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Abstract—Detection of the number of signals and estimation
of their directions of arrival (DOAs) are fundamental problems
in array processing. We present three main contributions to
these problems, under the conditional model, where signal
amplitudes are assumed deterministic unknown. First, we show
that there is an explicit relation between model selection and the
breakdown phenomena of the Maximum Likelihood estimator
(MLE). Second, for the case of a single source, we provide a
simple approximate formula for the location of the breakdown
of the MLE, using tools from the maxima of stochastic processes.
This gives an explicit formula for the source strength required
for reliable detection. Third, we apply these results and propose
a new joint detection-estimation algorithm with state-of-the-
art performance. We demonstrate via simulations the improved
detection performance of our algorithm, compared to other
popular source enumeration methods.

I. INTRODUCTION

Detection of the number of sources impinging on an array of
sensors and estimation of their parameters, such as directions
of arrival (DOA), source strength, etc., are important and
well studied problems in signal array processing [6], [9].
Most popular algorithms for parameter estimation, such as
MUSIC and ESPRIT, assume that the number of signals is a-
priori known. These methods rely on non-parametric or semi-
parametric algorithms to detect the number of sources.

In this paper, in contrast, we focus on the often more com-
putationally intensive though more accurate joint detection-
estimation methods, that use full knowledge of the array
geometry. We consider the conditional model [13], where
signal amplitudes are assumed deterministic unknown. Further,
we assume that the estimation of the signal amplitudes and
DOA’s is done by Maximum Likelihood (ML). The key
questions we address are thus the following: i) Given the
likelihood values for different model orders, detect the number
of sources; ii) determine which source strengths can be reliably
detected together with an accurate estimate of their DOA’s.
Our statistical analysis, based on the theory of maxima of
stochastic processes, reveals an intimate connection between
the model order selection problem, the distribution of extreme
values of certain stochastic processes, and the performance
breakdown phenomena of the maximum likelihood estimator
(MLE). This yields a simple explicit expression for the loca-
tion of the MLE breakdown for the case of a single source, as
well as a new joint detection-estimation algorithm based on a

sequence of GLRT-type hypothesis tests. Using simulations,
we demonstrate the superior detection performance of our
algorithm, compared to other source enumeration methods.

II. PROBLEM SET-UP

We consider the following standard model for observations
received at an array of p sensors,

x(t) =

K∑

i=1

si(t)a(θi) + ση(t) (1)

where t is time, K is the number of signals, si are the
signal waveforms, θi are the corresponding directions of arrival
(DOA), η is a p × 1 complex valued noise vector with
distribution CN (0, Ip), and σ is the noise level. The steering
vector a(θ) ∈ Cp is the response of the array to a unit strength
signal emitted from direction θ.

We focus on the conditional model, where the signals si(t)
are assumed deterministic unknown processes. For simplicity,
we also assume that the noise level is known and w.l.g. σ = 1.

The problem we address is as follows: At discrete times
t1, . . . , tn, we observe n samples x(t1), ...,x(tn) from the
model (1). The task is to estimate the unknown number of
signals K and their DOAs Θ(K) = {θ1, . . . , θK}.

While our analysis is general and applies to arrays of
arbitrary geometry, for simplicity we analyze in detail the case
of a uniform linear array (ULA), where we derive explicit
results. For a ULA with half-wavelength inter sensor spacing,

a(θ)j = e
iπ(j−1) sin(θ), j = 1, . . . , p. (2)

III. PREVIOUS WORK

As outlined above, two key tasks in array processing are:
i) Detection of the number of sources. ii) Estimation of the
signals parameters. Some methods differentiate the two tasks,
solving each separately. Other algorithms address both tasks
simultaneously, via joint detection-estimation methods.

Source detection methods can be divided into several groups
[5]. One group consists of non-parametric methods, which do
not assume any knowledge of the array structure, and use only
the eigenvalues of the sample covariance matrix

R̂ =
1

n

∑

j

xjx
H
j . (3)



Popular methods include the AIC and MDL estimators [14].
These methods can be both analyzed and significantly im-
proved using results from random matrix theory, see [7], [8].

A second group of semi-parametric detection algorithms,
utilize partial knowledge on the array geometry, such as
rotational invariance of the signal subspace [5], [11]. For
example, for a fully augmentable array, Abramovich et al. [2]
proposed to detect the number of sources by the following
series of (sphericity) tests,

H0 : R
−1/2
k R̂R

−1/2
k = σ2I vs. H1 : R

−1/2
k R̂R

−1/2
k 6= σ2I,

where Rk ∈ Ωk, the set of positive definite Toeplitz covariance
matrices with the smallest p− k eigenvalues all equal to σ2.

The popularity of non-parametric and semi-parametric
methods is due to their low computational complexity, which
makes them useful for real-time applications. These methods,
however, are not optimal for detection, as they do not utilize
the full known structure of the array manifold. In this paper
we thus focus on the third group of parametric detection
methods which take advantage of full knowledge of the array
geometry. Many of these methods determine the number of
sources via a series of hypotheses tests. For example, Ottersten
et al. [9] considered a stochastic signal model and proposed
a joint detection-estimation scheme, by testing the following
hypotheses for increasing values of k,

H0 : R = A(Θ
(k))SA(Θ(k))H + σ2I vs. H1 : R is arbitrary

where R is the population covariance matrix of the input x(t),
and S ∈ Ck×k is the signal covariance matrix.

While these parametric methods have better detection per-
formance than various non-parametric methods, we claim
that their performance may still be significantly improved,
in particular for arrays with a large number of sensors. The
reason is that at each step, these methods compare a specific
parametric hypothesis against a completely general alternative
on the covariance matrix, in the sense that their union is the
complete parameter space. Hence, these methods have low
statistical power in any specific direction and in particular, in
directions corresponding to possible additional signals.

In this paper we present a new joint detection-estimation
method. It is also based on a series of hypothesis tests, but
with a key difference that at each step we test one parametric
hypothesis against a parametric alternative. Our method is
closely related to [4], though there the authors considered a
stochastic signal model and did not present a theory for setting
the appropriate threshold for the corresponding GLRT. Our
method is also related to the parametric MDL estimator [15],

k̂MDL = argmin
k

{
−L(Θ̂(k)) + 12 |Θk| log n

}
,

where L = log f(x|Θ(k)) is the log-likelihood function, Θ̂(k)

is the MLE and |Θk| is the number of parameters needed to
fully characterize the data’s distribution function (for a ULA
with K sources, |Θk| = k(n+1)). A key result of this paper
is that the penalty of the parametric MDL estimator is un-
necessarily too large, and can be reduced significantly, leading
to improved detection performance.

As illustrated in section V, the new proposed method
has excellent detection performance compared to the non-
parametric method of [7], the semi-parametric method of [11]
and the parametric GLRT method by Ottersten et al. [9].

IV. MAIN RESULTS

A. Model selection and maxima of random processes

Let Θ̂
(k)
= {θ̂1, . . . , θ̂k} be the ML estimates of the k

DOA’s assuming a model order k. Our proposed procedure
for joint detection estimation of the number of sources is the
following: For increasing values of k, decide between

H0 : k sources vs. H1 : (k + 1) sources. (4)

via the following GLRT,

Gk =
1

n
ln

(
L(xi, Θ̂

(k+1)
)

L(xi, Θ̂
(k)
)

)

> threshold (5)

where L(xi, Θ̂
(k)
) is the likelihood for model order k,

L(xi, Θ̂
(k)
) = max

S(k),Θ(k)
exp

(
−
n∑

j=1

‖xj−
k∑

r=1

sr,ja(θr)‖
2/σ2

)

Our estimator for the number of sources, denoted k̂EV T , is
the maximal k such that Gk > threshold. EVT stands for
extreme value theory, as will become apparent below.

For example, for k = 0 the GLRT is equivalent to

max
θ1
Tn,p(θ̂1) =

1

nσ2

n∑

j=1

∣
∣〈xj ,

a(θ̂1)

‖a(θ̂1)‖
〉
∣
∣2 > threshold,

(6)
Note that Eq. (6) holds for any array geometry. The key
question is thus how to set the threshold in Eqs. (6) or (5).
Whereas in principle the threshold may depend on the model
order k, our analysis shows that a single threshold provides a
nearly constant false alarm probability for all k � n.

To this end, we thus first analyze the case k = 0, namely the
behavior of θ̂1 and of Tn,p(θ̂1) under the two hypotheses H0
and H1. The key observation is that under the null hypothesis
of no signals (H0), the DOA θ is a non-existent nuisance
parameter which cannot be estimated. In statistical terms, this
is a singular situation, where the GLRT does not follow a χ2

distribution. Rather, Tn,p(θ) is a χ2n/n random field and the
GLRT distribution depends on the maxima of this field.

Theorem 1. Consider n observations from the model (1) with
no sources (K = 0). For any false alarm rate α� 1 let

th(α) = 1 + C(p,α)√
n

(7)

where

C(p, α) =

√

2 ln 1
α
+ ln

(
p2−1
6

)
. (8)

Then, as n→∞

Pr

[

max
−π26θ6

π
2

Tn,p(θ) > th(α)|H0

]

6 α+Φc(C(p, α)), (9)



where Φc(x) = 1− Φ(x) =
∫∞
x
e−u

2/2
√
2π
du.

While Eq. (9) holds only as n → ∞, it is quite accurate
even for small values of n. Furthermore, the term Φc(C(p, α))
in Eq. (9) is negligible for practical values of p and α.

B. Single source detection and the MLE breakdown location

Theorem 1 implies that if

max
θ
Tn,p(θ) > th(α) (10)

with α� 1, then the probability that the data consists only of
pure noise is small. We thus consider Eq (10) as a diagnostic
test for signal detection, and now study the behavior of θ̂1 and
of Tn,p(θ̂1) under H1. Here the DOA θ is an actual physical
parameter, and its MLE is asymptotically consistent [13].
However, it is well known that for small sample sizes or weak
signals, the MLE suffers from a performance ”breakdown
phenomena”, whereby below a certain threshold of either SNR
or number of samples, the MLE error starts to increase rapidly,
and significantly deviate from the Cramer-Rao lower bound.

There are thus two key questions associated with the signal
detection test (10). The first is which signal strengths can
be detected (with high probability) by this test. The second
question is whether θ̂1 is a reliable estimate of θ, assuming
that a signal is present and it is detected by Eq. (10). For
simplicity in our analysis we call θ̂1 a reliable estimate of
θ if it is located inside the main lobe of the beamformer
spectrum corresponding to the true DOA θ. The following
theorem provides an answer to both of these questions.

Theorem 2. Let {xj}nj=1 be n observations from the model
(1) with a single source s(t) (K = 1). Assume that the
signal amplitudes s(tj) are i.i.d. realizations from a zero mean
random variable with finite fourth moment. Consider signal
detection using Eq. (10) with th(α) given by (7) and α� 1.

Assume n� 1. If the signal strength satisfies

σ2s = E[|s|
2] >

C(p, α) + Φ−1(1− ε)
p
√
n

(11)

with p � 1, then the signal s(t) will be detected with
probability at least 1 − ε, and θ̂1 will be a reliable estimate
of θ with probability at least

1− δ = 1− 2Φc
(
1

2
(1−

1

π2
)(C(p, α) + S1−ε)

)

. (12)

The right hand side of Eq. (11) is thus an approximate
expression for the location of the MLE breakdown. In partic-
ular, for signal strength below this threshold, the probability
that θ̂1 is a reliable estimate of θ is significantly smaller
than 1. However, with high probability, such signals will not
be detected, since they will not satisfy condition (10). The
accuracy of the estimated location of the MLE breakdown is
shown in figure 2, see also section V.

We note that although various papers discuss the MLE
breakdown phenomena (see [1], [3], [12], [10] for example),
to the best of our knowledge, our analysis is the first one to
provide a simple explicit expression for its location, Eq. (11).

In [3] for example, an approximation for the MSE is derived by
analyzing only the single signal case, and the probability of an
outlier. This analysis results in a complicated expression which
involves an infinite integral of the Bessel function. Finally,
we note that a similar analysis can be done for the case of
multiple signals. Of course, the SNR needed to detect two
closely spaced sources depends on their spatial separation and
may be much higher than Eq. (11).

C. The distribution of the GLRT with multiple sources

The above analysis can be extended to higher or-
der models as follows: let P denote the projection onto
Span{a(θ1), . . . , a(θK)}, and P⊥ its orthogonal complement,

Proposition 3. Consider n samples from the model (1) with
K < p−1 sources from distinct directions Θ = {θ1, . . . , θK}.
As n → ∞ the GLRT at the correct model order K is
distributed as the maxima of the following random field,

GK ∼ max
θ
T̃n,p(θ)

where T̃n,p(θ) = 1
n

∑n
j=1

∣
∣
∣〈ηj ,

P⊥a(θ)
‖P⊥a(θ)‖ 〉

∣
∣
∣
2

. Next, let r̃(θ1, θ2)

be the covariance function of
√
n(T̃n,p(θ)− 1). Then

r̃1,1(θ, θ, P
⊥) =

∂2r̃

∂θ1∂θ2
(θ, θ) = (13)

2
‖P⊥ d

dθ
a(θ)‖2‖P⊥a(θ)‖2 − |〈 d

dθ
a(θ), P⊥a(θ)〉|2

‖P⊥a(θ)‖4
.

Finally, if
∫ π

2

−π2

√
r̃1,1(θ, θ, P⊥)dθ 6

∫ π
2

−π2

√
r̃1,1(θ, θ, I)dθ, (14)

then, as n→∞,

Pr [GK > th(α)|HK ] 6 α+Φ
c(C(p, α)). (15)

Proposition 3 shows that if Eq. (14) holds, then the threshold
th(α) in Eq. (7), derived for detection of a single source, can
also be used in the multiple sources scenario to prevent overes-
timation. While we have not been able to mathematically prove
that Eq. (14) indeed holds, it is easy to verify it numerically
for any specific number of sources, DOA’s etc. Next we show
the weak asymptotic consistency of this estimator.

Theorem 4. Consider n samples from the model (1) with K <
p− 1 sources. Then under the assumptions of Proposition 3,

Pr[k̂EV T < K] → 0 as n→∞, (16)

Pr[k̂EV T > K] 6 α+Φc(C(p, α)) as n→∞. (17)

V. SIMULATIONS

We illustrate our analysis and source detection algorithm by
a series of simulations, all with a ULA of p = 7 or p = 15
sensors, σ = 1 and Gaussian distributed signals (even though
we consider them as deterministic unknown).

Fig. 1 shows the probability that the test (10) fails e.g. that
a signal is not detected despite its presence. The vertical lines
are the detection thresholds from Eq. (11) with ε = 0.01. For
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Fig. 1. The probability that the test (10) failed, when a single source is
present, as a function of the signal strength. Pd is the probability of detection,
and Ld is the right hand side of Eq. (11).
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Fig. 2. MSE of θ̂1 as a function of SNR, for different values of n. Ld is
the right hand side of Eq. (11). For n = 150 we show the MSE given that
Eq. (10) holds, as well as the Cramer-Rao bound.

signal strengths above this threshold the mis-detection rate is
close to ε = 0.01, and drops below ε as n increases.

Fig. 2 shows the mean square error E(θ̂1 − θ)2, when
a single signal is present, as a function of signal strength
σ2s . The vertical lines are the limit of detection (Eq. (11)).
In accordance to theorem 2 these provide an approximation
for the location of the MLE performance breakdown, which
becomes increasingly more accurate for larger n. In addition,
we show the MSE computed only from those experiments
where a signal was detected by Eq. (10). Note that here there
is no breakdown phenomena, in accordance to theorem 2.

Finally, in fig. 3 we compare the detection performance of
our algorithm to the non-parametric method of [7], based on
random matrix theory (RMT ), the semi-parametric ESPRIT
method of [11], and the parametric GLRT method of [9].
As shown in the figure our method has better detection
performance at a comparable false alarm rate.
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Acknowledgment. The authors thank Yonina Eldar, Anthony
Weiss and Hagit Messer-Yaron for interesting discussions.

REFERENCES

[1] Y.I. Abramovich, B.A. Johnson, X. Mestre, MUSIC, G-MUSIC, and
Maximum-Likelihood Performance Breakdown, IEEE Tran. Sig. Proc.,
vol 56, no. 8, Aug. 2008, pp. 3944-3957.

[2] Y.I. Abramovich, N.K. Spencer, and A.Y. Gorokhov, Detection-Estimation
of More Uncorrelated Gaussian Sources than Sensors in Nonuniform
Linear Antenna Arrays Part I: Fully Augmentable Arrays, IEEE Trans.
Sig. Proc., vol. 49, no. 5, May 2001, pp. 959–971.

[3] F. Athley, Threshold region performance of maximum likelihood direction
of arrival estimators, IEEE Tran. Sig. Proc., vol. 53, pp. 1359–1373, 2005.

[4] R.E. Bethel, K.L. Bell, Maximum Likelihood Approach to Joint Array
Detection/Estimation, IEEE Tran. on Aerospace and Electronic Systems
vol. 40, no. 3, July 2004, pp. 1060–1072.

[5] J.A. Jiang, M.A. Ingram - Robust Detection of Number of Sources Using
the Transformed Rotational Matrix, IEEE Wir. Comm. Net. Conf., 2004.

[6] H. Krim ,M. Viberg, Two Decades of Signal Array Processing Research,
IEEE Sig. Proc. Mag., vol. 13, pp. 67–94, 1996.

[7] S. Kritchman, B.Nadler, Non-Parametric Detection of the Number of
Signals: Hypothesis Testing and Random Matrix Theory, IEEE Trans.
Sig. Proc., vol. 57, no. 10, Oct. 2009, pp. 3930–3941.

[8] B. Nadler, Nonparametric detection of signals by information theoretic
criteria, vol. 58, pp. 2746–2756, IEEE Trans. Sig. Proc., 2010.

[9] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai, Exact and large sample
ML techniques for parameter estimation and detection in array processing,
Ch. 4 in ”Radar Array Processing” Simon Haykin, Springer-Verlag, 1993.

[10] I. Reuven, H. Messer, The use of the Barankin bound for determining
the threshold SNR in estimating the bearing of a source in the presence
of another, Proc. IEEE Int. Conf. Acoustics, Speech, Sig. Proc., vol. 3,
pp. 1645-1648, 1995.

[11] S.D. Silverstein - A new use of ESPRIT for detection and model order
estimation, IEEE Sig. Proc. Lett., vol. 1, no. 10, Oct. 1994, pp. 147–149.

[12] P. Stoica, M. Hawkes, A. Nehorai, Performance Breakdown of Subspace
Based Methods: Prediction and Cure, ICASSP, pp. 4005–4008, 2001.

[13] P. Stoica and A. Nehorai, MUSIC, Maximum Likelihood, and Cramer-
Rao Bound IEEE Tran. Acoust., Speech, Sig. Proc., vol. 17, no. 5, May
1989, pp. 720–741.

[14] M. Wax and T. Kailath, Detection of signals by information theoretic
criteria, IEEE Tran. Acoust., Speech, Sig. Proc., vol. 33, no. 2, pp. 387–
392, 1985.

[15] M. Wax, I. Ziskind, Detection of the Number of Coherent Signals by
the MDL Principle, IEEE Trans. Acoust., Speech, Sig. Proc., vol. 37, no.
8, pp. 1190-1196, 1989.


