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Abstract—In this paper we consider signal detection in cog-
nitive radio networks, under a non-parametric, multi-sensor
detection scenario, and compare the cases of known and unknown
noise level. The analysis is focused on two eigenvalue-based meth-
ods, namely Roy’s largest root test, which requires knowledge
of the noise variance, and the generalized likelihood ratio test,
which can be interpreted as a test of the largest eigenvalue
vs. a maximum-likelihood estimate of the noise variance. The
detection performance of the two considered methods is expressed
by closed-form analytical formulas, shown to be accurate even
for small number of sensors and samples. We then derive an
expression of the gap between the two detectors in terms of
the signal-to-noise ratio of the signal to be detected, and we
identify critical settings where this gap is significant (e.g., small
number of sensors and signal strength). Our results thus provide
a measure of the impact of noise level knowledge and highlight
the importance of accurate noise estimation.

I. I NTRODUCTION

Spectrum sensing is a central issue in cognitive radio (CR)
systems [1]–[3] and has attracted great research interest in
the last decade. In particular, sensing techniques based onthe
eigenvalues of the received sample covariance matrix (see,for
instance, [4]–[10]) recently emerged as a promising solution,
as they do not require a priori assumptions on the signal to be
detected, and typically outperform the popular energy detec-
tion method when multiple sensors are available. Eigenvalue-
based detection (EBD) schemes can be further divided into
two categories: methods that assume knowledge of noise level
(referred to as “semi-blind” [4]), and methods that do not
assume this knowledge (“blind”). Methods belonging to the
first class provide better performance when the noise variance
is known exactly, whereas blind methods are more robust to
uncertain or varying noise level.

In this paper, we analyze the performance of two nearly-
optimal1 detection criteria in their respective categories: for
known noise variance, the largest eigenvalue test, orRoy’s
largest root test (RLRT), originally proposed in [11] and
introduced in CR by [9] (derived as a “blindly combined
energy detector”); for unknown noise variance, the test of the
largest eigenvalue divided by trace of the covariance matrix,
introduced in CR by [7] as ageneralized likelihood ratio test
(GLRT) and previously appeared in signal processing [12]
and statistics literature [13], [14]. The main contributions of
our analysis are: (i) derivation of novel expressions for the

1See Sec. III for a more rigorous definition.

false-alarm and detection probabilities of the GLRT, accurate
for finite numbers of samples and receivers; (ii) analytical
expression of the performance gap between the two detectors.
Based on these results, we show that in some scenarios (large
number of sensors, relatively high signal-to-noise ratio)the
performance improvement of RLRT over GLRT is marginal,
whereas in other settings (few sensors, low signal-to-noise
ratio) the gap is significant. In other words, exact knowledge
of the noise level may result, in some cases, in an increased
detection capability of the order of several dBs.

The paper is organized as follows: the signal model is
introduced in Sec. II; the considered detection methods are
presented in Sec. III; a comparative performance analysis of
RLRT and GLRT is provided in Sec. IV; the formulas derived
analytically are validated by numerical simulations in Sec. V;
Sec. VI concludes the paper.

II. M ODEL

We consider a multi-sensor detection setting, where the de-
tector constructs its test statistic fromK sensors (receivers or
antennas) andN time samples. Lety(n) = [y1(n) . . . yK(n)]

T

be theK × 1 received vector at timen, where the element
yk(n) is the discrete baseband complex sample at receiverk.

Under H0, the received vector consists ofK complex
Gaussian noise samples with zero mean and varianceσ2

v

y(n)|H0
= v(n) (1)

wherev(n) ∼ NC(0K×1, σ
2
vIK×K). UnderH1, in contrast,

the received vector contains signal plus noise

y(n)|H1
= x(n) + v(n) = hs(n) + v(n) (2)

where s(n) is the transmitted signal sample, modeled as a
Gaussian2 random variable with zero mean and varianceσ2

s ,
and h is the K × 1 unknown complex channel vector. The
channel is assumed to be memoryless and constant during the
detection time. UnderH1, we define the SNR at the receiver
as

ρ ,
E ‖x(n)‖2
E ‖v(n)‖2 =

σ2
s

σ2
v

‖h‖2
K

, (3)

where‖ · ‖ denotes Euclidean (L2) norm.

2The Gaussian signal assumption simplifies the mathematical analysis and,
as far as detection performance is concerned, turns out to be areasonable
approximation also for digitally modulated signals (e.g., 4/8-PSK, 16-QAM
etc.) after pulse-shape filtering and non-coherent sampling.



The received samples are stored by the detector in theK×N
matrix

Y , [y(1) . . .y(N)] = hs+ V (4)

where s , [s(1) . . . s(N)] is a 1 × N signal vector and
V , [v(1) . . . v(N)] is a K × N noise matrix. The sample
covariance matrixR is then defined as

R ,
1

N
Y Y H . (5)

Let λ1 ≥ . . . ≥ λK be the eigenvalues ofR (without loss of
generality, sorted in decreasing order).

In general, letT be the test statistic employed by the
detector to distinguish betweenH0 andH1: several possible
test statistics will be examined throughout the paper. To make
the decision, the detector comparesT against a pre-defined
thresholdt: if T > t it decides forH1, otherwise forH0. As
a consequence, theprobability of false alarm is defined as

Pfa = Pr(T > t|H0) (6)

and theprobability of detection as

Pd = Pr(T > t|H1). (7)

Usually, the decision thresholdt is determined as a function
of the target false-alarm probability, to ensure “constantfalse-
alarm rate (CFAR)” detection. The corresponding detection
probability (or the missed-detection probabilityPmd = 1−Pd)
is also very important for CR networks where the interference
caused by an opportunistic user to primary users must be
very limited. As an example, the requirements imposed by
the WRAN standard [3] arePfa < 0.1 andPmd < 0.1.

III. C ONSIDEREDMETHODS

We restrict our analysis to non-parametric detection meth-
ods, i.e., which do not assume any prior knowledge about the
signal to be detected. We focus on the difference in detection
performance between the cases of known and unknown noise
level (σ2

v).

A. Known Noise Variance

When testing a simple hypothesisH0 against a simple
alternativeH1, in general, the most powerful test is given
by the Neyman-Pearson (NP) likelihood ratio [15]. In the
considered scenario, with unknown channel vectorh, the
eigenvalues of the sample covariance matrixR are sufficient
statistics for the NP test (see [16]–p.11, and [17]–Sec.III-A),
which can be written as

LRT =
p(λ1, · · · , λK |H1)

p(λ1, · · · , λK |H0)
. (8)

In the asymptotical regimeN → ∞, with given signal strength
ρ and noise varianceσ2

v , the above criterion can be shown
[16], [17] to depend only on the largest eigenvalue (λ1), i.e.,
it reduces to Roy’s largest root test [11], defined as

TRLRT ,
λ1

σ2
v

. (9)

Notice that energy detection (ED), another commonly used
criterion for known noise level, is suboptimal to RLRT in the
sense of the Neyman-Pearson lemma. It can be written as

TED ,
1

KNσ2
v

K
∑

k=1

N
∑

n=1

|yk(n)|2 =
‖Y ‖2F
KNσ2

v

where ‖ · ‖F denotes the Frobenius norm. Since‖Y ‖2F =

tr(Y Y H), we obtain thatTED = 1
Kσ2

v

∑K
i=1 λi. Therefore,

asymptotically inN , ED has reduced statistical power com-
pared to (9) as it tests against the noise level the sum of all
eigenvalues, instead of justλ1.

B. Unknown Noise Variance

Whenσ2
v is unknown,H0 andH1 are composite hypothesis

and the NP lemma does not apply. A common procedure is
the GLRT, obtained from

GLRT =
suph,σ2

v

p(Y |H1)

supσ2
v

p(Y |H0)
, (10)

which in our model3 is equivalent to (see [8], Sec. II)

TGLRT ,
λ1

1
K tr(R)

. (11)

Note that, since

1

TGLRT
=

∑K
i=1 λi

λ1
= 1 +

∑K
i=2 λi

λ1
,

the GLRT is equivalent (up to a nonlinear monotonic trans-
formation) to

TGLRT′ =
λ1

1
K−1

∑K
i=2 λi

. (12)

The denominator ofTGLRT′ is the maximum-likelihood (ML)
estimate of the noise variance assuming the presence of a
signal [18], hence the GLRT can be interpreted as a largest
root test with an estimated̂σ2

v instead of the true (unknown)
σ2
v .
Remark: another popular detection criterion, proposed in

[5], is the “eigenvalue ratio test”TERD = λ1/λK (also called
maximum-minimum eigenvalue, or condition number test).
Compared to (12), this test is clearly suboptimal unlessK = 2.

Based on the above considerations, RLRT and GLRT are
taken as the reference detection methods for the cases of
known and unknown noise variance, respectively.

IV. D ETECTION PERFORMANCE OFRLRT AND GLRT

In [8] it is shown that, in the asymptotic regimeN,K → ∞
with K/N fixed, the GLRT detection performance converges
to that of RLRT. However, a natural question is: how different
is their performance for realistic values ofK,N? In other
words, what is the performance gap gained in practical appli-
cations by exact knowledge of the noise level? To answer this

3 This expression of the GLRT is specific to the considered model(single
signal, unknownσ2, unknown channelh), i.e., the same as in [8]. Other
GLRTs for different models, e.g., unknown number of signals and generic
signal covariance matrix, are derived in [10].
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Fig. 1. Simulated receiver operating characteristics (ROC)curves for
detection methods with known and unknown noise variance.

question, we compare the performance of the two detectors
by deriving analytical expressions for the detection probability
(7), given a false-alarm rate (6)Pfa = α and a SNRρ. Our goal
is to express the detection probability (7) of the two methods,

Pd = Pr(T > t(α)|H1, ρ), (13)

wheret(α) is the decision threshold such thatPfa = α. Since
we are interested in low false alarm probabilities, we assume
α ≪ 1.

A preliminary performance assessment is provided by Fig.
1, which compares the four aforementioned methods (RLRT,
GLRT, ED and ERD) in a typical scenario for CR applications:
small number of samples and receivers (K = 6, N = 50) and
a single signal with low SNR (ρ = −10dB). These simulation
results illustrate the performance gap between RLRT and
GLRT, as well as the suboptimality of ED compared to RLRT
(scenario of known noise level) and of ERD compared to
GLRT (scenario of unknown noise level).

A. RLRT

1) Setting the threshold: For RLRT, the decision threshold
t(α) can be approximated thanks to the property that under
H0, and in the joint limitN,K → ∞, the random variable
TRLRT asymptotically follows a second-order Tracy-Widom
(TW) distribution [19]:

Pr

[

TRLRT − µ

ξ
< s

]

→ FTW2(s),

with suitably chosen centering and scaling parameters

µ = [(K/N)1/2 + 1]2 (14)

ξ = N−2/3[(K/N)1/2 + 1][(K/N)−1/2 + 1]1/3 (15)

(refined expressions ofµ and ξ, providing an improved con-
vergence rate, are given in [20]). Therefore,

α = Pr(TRLRT > t) = Pr

(

TRLRT − µ

ξ
>

t− µ

ξ

)

≈ 1− FTW2

(

t− µ

ξ

)

.

Hence an approximate expression for the threshold of RLRT
is

tRLRT(α) ≈ µ+ F−1
TW2(1− α)ξ (16)

whereF−1
TW2 is the inverse of the TW c.d.f.

2) Detection probability: UnderH1, the asymptotic distri-
bution ofλ1 in the joint limit N,K → ∞ is characterized by
a phase transition phenomenon [21]. In the case of a single
signal, the critical detection threshold forN,K → ∞ can be
expressed directly in terms of the SNR as [22]

ρcrit =
1√
KN

. (17)

This expression can be refined by adding correction terms for
finite N,K (cf. [17], Eq. 25). If the SNRρ is lower than the
critical value, the limiting distribution ofλ1 underH1 is the
same as that of the largest eigenvalue underH0, thus nullifying
the statistical power of a largest eigenvalue test. Ifρ > ρcrit,
on the contrary, the distribution ofTRLRT is asymptotically
Gaussian [17], [21], with

E

[

λ1

σ2
v

]

= (1 +Kρ)

(

1 +
K − 1

NKρ

)

(18)

Var

[

λ1

σ2
v

]

=
1

N
(Kρ+ 1)2, (19)

up toO(1/N2) terms. Therefore, the detection probability can
be expressed as

P
(RLRT)
d ≈ Q

[√
N

(

t(α)

Kρ+ 1
− K − 1

NKρ
− 1

)]

(20)

whereQ(z) = 1√
2π

∫∞
z

e−x2/2dx is the standard Gaussian tail
probability function.

B. GRLT

1) Setting the threshold: Asymptotically, as bothN,K →
∞, the random variableTGLRT also follows a second-order
TW distribution [8], hence in first approximationtGLRT(α) ≈
tRLRT(α). However, as described in [23], this approximation
is not very accurate for tail probabilities ofTGLRT for small
values ofK. In [23] the following improved expression was
derived:

Pr

[

TGLRT − µ

ξ
< s

]

≈ FTW2(s)−
1

2NK

(

µ

ξ

)2

F ′′
TW2(s).

Hence, for a required false alarm probabilityα,

α = Pr(TGLRT > t) = Pr

(

TGLRT − µ

ξ
>

t− µ

ξ

)

≈ 1− FTW2

(

t− µ

ξ

)

+
1

2NK

(

µ

ξ

)2

F ′′
TW2

(

t− µ

ξ

)

.

(21)



The above equation can be numerically inverted to find the
required thresholdtGLRT(α).

2) Detection probability: To derive an explicit approximate
expression for the detection performance of the GLRT under
H1, we note that 1

K

∑K
j=1 λj = 1

K

[

λ1 +
∑K−1

j=2 λj

]

and
rewrite the GLRT (11) as

λ1 > t̃(α)

∑K
j=2 λj

K − 1
(22)

with

t̃(α) =
K − 1

K − tGLRT(α)
tGLRT(α). (23)

Assuming the presence of a sufficiently strong signal (ρ >
ρcrit), the largest sample eigenvalue is (with high proba-
bility) due to a signal whereas the remaining eigenvalues,
λ2, . . . , λK , are due to noise. Let

Z ,
1

K − 1

K
∑

j=2

λj

denote their mean. As discussed in [24](Eq.12), asymptotically
in N , the random variableZ is Gaussian distributed with
varianceO

(

1
N(K−1)

)

, and with a mean value that is slightly
biased downwards:

E

[

Z

σ2
v

]

= 1− 1

N

Kρ+ 1

Kρ
+O

(

1

N2

)

. (24)

We then recall thatλ1/σ
2
v is asymptotically Gaussian dis-

tributed with mean and variance given by (18) and (19). For
a large number of sensors (K ≫ 1), the fluctuations ofZ
are relatively much smaller than those ofλ1, hence we can
approximate (22) as

(1+Kρ)

(

1 +
K − 1

NKρ

)

+
1 +Kρ√

N
η1 > t̃(α) ·E

[

Z

σ2
v

]

, (25)

whereη1 ∼ N (0, 1) is a standard Gaussian random variable.
Therefore, we conclude that

P
(GLRT)
d ≈Q

[√
N

(

t̃(α)

(

1

Kρ+ 1
− 1

NKρ

)

−K − 1

NKρ
−1

)]

.

(26)

C. Performance Gap between RLRT and GRLT

Comparison of (26) with (20) shows quantitatively the
performance gain obtained using RLRT, i.e., knowing exactly
the noise level, instead of GLRT, i.e., estimating the noise
level from the sample eigenvalues. The difference in standard
deviations between the detection probabilities in the two cases
can be expressed, after some algebraic manipulations, as
√
N

1 +Kρ

(

K − 1

K − tGLRT(α)
tGLRT(α)− tRLRT(α)

)

+O

(

1√
N

)

.

(27)
This expression can be further simplified whenN ≫
(1/Kρ)2. Under this condition, and recalling the expressions

of µ (14) and ξ (15), the thresholdtRLRT(α) (16) can be
written as

tRLRT(α) = 1 + 2

√

K

N
+

sα

K1/6
√
N

+O

(

1

N

)

(28)

where sα = F−1
TW2(1 − α) = O(1). A similar expression

holds for tGLRT(α), with sα replaced bys′α,K,N , found by
inverting (21) and, in general, also having a weak dependence
on N,K. Inserting these expressions into (27) gives that, for
N ≫ (1/Kρ)2, the difference is roughly

1

1 +Kρ

[

2
√
K

K − 1
+

s′α,K,N − sα

K1/6
+

s′α,K,N

(K − 1)K1/6

]

+O

(

1√
N

)

.

(29)
We remark that forα ≪ 1, the differences′α,K,N − sα is
negative but quite small even for a small number of sensors.
For largeN the first term is thus the dominant one. From this
term we see that, as expected, the performance gap between
Roy’s largest root test and the GLRT decreases with a larger
number of sensors, for which we have a better noise estimate,
but at a relatively slow rate ofO(1/

√
K).

In particular, for a practical number of sensors, this gap
is non-negligible. For example, for detection of weak signals
(Kρ ≪ 1) with an array ofK = 4 sensors, at a fixed alarm of
α = 1%, and over a wide range of values ofN , the difference
is about 1.4 standard deviations. Even withK = 16 sensors,
the difference is still about 0.5 standard deviations.

The performance gap between RLRT and GLRT can be
evaluated also in terms of SNR needed by the two detectors
to achieve the samePd. Let us setP (RLRT)

d = P
(GLRT)
d ; after

some algebra and neglectingO(1/N) terms, we obtain

ρGLRT

ρRLRT
≈ t̃(α)

tRLRT(α)
+

1

KρRLRT

t̃(α)− tRLRT(α)

tRLRT(α)
. (30)

Now, from Eq. (23) it follows that̃t(α) > tRLRT(α): in fact,
even thoughtGLRT(α) is slightly lower thantRLRT(α), the
term (K − 1)/(K − tGLRT(α)) > 1 is largely dominant for
α ≪ 1. Therefore, ρGLRT > ρRLRT, i.e., RLRT achieves the
same detection performance of the GLRT for signals with a
lower SNR. Numerical examples are shown in next section.

V. SIMULATION RESULTS

In Fig. 2 we compare the detection performance of RLRT
and GLRT with the theoretical formulas (20) and (26), as a
function of the SNRρ and for a given false alarm rate of
α = 0.5%. Fig. 3 illustrates the SNR gap between GLRT and
RLRT, i.e., the extra SNR needed by the GLRT to achieve the
same detection probability of RLRT. The figure shows that
the gap increases for (i) small number of sensors and (ii) low
signal strength, in accordance to the theoretical formula (30).
These conclusions highlight the key role that the noise variance
estimation has for spectrum sensing, especially in challenging
scenarios.
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VI. CONCLUSIONS

The performance of eigenvalue-based detection has been
investigated in this paper, considering conditions of known and
unknown noise level. Closed-form expressions of detection
probability of two best-performing detectors in their respective
classes have been derived. These results provide a performance
evaluation of two important detection techniques in cognitive
radio systems, and can be used for an accurate design of
spectrum sensing parameters (number of sensors and samples)
given a target false alarm/detection rate imposed by standards
(e.g.,Pd = 0.9 at SNR= −10dB with Pfa = 0.1). In addition,
the quantitative characterization of the gap between GLRT and
RLRT gives insight into the impact of knowing the exact noise
level, which results in a significant performance improvement
especially when the number of sensors is low.

Based on this analysis, further research will be carried out
towards “hybrid” detection methods where auxiliary time slots

may be used to obtain a refined noise variance estimate and
thus reduce the gap between GLRT and RLRT.

REFERENCES

[1] J. Mitola and G. Q. Maguire, “Cognitive radios: making software radios
more personal”,IEEE Personal Commun., vol. 6, no. 4, pp. 13-18, 1999.

[2] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions”, IEEE Trans. Commun., vol. 23, no. 2, pp. 201-220, 2005.

[3] IEEE 802.22, “Draft Standard for Wireless Regional AreaNetworks Part
22” July 2008.

[4] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A Review on
Spectrum Sensing for Cognitive Radio: Challenges and Solutions”,
EURASIP Journal on Advances in Signal Processing, vol. 2010, pp.
1-15, January 2010.

[5] Y. H. Zeng and Y.-C. Liang, “Eigenvalue based spectrum sensing
algorithms for cognitive radio”,IEEE Trans. on Communications, vol.
57, no. 6, pp. 1784-1793, June 2009.

[6] F. Penna, R. Garello, M. A. Spirito, “Cooperative Spectrum Sensing
based on the Limiting Eigenvalue Ratio Distribution in Wishart Matri-
ces”, IEEE Comm. Letters, vol.13, no.7, pp.507-509, July 2009.

[7] P. Bianchi, J. Najim, G. Alfano, and M. Debbah, “Asymptotics of eigen-
based collaborative sensing”,Proc. IEEE Information Theory Workshop
(ITW 2009), Taormina, Italy, Oct. 2009.

[8] P. Bianchi, M. Debbah, M. Maida, and J. Najim, “Performanceof
Statistical Tests for Source Detection using Random MatrixTheory”,
http://arxiv.org/abs/0910.0827.

[9] Y. Zeng, Y.C. Liang, R. Zhang, “Blindly combined energy detection for
spectrum sensing in cognitive radio”,IEEE Signal Processing Letters,
vol. 15, 2008.

[10] R. Zhang, T.J. Lim, Y.C. Liang, Y. Zeng, “Multi-antenna based spectrum
sensing for cognitive radios: a GLRT approach”,IEEE Trans. Commu-
nications, vol. 58, no. 1, Jan. 2010.

[11] S. N. Roy, “On a heuristic method of test construction andits use in
multivariate analysis”,Ann. Math. Stat., vol. 24, no. 2, pp. 220-238,
1953.

[12] O. Besson, L.L. Scharf, “CFAR matched direction detector”, IEEE
Trans. on Sig. Proc., vol.54, no.7, pp.2840-2844, July 2006.

[13] D. E. Johnson, F. A. Graybill, “An analysis of a two-way model with
interaction and no replication”,J. Amer. Stat. Assoc. no. 67, pp. 862-868,
1972.

[14] J. Schott, “A note on the critical values used in stepwise tests for
multiplicative components of interaction”,Comm. Stat. Th. Meth., vol
15, no. 5, pp. 1561-1570, 1986.

[15] J. Neyman, E. Pearson, “On the Problem of the Most Efficient Tests of
Statistical Hypotheses”,Philosophical Transactions of the Royal Society
of London, Series A, 231: 289-337, 1933.

[16] R. J. Muirhead, “Latent roots and matrix variates: A review of some
asymptotic results,”Ann. Stat., vol. 6, no. 1, pp. 5-33, 1978.

[17] S. Kritchman, B. Nadler, “Non-Parametric Detections of the Number of
Signals: Hypothesis Testing and Random Matrix Theory”,IEEE Trans.
on Signal Processing, vol. 57, no. 10, pp. 3930–3941, 2009.

[18] M. Wax and T. Kailath, “Detection of Signals by Information Theoretic
Criteria”, IEEE Trans. on Acoustics, Speech and Signal Processing, vol.
ASSP-33, no. 2, pp.387-392, Apr. 1985.

[19] I. M. Johnstone, “On the distribution of the largest eigenvalue in
principal component analysis”,Annals of Statistics, vol.29, no.2, pp.295-
327, 2001

[20] N. El Karoui, “A rate of convergence result for the largest eigenvalue of
complex white Wishart matrices”,Ann. Prob., vol. 36, no. 6, pp. 2077-
2117, 2006.

[21] J. Baik and J.W. Silverstein, “Eigenvalues of large sample covariance
matrices of spiked population models”,J. Mult. Anal., vol. 97, no 6, pp.
1382-1408, 2006.

[22] F. Penna, R. Garello, M. A. Spirito, “Probability of Missed Detection
in Eigenvalue Ratio Spectrum Sensing”,Proc. 5th IEEE Int. Conf.
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Marrakech, Morocco, Oct. 2009

[23] B. Nadler, On the distribution of the ratio of the largest eigenvalue to
the trace of a Wishart Matrix,J. of Mult. Anal., vol. 102, pp. 363–371,
2010.

[24] S. Kritchman and B. Nadler, “Determining the number of components in
a factor model from limited noisy data”,Chemometrics and Intelligent
Laboratory Systems, vol. 94, pp. 19-32, 2008.


