is , the relative bias
of the improved estimator is . This smaller bias can
lead to a substantial improvement in the algorithm’s detection
performance.

Remark: We offer a different interpretation to our noise esti-
mator. A related problem in the statistical literature is the deter-
mination of the number of interaction terms in a fixed two-way
model [31]. To test the hypothesis of terms versus terms,
the likelihood ratio test statistic is

However, for the distribution of this statistic depends on
unknown nuisance parameters, which are the strengths of the
first signals. In this context, our noise estimator attempts
to remove the mean effect of these nuisance parameters.

IV. CONSISTENCY AND PERFORMANCE ANALYSIS OF

OUR ALGORITHM

In this section we analyze the asymptotic behavior of our
algorithm in certain asymptotic regimes. Proofs appear in the
Appendix.

A. Consistency

We start by considering the asymptotic properties of our al-
gorithm as with fixed. Recall that the MDL procedure
is strongly consistent, see (12). Since our method is based on a
sequence of hypothesis tests, we show that it is weakly consis-
tent, in the sense that as it detects all signals present
(Theorem 4), but has a small probability of overestimation, that
can be controlled by the user (Lemma 2). Later on we show that
if the false alarm probability decreases with sample size at a
certain rate, then the resulting algorithm is strongly consistent,
just as the MDL procedure (Theorem 5).

Theorem 4: Let be the RMT estimator of number of sig-
nals given samples of the form (1) with signals. Define the
random variable . Then, as with
fixed, . In particular, this implies that

We now consider the probability of overestimation. For sim-
plicity we assume that the noise level is known. The effects of
its estimation are discussed in the Appendix and are argued to
be small.

Lemma 2: Consider complex-valued observations with an a
priori known noise strength. The false alarm (overestimation)
probability of our algorithm is asymptotically bounded by
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Fig. 2. Overestimation probability as a function of the number of sensors �

and divided by �. The red curves are for a signal free system, whereas the blue
curves are for a system carrying two signals with strengths � � ����� ���.
Comparison of simulation results (dotted) with the theoretical results (solid) of
Lemma 2, (23).

where

(23)

Fig. 2 compares , for various values of
and , as a function of , with , to the theoretical
result (23). Note that the empirical results are for an a priori
unknown noise variance, estimated via (22). In the figure
was approximated via (7) which introduces an additional source
of error. Yet, the probability of overestimation is within a small
multiplicative factor of the required confidence level even for

.
Finally, we show that our algorithm can be revised to be

strongly consistent, e.g., satisfying (12). This can be done by
replacing the fixed confidence level , with a sample-size de-
pendent one , where sufficiently slow as , so
as to achieve both high detection performance at small sample
size and consistency as .

Theorem 5: Let be a sequence of significance levels and
be their corresponding thresholds, computed by

inverting the Tracy–Widom distribution. Assume suffi-
ciently slow such that but . Let denote
the number of signals detected by our algorithm with samples
and with significance level . Then,

B. Performance Analysis

We now analyze the performance of our proposed algorithm
for finite and . As in the analysis of the MDL estimator, we
assume has multiplicity one and , so
that the main source of error is misdetection of the th sample
eigenvalue. We first consider the case of known noise level

. The condition for our algorithm to report at least the correct
number of signals is

For , according to [1] and [28], in the joint limit
, the fluctuations of are Gaussian,

where

is the asymptotic limit for the signal eigenvalue, see (10), and

While asymptotically there are no signal-signal interactions, for
a more accurate performance analysis for finite and , we
need to take into account the interaction between the signals.
Consider the submatrix of which corresponds to the

-dimensional signal subspace, whose eigenvalues are
. A classical result by Lawley [17] shows that up to

terms

Hence, an approximate expression for is:

(24)

where .
We now show that the effect of estimating is small. Con-

sider the threshold in the RHS of (24). For , this
threshold is negative and of order . Replacing by
any estimate does not change the leading
order term of the threshold. Thus, asymptotically, (24) is a good
approximation for the performance of our algorithm even when

is not known.
Furthermore, we can use (24) to answer the following ques-

tion: what is the signal strength needed in order to detect
it with probability at least by our method, i.e., for given fi-
nite values of , and for fixed , what is s.t.

? According to (24), this should ap-
proximately satisfy

where is now a function of . Plugging (4) and (5) and the
expression for above, and solving for gives

(25)

In Figs. 3 and 4 we present simulation results that support our
theoretical analysis, and specifically the dependence of
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Fig. 3. Probability of estimating at least the correct number of signals as a
function of the number of sensors �, with � � � � � samples. For the upper
curve � � � and � � ���. For the lower curve � � � and � � ���� ������	.

Fig. 4. Probability of estimating at least the correct number of signals as a
function of signal strength�. For the upper curve� � �� � � �� and� � ���.
For the lower curve � � �� � � �� and � � ���. In this case, the first two
signals are constant, � � �� and � � ��, and the third signal is changing.

on the parameters and , and that estimating has very
small effect on .

C. The Case

In recent years, there is an increasing interest in statistical in-
ference in the large , small case. When the standard
MDL estimator is not applicable, since the smallest eigenvalues
of are identically zero. Hence, various alternative methods
to estimate the number of signals have been developed. For ex-
ample, [32] and [30] propose estimation algorithms based on the
sequence of statistics

One motivation for using these statistics is related to [18],
where it was shown that the statistic can be used as a test of
sphericity applicable for all values of . Another convenient
property is that under the null hypothesis of no signals, is
scale free in the sense that its distribution is independent of the
unknown noise level .

However, the main drawback of this statistic is that it attempts
to distinguish the null hypothesis of no signals against all pos-
sible alternatives. Hence, as we show below, in the joint limit

estimators based on this statistic are not consistent

Fig. 5. Comparison of empirical mean of � as a function of signal strength �
with the approximation (30).

for estimating the number of signals, in the sense that their limit
of detection is strictly larger than the information limit of (11).

For simplicity, we analyze the case of a single signal with
strength . The method described in [32] estimates the number
of signals by a sequence of hypothesis tests which depend on a
user chosen confidence level . In particular, for large and ,
it reports at least one signal if

(26)

where . The following Lemma char-
acterizes the asymptotic limit of detection corresponding to this
test.

Lemma 3: For real valued observations, to reliably detect a
signal of strength by the test (26), the asymptotic requirement
on the signal strength, as , with is

(27)

where .
Similar results can be derived for complex valued noise.
Equation (27) shows that the detection limit for the method of

[32] is strictly larger than the limit (11). By a similar analysis,
it is possible to show that the AIC type estimator proposed by
Rao and Edelman [30] also has an asymptotic detection limit
which, although smaller than (27), is still strictly larger than
(11). Hence, conjecture 6.3 in [30] is not true. We note that the
method [30] may also overestimate the number of signals; see
the Appendix in [23].

In Fig. 5 we compare the approximation (30) used in the Proof
of Lemma 3 with the empirical mean of as
a function of signal strength for two distinct pairs of values

or . Note the excellent
agreement between the two curves in both cases. Fig. 6 presents
histograms of and of the largest eigenvalue for three dif-
ferent values of signal strength , showing that has more sta-
tistical power than (or equivalently ).

Fig. 7 shows simulation results for the probability of misde-
tection as a function of signal strength for our algorithm with

%, the algorithm proposed by Rao and Edelman
[30], and the algorithm by Schott [32], with a confidence level
of %, for and real valued obser-
vations. The left vertical line is , (25), whereas the right
vertical line is (27) with . Fig. 8 shows similar results for
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Fig. 6. The distribution of the statistic � (left) and of the largest eigenvalue
� (right) in the case of no signal versus the case of a single signal with strength
� for � � �� and � � ���. In the top row, the signal is too weak to be detected
by either of the two statistics. In the middle row the signal is sufficiently strong
to be reliably detectable by the largest eigenvalue, but not by � . The bottom
row shows the case of a strong signal, detectable by both methods.

Fig. 7. Misdetection (error) probability as a function of signal strength, for
� � ����� � � ��� �� � ��.

and . Note that in this case [30] overestimates
the number of signals for ; see the Appendix in [23] for
an explanation.

V. SIMULATIONS

We compare the performance of our algorithm, namely (19)
and (22) with a confidence level %, to the standard
MDL and AIC estimators [34], in a series of simulations all with
complex valued signals and complex Gaussian noise with

. Our performance measure is the probability of misdetection,

In Fig. 9, we examine the performance of the different algo-
rithms as a function of sample size in the presence of two sig-
nals with strengths , and with

sensors. We denote by CONSISTENT the RMT algorithm

Fig. 8. Misdetection (error) probability as a function of signal strength, for
� � ����� � ��� �� � ��.

Fig. 9. Misdetection (error) probability as a function of sample size �.

modified into a consistent algorithm by taking a decreasing con-
fidence level ; see Theorem 5. We also plot
the theoretical misdetection probability of the MDL procedure,
as derived in [10], [26]. This probability is given by ,
where the quantities and are approximations to the mean
and variance of the random variable
(see [10, (19) and (20)]). For we use the more accurate ap-
proximation of [26]; see (13). The simulation results are in very
close agreement to the theoretical predictions.

In Fig. 10, results with sensors are shown. Both fig-
ures show the superior detection performance of the RMT al-
gorithm as compared to the MDL estimator. It is also evident
that the AIC estimator is asymptotically inconsistent, having a
non-negligible probability to overestimate the number of sig-
nals when is large. This is also the reason for its seemingly
better performance for small . Even though the signal is too
weak to be detected, the tendency for overestimation of the AIC
estimator compensates for it. Finally, note that upon increasing
the number of samples , the RMT algorithm converges to (an
almost) zero error probability. For example, with sen-
sors, and , we have
whereas . We also see that the modifi-
cation of the RMT algorithm to a consistent one causes only a
slight degradation in detection performance for small .

In Fig. 11, we examine the performance of the different
algorithms in the presence of signals with strengths
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Fig. 10. Misdetection (error) probability as a function of sample size �.

Fig. 11. Misdetection (error) probability as a function of signal strength �.

as a function of , for sensors and
samples. Again the RMT estimator has dominant performance
over MDL, and the AIC estimator performs better for small

but does not converge to a zero misdetection error as
increases.

VI. CONCLUSION

In this paper, we presented a statistical analysis of the
problem of non-parametric detection of the number of signals.
We described the asymptotic limit of detection, showed that the
highly popular MDL-based estimator is not optimal, presented
a novel estimation method that asymptotically achieves this
limit and analyzed its finite sample properties. The proposed
algorithm is based on a sequence of hypothesis tests, at each
step testing the significance of a single eigenvalue as arising
from a signal. As shown both theoretically and by simulations,
the proposed algorithm exhibits excellent performance under a
wide range of parameter values.

In this paper, we focused on the (somewhat unrealistic) set-
ting of homogeneous uncorrelated noise, with equal variance in
all sensors. An interesting future research direction is to develop
a similar estimator for more complicated settings such as hetero-
geneous sensors with unknown noise structure [11].

APPENDIX

Proof of Theorem 4: As , and hence
the eigenvalues of converge to those of w.p.1. Similarly,
as , for in (22), and hence

with the convention that for .
Further, as and , so the threshold

in (19) converges to . Since for each
is strictly larger than the average of the remaining eigen-

values, it is asymptotically detected w.p.1.
Proof of Lemma 2: Without loss of generality we assume

. It is sufficient to consider the probability that the
th test passes. This occurs when , where

.
Let denote the largest eigenvalue of the noise subspace

of size of the covariance matrix . Then,
from Cauchy’s Interlacing Theorem (see [12], Theorem 8.1.7),
it follows that . Hence,

From (4) and (5) we have that

where

Applying the bound of (8) with yields

From the definition of the function , (9), for

which concludes the proof.
Remark: The above analysis was conducted under the

assumption that the noise variance is known, but a sim-
ilar conclusion holds also if we estimate the noise variance
by any reasonable method [e.g., (20) or (22)], such that
the noise estimator is a random variable of the form
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where . In this case

we have that ,
which slightly increases the overestimation probability.

Proof of Theorem 5: First we prove that
. As in the Proof of The-

orem 4, we have that as w.p.1, and thus
for

Further, as , and the condition
guarantees , so the threshold in (19) converges to

as . Since for each is
strictly larger than the average of the remaining eigenvalues, it
is asymptotically detected w.p.1.

Next we prove . It suffices to
consider the th test, which decides whether arises
from a signal, and show that this test passes with probability that
goes to zero as . Denote by the threshold in (19). We
show that .

Let denote the largest eigenvalue of the noise subspace
of size of the covariance matrix . As in
the Proof of Lemma 2, we have that

(28)

Thus, it suffices to show that the RHS goes to zero.
To this end, we consider the various components in the

threshold and how they
scale when . From (4) and (5) we have

and for some constant that depends
only on . The noise estimator is a random variable of the
form where . Thus,

Let be some sequence such that as , but
, that is, . For sufficiently large, the

later condition on the growth of guarantees that with proba-
bility converging to 1 as

Random matrix theory provides us with the following non-
asymptotic bound, that follows from Gordon’s inequality [19]:

Since , the RHS in (28) goes to zero when .
Proof of Lemma 3: Without loss of generality we assume

that , and denote . As proven

in [32], under the null hypothesis of no signals, in the joint
limit and regardless of the limiting value of

.
In the presence of a signal of strength , the average

is shifted upwards. Assuming that its variance is not changed
significantly, the condition to reliably detect its presence via (26)
is approximately

(29)

where .
By definition, . As-

suming both are large, we approximate by
, which gives

(30)

where . Plugging (30) into (29),
and solving for gives the asymptotic condition (27).
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