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Abstract—In this paper we consider signal detection in cog- false-alarm and detection probabilities of the GLRT, aatar
nitive radio networks, under a non-parametric, multi-sensor for finite numbers of samples and receivers; (ii) analytical
detection scenario, and compare the cases of known and unknown expression of the performance gap between the two detectors

noise level. The analysis is focused on two eigenvalue-based meth-B d th It how that i . |
ods, namely Roy’'s largest root test, which requires knowledge ased on these results, we show that in some scenarios (large

of the noise variance, and the generalized likelihood ratio test, humber of sensors, relatively high signal-to-noise ratheg

which can be interpreted as a test of the largest eigenvalue performance improvement of RLRT over GLRT is marginal,
vs. a maximum-likelihood estimate of the noise variance. The whereas in other Settings (feW sensors, low Signa|_toe‘]ois
detection performance of the two considered methods is express$ ratio) the gap is significant. In other words, exact knowiedg

by closed-form analytical formulas, shown to be accurate even f th ise | | It i . .
for small number of sensors and samples. We then derive an of the noise level may result, in some cases, in an increased

expression of the gap between the two detectors in terms of detection capability of the order of several dBs.
the signal-to-noise ratio of the signal to be detected, and we The paper is organized as follows: the signal model is

identify critical settings where this gap is significant (e.g., small introduced in Sec. II; the considered detection methods are
number of sensors and signal strength). Our results thus provid presented in Sec. Ill; a comparative performance analyfsis 0
a measure of the impact of noise level knowledge and highlight Lo ) . )
the importance of accurate noise estimation. RLRT_and GLRT is provided in Sec_. AV t.he for.mula_s derived
analytically are validated by numerical simulations in Séc
I. INTRODUCTION Sec. VI concludes the paper.

Spectrum sensing is a central issue in cognitive radio (CR) Il. M ODEL
systems [1]-[3] and has attracted great research intemest i
the last decade. In particular, sensing techniques baségeon
eigenvalues of the received sample covariance matrix {see,
instance, [4]-[10]) recently emerged as a promising syt
as they do not require a priori assumptions on the signal to

. k
detected, and typically outperform the popular energycdetey Under H,, the received vector consists df complex

tion method when multiple sensors are available. Eigemalu(t%aussian noise samples with zero mean and variagce
based detection (EBD) schemes can be further divided into P

two categories: methods that assume knowledge of noisk leve y(n)|y, = v(n) 1)
(referred to as “semi-blind” [4]), and methods that do not
assume this knowledge (“blind”). Methods belonging to th

first class provide better performance when the noise vmiar%
is known exactly, whereas blind methods are more robust to y(n)|n, = z(n) +v(n) = hs(n) +v(n) )

uncertain or varying noise level. h is th itted sianal | deled
In this paper, we analyze the performance of two nearly- ere s(n) is the transmitted signal sample, modeled as a

optimal detection criteria in their respective categories: fo aussiaf random variable with zero mean and variamge

known noise variance, the largest eigenvalue testRay's and h is_theK x 1 unknown complex channel vector. The
largest root test (RLRT), originally proposed in [11] and channel is assumed to be memoryless and constant during the

introduced in CR by [9] (derived as a “blindly combineodeteCtion time. Unde#;, we define the SNR at the receiver

energy detector”); for unknown noise variance, the teshef tas E|z(n)|? o2 |h|>?
largest eigenvalue divided by trace of the covariance matri pE E [[o(n)|? = U% K
introduced in CR by [7] as generalized likelihood ratio test v
(GLRT) and previously appeared in signal processing [1¥{here|| - || denotes EuclideanZg) norm.
and statistics literature [13], [14]. The main contribuSoof o N -

The Gaussian signal assumption simplifies the mathematicalsasaind,

our analysis are: (i) derivation of novel expressions fae thas far as detection performance is concerned, turns out to heasmnable

approximation also for digitally modulated signals (e.g8-BSK, 16-QAM
1See Sec. Il for a more rigorous definition. etc.) after pulse-shape filtering and non-coherent sampling

We consider a multi-sensor detection setting, where the de-
tector constructs its test statistic from sensors (receivers or
antennas) and’ time samples. Ley(n) = [11(n) . .. yx (n)]"

%ee the K x 1 received vector at time:, where the element
(n) is the discrete baseband complex sample at recéiver

herev(n) ~ Nc(0xx1,02I Kk« ). UnderHy, in contrast,
e received vector contains signal plus noise
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The received samples are stored by the detector ilkktkéV  Notice that energy detection (ED), another commonly used

matrix criterion for known noise level, is suboptimal to RLRT in the
Y 2 [y(1l)...y(N)]=hs+V (4) sense of the Neyman-Pearson lemma. It can be written as
where s £ [s(1)...s(N)] is a1l x N signal vector and A 1 LI 2 |IY]%
V £ [v(1)...v(N)] is aK x N noise matrix. The sample Tep = KNo2 ZZ lyx(n)]” = KNo?2
covariance matrixR is then defined as h=tn=1
1 where || - || denotes the Frobenius norm. Sinf® |2 =
R% NYYH- (5) (YY), we obtain thatlep = i Y., \i. Therefore,

asymptotically inN, ED has reduced statistical power com-

Let Ay Z e Z )‘K.be the e|g_envalue5 R (without loss of pared to (9) as it tests against the noise level the sum of all
generality, sorted in decreasing order). eigenvalues, instead of just
In general, letT be the test statistic employed by the ’ '

detector to distinguish betweet, and #,: several possible B. Unknown Noise Variance

test statistics will be examined throughout the paper. Tkama Wheno? is unknown,#, and#, are composite hypothesis

the decision, the detector compar€sagainst a pre-defined and the NP lemma does not apply. A common procedure is
thresholdz: if 7" > ¢ it decides for#,, otherwise forHy. As the GLRT, obtained from

, therobability of false al is defined
a consequence, theobability of false alarm is defined as Supp, o2p(Y [H1)

GILRT = ———_———~ 10

Py, = Pr(T > t|Ho) (6) supg2p(Y'[Ho) 4o

and theprobability of detection as which in our model is equivalent to (see [8], Sec. Il)
=tr

Usually, the decision thresholdis determined as a function i xR
of the target false-alarm probability, to ensure “consfafe- NOte that, since
alarm rate (CFAR)” detection. The corresponding detection 1 Zfil)‘i Zf(—z \i
probability (or the missed-detection probabil;y = 1—Py) Toimr N 1+ N

is also very important for CR networks where the interfeeen GLRT is equivalent (up to a nonlinear monotonic trans-
caused by an opportunistic user to primary users must }grmation) o q b

very limited. As an example, the requirements imposed by

the WRAN standard [3] aré’, < 0.1 and P4 < 0.1. Topp = A1 _ (12)
ﬁ Zzl; Ai

. . . . The denominator of g1,r is the maximum-likelihood (ML)
We restrict our analysis to non-parametric detection meth-_. ) . X
timate of the noise variance assuming the presence of a

ods, i.e., which do not assume any prior knowledge about g

signal to be detected. We focus on the difference in denectig'gnal [18], hence the GLRT can be interpreted as a largest

! . o
performance between the cases of known and unknown nori%8t test with an estimated, instead of the true (unknown)

level (02). g

Ill. CONSIDEREDMETHODS

Remark: another popular detection criterion, proposed in

A. Known Noise Variance [5], is the “eigenvalue ratio testfgrp = A1 /Ak (also called

When testing a simple hypothesi, against a simple maximum-minimum _eigen\{alue, or condit?on number test).
Compared to (12), this test is clearly suboptimal unl€ss: 2.

alternative #,, in general, the most powerful test is given Based on the above considerations, RLRT and GLRT are

by the Neyma”""?arsof‘ (NP) likelihood ratio [15]. In th‘taaken as the reference detection methods for the cases of
considered scenario, with unknown channel vecdkgrthe . . .
known and unknown noise variance, respectively.

eigenvalues of the sample covariance maffxare sufficient

statistics for the NP test (see [16]-p.11, and [17]-Sed)ll IV. DETECTION PERFORMANCE OFRLRT AND GLRT
which can be written as In [8] it is shown that, in the asymptotic reginé, K — oo
LRT — p(A1, -, Ar|Ha) ®) with K/N fixed, the GLRT detection performance converges
p(A, e Ak Ho) to that of RLRT. However, a natural question is: how différen

is their performance for realistic values &f, N? In other

In the asymptotical regim& — oo, with given signal strength . : : . .

. . 9 hop words, what is the performance gap gained in practical appli
p and noise variancer,, the above criterion can be Showncations by exact knowledge of the noise level? To answer this
[16], [17] to depend only on the largest eigenvalue)( i.e., y 9 |

it reduces to Roy’s largest root test [11], defined as 3 This expression of the GLRT is specific to the considered m(siegle
signal, unknowns?, unknown channek), i.e., the same as in [8]. Other
TRLRT A ﬁ (9) GLRTs for different models, e.g., unknown number of signald generic
2 signal covariance matrix, are derived in [10].
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(refined expressions gf and ¢, providing an improved con-
vergence rate, are given in [20]). Therefore,
TRLRT — p _ t— N)
>
€ £

o = PT(TRLRT > t) =Pr (

t_

Hence an approximate expression for the threshold of RLRT
is

Pr[Detection]

trirr (@) = p+ Frge(1 — )€ (16)

where Fiy, is the inverse of the TW c.d.f.
2) Detection probability: Under?#, the asymptotic distri-
bution of A; in the joint limit N, K — oo is characterized by

0 02 04 06 08 1 a phase transition phenomenon [21]. In the case of a single
PrlFalse Alarm] signal, the critical detection threshold fof, K — oo can be
Fig. 1. Simulated receiver operating characteristics (R@@)ves for eXpressed dlrectly in terms of the SNR as [22]
detection methods with known and unknown noise variance. 1
Perit = —=—= 17)
VKN

This expression can be refined by adding correction terms for
¥ite N, K (cf. [17], Eq. 25). If the SNRp is lower than the
critical value, the limiting distribution of\; under#; is the
JSame as that of the largest eigenvalue uridgrthus nullifying

the statistical power of a largest eigenvalue tesp ¥ pe.it,

on the contrary, the distribution dfgrrr IS asymptotically

guestion, we compare the performance of the two detect
by deriving analytical expressions for the detection phbiliig
(7), given a false-alarm rate (6}. = o and a SNRp. Our goal
is to express the detection probability (7) of the two metho

Py =Pr(T > t(a)[H1, p), (13)  Gaussian [17], [21], with
A K-1
wheret(«) is the decision threshold such th&gt, = «. Since E L;] = (1+Kp) (1 + NK) (18)
we are interested in low false alarm probabilities, we assum )\“ 1 p
a < 1. Var {;] = N(KP +1)% (19)
0—1)

A preliminary performance assessment is provided by Fig.
1, which compares the four aforementioned methods (RLRIp toO(1/N?) terms. Therefore, the detection probability can
GLRT, ED and ERD) in a typical scenario for CR applicationde expressed as
small number of samples and receivefs £ 6, N = 50) and
a single signal with low SNRy(= —10dB). These simulation P & [\/ﬁ (Kt;o;) 1~ ?VK; - 1)} (20)
results illustrate the performance gap between RLRT and )

GLRT, as well as the suboptimality of ED compared to RLRWhereQ(z) = —i— [ e~* /*dz is the standard Gaussian tail
(scenario of known noise level) and of ERD compared grobability function.

GLRT (scenario of unknown noise level). B. GRLT
1) Setting the threshold: Asymptotically, as bothV, K —
A. RLRT o0, the random variabld ¢ rr also follows a second-order

TW distribution [8], hence in first approximatio zrr(a) ~
1) Setting the threshold: For RLRT, the decision threshold ¢ rr(c). However, as described in [23], this approximation
t(«) can be approximated thanks to the property that undsrnot very accurate for tail probabilities @izt for small
Ho, and in the joint limit N, K — oo, the random variable values of K. In [23] the following improved expression was
Trirr asymptotically follows a second-order Tracy-Widonderived:

(TW) distribution [19]: T _ 1 2
pr|tCHRT TR ) & Frwa(s) — —— H Fiwa(s).
T — 3 INK \ ¢
Pr {RLP?M < S} — Frwa(s), Hence, for a required false alarm probability
Torrr — 4 _t—p
: . . : = Pr(T t)="P >
with suitably chosen centering and scaling parameters H(Terr > 1) g < £ I3

t- 1 ton (1
o= () e (0 ().
N_2/3[(K/N)1/2+1][(K/N)_1/2—1—1]1/3 (15) 1)

I
Il



The above equation can be numerically inverted to find thd . (14) and¢ (15), the thresholdgprr(a) (16) can be
required thresholdcrrr(a). written as
2) Detection probability: To derive an explicit approximate

expression for the detection performance of the GLRT under trirr(a) =1+ 2\/?+ _ Sa s <1> (28)
#,, we note thatx S5 A = L [Al + Y05 Ay} and N T KUsJN N

j=1
rewrite the GLRT (11) as

where s, = Frp,(1 — a) = O(1). A similar expression
~ fozz A _holds_ for tGLRT(a),_ with s, replaced l?ys;7K7N, found by
A > t(a)ﬁ (22) inverting (21) and, in general, also having a weak deperglenc
on N, K. Inserting these expressions into (27) gives that, for
with K1 N > (1/Kp)?, the difference is roughly
te) K — ﬁGLRT(Oé)tGLRT(a)' (23) 1 WK SukN " Sa St KN 0 1
Assuming the presence of a sufficiently strong signal( 1+ Kp | K —1 G (K —1)K/S " (\W) '
pait), the largest sample eigenvalue is (with high proba- (29)
bility) due to a signal whereas the remaining eigenvalueéle remark that fore < 1, the differences], ;. y — sa is
Xa, ..., Ak, are due to noise. Let negative but quite small even for a small number of sensors.
K For largeN the first term is thus the dominant one. From this
P 1 Z)" term we see that, as expected, the performance gap between
T K -1 = J Roy’s largest root test and the GLRT decreases with a larger

number of sensors, for which we have a better noise estimate,
denote their mean. As discussed in [24](Eq.12), asymgatittic but at a relatively slow rate ab(1/vK).
in NV, the random variableZ is Gaussian distributed with In particular, for a practical number of sensors, this gap
varianceO (ﬁ) and with a mean value that is slightlyis non-negligible. For example, for detection of weak slgna

biased downwards: (K p < 1) with an array ofK = 4 sensors, at a fixed alarm of
7 1 Kp+1 1 a= 1%, and over a wide rgnge of values &f, the difference
E {2} =1- = +0 <2) (24) is about 1.4 standard deviations. Even wikh= 16 sensors,
Ty N Kp N the difference is still about 0.5 standard deviations.

We then recall that\; /o2 is asymptotically Gaussian dis- The performance gap between RLRT and GLRT can be
tributed with mean and variance given by (18) and (19). Févaluated also in terms of SNR needed by the two detectors
a large number of sensorg((>> 1), the fluctuations ofZ to achieve the samgy. Let us setP{"FT) — plOLD); after

are relatively much smaller than those bf, hence we can Some algebra and neglectiig(1/N) terms, we obtain

approximate (22) as

paLrr . t(a) n 1 #(e) — trurr(@) (30)
1) N 1+ Kpm > #(a)-E [ZQ} . (25) prerr  trirr(®)  Kprrrr  trirr(e)

VN
_ _ ~ Now, from Eq. (23) it follows that(«) > trrrr(c): in fact,
wheren; ~ N(0,1) is a standard Gaussian random variablgyen thoughtey e (a) is slightly lower thantnrgr (o), the
Therefore, we conclude that term (K — 1)/(K — tarrr(a)) > 1 is largely dominant for

~ 1 1 K—-1 a < 1. Therefore, > , i.e., RLRT achieves the
Pd(GLRT) ~Q [\/N <t(a) ( > 1)} . PGLRT > PRLRT
)

K —
1+Kp) (1
(1+ p)<+NKp

v

Kp+1l NKp) NKp same detection pe'rformance of the GLRT fqr signals with a
lower SNR. Numerical examples are shown in next section.

Comparison of (26) with (20) shows quantitatively the i h , ; ¢
performance gain obtained using RLRT, i.e., knowing eyactl| In Fig. 2 We compare t € detection performance of RLRT
the noise level, instead of GLRT, i.e., estimating the noigd'd GLRT with the theoretical formulas (20) and (26), as a
level from the sample eigenvalues. The difference in Smdguncnon of the SNRp and for a given false alarm rate of

deviations between the detection probabilities in the tases © = 0-5% Fig. 3 illustrates the SNR gap between GLRT and
can be expressed, after some algebraic manipulations, as RERT: 1-€., the extra SNR needed by the GLRT to achieve the
same detection probability of RLRT. The figure shows that
VN K-1 1 the gap increases for (i) small number of sensors and (ii) low
1+ Kp (K )tGLRT(a) - tRLRT(Oé)> +0 (W) ‘signal strength, in accordance to the theoretical form8@j.(
(27) These conclusions highlight the key role that the noiseavae
This expression can be further simplified whe¥i > estimation has for spectrum sensing, especially in chgithen

(1/Kp)?. Under this condition, and recalling the expressionscenarios.

—taLrr (@



K=6, N=80,0=05% may be used to obtain a refined noise variance estimate and

1 : e ma e =
s o thus reduce the gap between GLRT and RLRT.
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