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Abstract

We study the behavior of the popular Laplacian Regularization method for Semi-
Supervised Learning at the regime of a fixed number of labeledpoints but a large
number of unlabeled points. We show that inR

d, d > 2, the method is actually not
well-posed, and as the number of unlabeled points increasesthe solution degener-
ates to a noninformative function. We also contrast the method with the Laplacian
Eigenvector method, and discuss the “smoothness” assumptions associated with
this alternate method.

1 Introduction and Setup

In this paper we consider the limit behavior of two popular semi-supervised learning (SSL) methods
based on the graph Laplacian: the regularization approach [15] and the spectral approach [3]. We
consider the limit when the number of labeled points is fixed and the number of unlabeled points
goes to infinity. This is a natural limit for SSL as the basic SSL scenario is one in which unlabeled
data is virtually infinite. We can also think of this limit as “perfect” SSL, having full knowledge
of the marginal densityp(x). The premise of SSL is that the marginal densityp(x) is informative
about the unknown mappingy(x) we are trying to learn, e.g. sincey(x) is expected to be “smooth”
in some sense relative top(x). Studying the infinite-unlabeled-data limit, wherep(x) is fully known,
allows us to formulate and understand the underlying smoothness assumptions of a particular SSL
method, and judge whether it is well-posed and sensible. Understanding the infinite-unlabeled-data
limit is also a necessary first step to studying the convergence of the finite-labeled-data estimator.

We consider the following setup: Letp(x) be an unknown smooth density on a compact domainΩ ⊂
R

d with a smooth boundary. Lety : Ω → Y be the unknown function we wish to estimate. In case of
regressionY = R whereas in binary classificationY = {−1, 1}. The standard (transductive) semi-
supervised learning problem is formulated as follows: Given l labeled points,(x1, y1), . . . , (xl, yl),
with yi = y(xi), andu unlabeled pointsxl+1, . . . , xl+u, with all pointsxi sampled i.i.d. fromp(x),
the goal is to construct an estimate ofy(xl+i) for any unlabeled pointxl+i, utilizing both the labeled
and the unlabeled points. We denote the total number of points byn = l + u. We are interested in
the regime wherel is fixed andu→ ∞.
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2 SSL with Graph Laplacian Regularization

We first consider the following graph-based approach formulated by Zhu et. al. [15]:

ŷ(x) = argmin
y
In(y) subject to y(xi) = yi, i = 1, . . . , l (1)

where

In(y) =
1

n2

∑

i,j

Wi,j(y(xi) − y(xj))
2 (2)

is a Laplacian regularization term enforcing “smoothness”with respect to then×n similarity matrix
W . This formulation has several natural interpretations in terms of, e.g. random walks and electrical
circuits [15]. These interpretations, however, refer to a fixed graph, over a finite set of points with
given similarities.

In contrast, our focus here is on the more typical scenario where the pointsxi ∈ R
d are a random

sample from a densityp(x), andW is constructed based on this sample. We would like to understand
the behavior of the method in terms of the densityp(x), particularly in the limit where the number
of unlabeled points grows. Under what assumptions on the target labelingy(x) and on the density
p(x) is the method (1) sensible?

The answer, of course, depends on how the matrixW is constructed. We consider the common
situation where the similarities are obtained by applying some decay filter to the distances:

Wi,j = G
(

‖xi−xj‖
σ

)

(3)

whereG : R
+ → R

+ is some function with an adequately fast decay. Popular choices are the
Gaussian filterG(z) = e−z2/2 or theε-neighborhood graph obtained by the step filterG(z) = 1z<1.

For simplicity, we focus here on the formulation (1) where the solution is required to satisfy the
constraints at the labeled points exactly. In practice, thehard labeling constraints are often replaced
with a softer loss-based data term, which is balanced against the smoothness termIn(y), e.g. [14, 6].
Our analysis and conclusions apply to such variants as well.

Limit of the Laplacian Regularization Term

As the number of unlabeled examples grows the regularization term (2) converges to its expectation,
where the summation is replaced by integration w.r.t. the densityp(x):

lim
n→∞

In(y) = I(σ)(y) =

∫

Ω

∫

Ω

G
(

‖x−x′‖
σ

)

(y(x) − y(x′))2p(x)p(x′)dxdx′. (4)

In the above limit, the bandwidthσ is held fixed. Typically, one would also drive the bandwidthσ
to zero asn → ∞. There are two reasons for this choice. First, from a practical perspective, this
makes the similarity matrixW sparse so it can be stored and processed. Second, from a theoretical
perspective, this leads to a clear and well defined limit of the smoothness regularization termIn(y),
at least whenσ → 0 slowly enough1, namely whenσ = ω( d

√

logn/n). If σ → 0 asn → ∞,
and as long asnσd/ logn → ∞, then after appropriate normalization, the regularizer converges to
a density weighted gradient penalty term [7, 8]:

lim
n→∞

d
Cσd+2 In(y) = lim

σ→0

d
Cσd+2 I

(σ)(y) = J(y) =

∫

Ω

‖∇y(x)‖2p(x)2dx (5)

whereC =
∫

Rd ‖z‖
2G(‖z‖)dz, and assuming0 < C <∞ (which is the case for both the Gaussian

and the step filters). This energy functionalJ(f) therefore encodes the notion of “smoothness” with
respect top(x) that is the basis of the SSL formulation (1) with the graph constructions specified by
(3). To understand the behavior and appropriateness of (1) we must understand this functional and
the associated limit problem:

ŷ(x) = argmin
y
J(y) subject to y(xi) = yi, i = 1, . . . , l (6)

1Whenσ = o( d
√

1/n) then all non-diagonal weightsWi,j vanish (points no longer have any “close by”
neighbors). We are not aware of an analysis covering the regime whereσ decays roughly asd

√

1/n, but would
be surprised if a qualitatively different meaningful limitis reached.
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3 Graph Laplacian Regularization in R
1

We begin by considering the solution of (6) for one dimensional data, i.e.d = 1 andx ∈ R. We first
consider the situation where the support ofp(x) is a continuous intervalΩ = [a, b] ⊂ R (a and/or
b may be infinite). Without loss of generality, we assume the labeled data is sorted in increasing
ordera 6 x1 < x2 < · · · < xl 6 b. Applying the theory of variational calculus, the solutionŷ(x)
satisfies inside each interval(xi, xi+1) the Euler-Lagrange equation

d

dx

[

p2(x)
dy

dx

]

= 0.

Performing two integrations and enforcing the constraintsat the labeled points yields

y(x) = yi +

∫ x

xi
1/p2(t)dt

∫ xi+1

xi
1/p2(t)dt

(yi+1 − yi) for xi 6 x 6 xi+1 (7)

with y(x) = x1 for a 6 x 6 x1 andy(x) = xl for xl 6 x 6 b. If the support ofp(x) is a union of
disjoint intervals, the above analysis and the form of the solution applies in each interval separately.

The solution (7) seems reasonable and desirable from the point of view of the “smoothness” assump-
tions: whenp(x) is uniform, the solution interpolates linearly between labeled data points, whereas
across low-density regions, wherep(x) is close to zero,y(x) can change abruptly. Furthermore,
the regularizerJ(y) can be interpreted as a Reproducing Kernel Hilbert Space (RKHS) squared
semi-norm, giving us additional insight into this choice ofregularizer:

Theorem 1. Let p(x) be a smooth density on Ω = [a, b] ⊂ R such that Ap = 1
4

∫ b

a 1/p2(t)dt <∞.
Then, J(f) can be written as a squared semi-norm J(f) = ‖f‖2

Kp
induced by the kernel

Kp(x, x
′) = Ap − 1

2

∣

∣

∣

∣

∣

∫ x′

x

1
p2(t)dt

∣

∣

∣

∣

∣

. (8)

with a null-space of all constant functions. That is, ‖f‖Kp
is the norm of the projection of f onto

the RKHS induced by Kp.

If p(x) is supported on several disjoint intervals, Ω = ∪i[ai, bi], then J(f) can be written as a
squared semi-norm induced by the kernel

Kp(x, x
′) =

{

1
4

∫ bi

ai

dt
p2(t) −

1
2

∣

∣

∣

∫ x′

x
dt

p2(t)

∣

∣

∣
if x, x′ ∈ [ai, bi]

0 if x ∈ [ai, bi], x
′ ∈ [aj , bj], i 6= j

(9)

with a null-space spanned by indicator functions 1[ai,bi](x) on the connected components of Ω.

Proof. For anyf(x) =
∑

i αiKp(x, xi) in the RKHS induced byKp:

J(f) =

∫
(

df

dx

)2

p2(x)dx =
∑

i,j

αiαjJij (10)

where Jij =

∫

d

dx
Kp(x, xi)

d

dx
Kp(x, xj)p

2(x)dx

Whenxi andxj are in different connected components ofΩ, the gradients ofKp(·, xi) andKp(·, xj)
are never non-zero together andJij = 0 = Kp(xi, xj). When they are in the same connected
component[a, b], and assuming w.l.o.g.a 6 xi 6 xj 6 b:

Jij =
1

4

[

∫ xi

a

1

p2(t)
dt+

∫ xj

xi

−1

p2(t)
dt+

∫ b

xj

1

p2(t)
dt

]

=
1

4

∫ b

a

1

p2(t)
dt−

1

2

∫ xj

xi

1

p2(t)
dt = Kp(xi, xj). (11)

SubstitutingJij = Kp(xi, xj) into (10) yieldsJ(f) =
∑

αiαjKp(xi, xj) = ‖f‖Kp
.
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Combining Theorem 1 with the Representer Theorem [13] establishes that the solution of (6) (or of
any variant where the hard constraints are replaced by a dataterm) is of the form:

y(x) =

l
∑

j=1

αjKp(x, xj) +
∑

i

βi1[ai,bi](x),

wherei ranges over the connected components[ai, bi] of Ω, and we have:

J(y) =

l
∑

i,j=1

αiαjKp(xi, xj). (12)

Viewing the regularizer as‖y‖2
Kp

suggests understanding (6), and so also its empirical approxima-
tion (1), by interpretingKp(x, x

′) as a density-based “similarity measure” betweenx andx′. This
similarity measure indeed seems sensible: for a uniform density it is simply linearly decreasing as a
function of the distance. When the density is non-uniform, two points are relatively similar only if
they are connected by a region in which1/p2(x) is low, i.e. the density is high, but are much less
“similar”, i.e. related to each other, when connected by a low-density region. Furthermore, there is
no dependence between points in disjoint components separated by zero density regions.

4 Graph Laplacian Regularization in Higher Dimensions

The analysis of the previous section seems promising, at it shows that in one dimension, the SSL
method (1) is well posed and converges to a sensible limit. Regretfully, in higher dimensions this is
not the case anymore. In the following theorem we show that the infimum of the limit problem (6) is
zero and can be obtained by a sequence of functions which are certainly not a sensible extrapolation
of the labeled points.

Theorem 2. Let p(x) be a smooth density over R
d, d > 2, bounded from above by some constant

pmax, and let (x1, y1), . . . , (xl, yl) be any (non-repeating) set of labeled examples. There exist con-
tinuous functions yε(x), for any ε > 0, all satisfying the constraints yε(xj) = yj , j = 1, . . . , l, such

that J(yε)
ε→0
−→ 0 but yε(x)

ε→0
−→ 0 for all x 6= xj , j = 1, . . . , l.

Proof. We present a detailed proof for the case ofl = 2 labeled points. The generalization of the
proof to more labeled points is straightforward. Furthermore, without loss of generality, we assume
the first labeled point is atx0 = 0 with y(x0) = 0 and the second labeled point is atx1 with
‖x1‖ = 1 andy(x1) = 1. In addition, we assume that the ballB1(0) of radius one centered around
the origin is contained inΩ = {x ∈ R

d | p(x) > 0}.

We first consider the cased > 2. Here, for anyε > 0, consider the function

yε(x) = min
(

‖x‖
ε , 1

)

which indeed satisfies the two constraintsyε(xi) = yi, i = 0, 1. Then,

J(yε) =

∫

Bε(0)

p2(x)

ε2
dx 6

pmax

ε2

∫

Bε(0)

dx = p2
maxVd ε

d−2 (13)

whereVd is the volume of a unit ball inRd. Hence, the sequence of functionsyε(x) satisfy the
constraints, but ford > 2, infε J(yε) = 0.

Ford = 2, a more extreme example is necessary: consider the functions

yε(x) = log
(

‖x‖2+ε
ε

)

/

log
(

1+ε
ε

)

for ‖x‖ 6 1

andyε(x) = 1 for ‖x‖ > 1. These functions satisfy the two constraintsyε(xi) = yi, i = 0, 1 and:

J(yε) = 4
[

log
(

1+ε
ε

)]2

∫

B1(0)

‖x‖2

(‖x‖2+ε)2 p
2(x)dx 6

4p2
max

[

log
(

1+ε
ε

)]2

∫ 1

0

r2

(r2+ε)2 2πrdr

6
4πp2

max
[

log
(

1+ε
ε

)]2 log
(

1+ε
ε

)

=
4πp2

max

log
(

1+ε
ε

)

ε→0
−→ 0.
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The implication of Theorem 2 is that regardless of the valuesat the labeled points, asu → ∞, the
solution of (1) is not well posed. Asymptotically, the solution has the form of an almost every-
where constant function, with highly localized spikes nearthe labeled points, and so no learning
is performed. In particular, an interpretation in terms of adensity-based kernelKp, as in the one-
dimensional case, is not possible.

Our analysis also carries over to a formulation where a loss-based data term replaces the hard label
constraints, as in

ŷ = argmin
y(x)

1

l

l
∑

j=1

(y(xj) − yj)
2 + γIn(y)

In the limit of infinite unlabeled data, functions of the formyε(x) above have a zero data penalty
term (since they exactly match the labels) and also drive theregularization termJ(y) to zero. Hence,
it is possible to drive the entire objective functional (thedata term plus the regularization term) to
zero with functions that do not generalize at all to unlabeled points.

4.1 Numerical Example

We illustrate the phenomenon detailed by Theorem 2 with a simple example. Consider a density
p(x) in R

2, which is a mixture of two unit variance spherical Gaussians, one per class, centered at
the origin and at(4, 0). We sample a total ofn = 3000 points, and label two points from each of
the two components (four total). We then construct a similarity matrix using a Gaussian filter with
σ = 0.4.

Figure 1 depicts the predictor̂y(x) obtained from (1). In fact, two different predictors are shown,
obtained by different numerical methods for solving (1). Both methods are based on the observation
that the solution̂y(x) of (1) satisfies:

ŷ(xi) =

n
∑

j=1

Wij ŷ(xj) /

n
∑

j=1

Wij on all unlabeled pointsi = l + 1, . . . , l + u. (14)

Combined with the constraints of (1), we obtain a system of linear equations that can be solved
by Gaussian elimination (here invoked throughMATLAB’s backslash operator). This is the method
used in the top panels of Figure 1. Alternatively, (14) can beviewed as an update equation forŷ(xi),
which can be solved via the power method, orlabel propagation [2, 6]: start with zero labels on the
unlabeled points and iterate (14), while keeping the known labels onx1, . . . , xl. This is the method
used in the bottom panels of Figure 1.

As predicted,̂y(x) is almost constant for almost all unlabeled points. Although all values are very
close to zero, thresholding at the “right” threshold does actually produce sensible results in terms of
the true -1/+1 labels. However, beyond being inappropriatefor regression, a very flat predictor is still
problematic even from a classification perspective. First,it is not possible to obtain a meaningful
confidence measure for particular labels. Second, especially if the size of each class is not known a-
priori, setting the threshold between the positive and negative classes is problematic. In our example,
setting the threshold to zero yields a generalization errorof 45%.

The differences between the two numerical methods for solving (1) also point out to another problem
with the ill-posedness of the limit problem: the solution isnumerically very un-stable.

A more quantitative evaluation, that also validates that the effect in Figure 1 is not a result of choos-
ing a “wrong” bandwidthσ, is given in Figure 2. We again simulated data from a mixture of two
Gaussians, one Gaussian per class, this time in 20 dimensions, with one labeled point per class, and
an increasing number of unlabeled points. In Figure 2 we plotthe squared error, and the classifi-
cation error of the resulting predictor̂y(x). We plot the classification error both when a threshold
of zero is used (i.e. the class is determined by sign(ŷ(x))) and with the ideal threshold minimizing
the test error. For each unlabeled sample size, we choose thebandwidthσ yielding the best test
performance (this is a “cheating” approach which provides alower bound on the error of the best
method for selecting the bandwidth). As the number of unlabeled examples increases the squared
error approaches1, indicating a flat predictor. Using a threshold of zero leadsto an increase in the
classification error, possibly due to numerical instability. Interestingly, although the predictors be-
come very flat, the classification error using the ideal threshold actually improves slightly. Note that
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Figure 1: Left plots: Minimizer of Eq. (1). Right plots:
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residuals of the order of2 · 10−4.
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ideal classification performance is achieved with a significantly larger bandwidth than the bandwidth
minimizing the squared loss, i.e. when the predictor is evenflatter.

4.2 Probabilistic Interpretation, Exit and Hitting Times

As mentioned above, the Laplacian regularization method (1) has a probabilistic interpretation in
terms of a random walk on the weighted graph. Letx(t) denote a random walk on the graph with
transition matrixM = D−1W whereD is a diagonal matrix withDii =

∑

j Wij . Then, for the
binary classification case withyi = ±1 we have [15]:

ŷ(xi) = 2 Pr
[

x(t) hits a point labeled +1 before hitting a point labeled -1
∣

∣

∣
x(0) = xi

]

− 1

We present an interpretation of our analysis in terms of the limiting properties of this random walk.
Consider, for simplicity, the case where the two classes areseparated by a low density region. Then,
the random walk has two intrinsic quantities of interest. The first is the mean exit time from one
cluster to the other, and the other is the mean hitting time tothe labeled points in that cluster. As the
number of unlabeled points increases andσ → 0, the random walk converges to a diffusion process
[12]. While the mean exit time then converges to a finite valuecorresponding to its diffusion ana-
logue, the hitting time to a labeled point increases to infinity (as these become absorbing boundaries
of measure zero). With more and more unlabeled data the random walk will fully mix, forgetting
where it started, before it hits any label. Thus, the probability of hitting +1 before−1 will become
uniform across the entire graph, independent of the starting locationxi, yielding a flat predictor.

5 Keepingσ Finite

At this point, a reader may ask whether the problems found in higher dimensions are due to taking
the limit σ → 0. One possible objection is that there is an intrinsic characteristic scale for the data
σ0 where (with high probability) all points at a distance‖xi − xj‖ < σ0 have the same label. If this
is the case, then it may not necessarily make sense to take values ofσ < σ0 in constructingW .

However, keepingσ finite while taking the number of unlabeled points to infinitydoes not resolve
the problem. On the contrary, even the one-dimensional casebecomes ill-posed in this case. To
see this, consider a functiony(x) which is zero everywhere except at the labeled points, where
y(xj) = yj . With a finite number of labeled points of measure zero,I(σ)(y) = 0 in any dimension
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and for any fixedσ > 0. While this limiting function is discontinuous, it is also possible to construct

a sequence of continuous functionsyε that all satisfy the constraints and for whichI(σ)(yε)
ε→0
−→ 0.

This behavior is illustrated in Figure 3. We generated data from a mixture of two 1-D Gaussians
centered at the origin and atx = 4, with one Gaussian labeled−1 and the other+1. We used
two labeled points at the centers of the Gaussians and an increasing number of randomly drawn
unlabeled points. As predicted, with a fixedσ, although the solution is reasonable when the number
of unlabeled points is small, it becomes flatter, with sharp spikes on the labeled points, asu→ ∞.

6 Fourier-Eigenvector Based Methods

Before we conclude, we discuss a different approach for SSL,also based on the Graph Laplacian,
suggested by Belkin and Niyogi [3]. Instead of using the Laplacian as a regularizer, constraining
candidate predictorsy(x) non-parametrically to those with smallIn(y) values, here the predictors
are constrained to the low-dimensional space spanned by thefirst few eigenvectors of the Laplacian:
The similarity matrixW is computed as before, and the Graph Laplacian matrixL = D −W is
considered (recallD is a diagonal matrix withDii =

∑

j Wij ). Only predictors

ŷ(x) =
∑p

j=1ajej (15)

spanned by the firstp eigenvectorse1, . . . , ep of L (with smallest eigenvalues) are considered. The
coefficientsaj are chosen by minimizing a loss function on the labeled data,e.g. the squared loss:

(â1, . . . , âp) = argmin
∑l

j=1(yj − ŷ(xj))
2. (16)

Unlike the Laplacian Regularization method (1), the Laplacian Eigenvector method (15)–(16) is
well posed in the limitu → ∞. This follows directly from the convergence of the eigenvectors of
the graph Laplacian to the eigenfunctions of the corresponding Laplace-Beltrami operator [10, 4].

Eigenvector based methods were shown empirically to provide competitive generalization perfor-
mance on a variety of simulated and real world problems. Belkin and Niyogi [3] motivate the
approach by arguing that ‘the eigenfunctions of the Laplace-Beltrami operator provide a natural ba-
sis for functions on the manifold and the desired classification function can be expressed in such a
basis’. In our view, the success of the method is actually notdue to data lying on a low-dimensional
manifold, but rather due to thelow density separation assumption, which states that different class la-
bels form high-density clusters separated by low density regions. Indeed, under this assumption and
with sufficient separation between the clusters, the eigenfunctions of the graph Laplace-Beltrami op-
erator are approximately piecewise constant in each of the clusters, as in spectral clustering [12, 11],
providing a basis for a labeling that is constant within clusters but variable across clusters. In other
settings, such as data uniformly distributed on a manifold but without any significant cluster struc-
ture, the success of eigenvector based methods critically depends on how well can the unknown
classification function be approximated by a truncated expansion with relatively few eigenvectors.

We illustrate this issue with the following three-dimensional example: Letp(x) denote the uniform
density in the box[0, 1]× [0, 0.8]× [0, 0.6], where the box lengths are different to prevent eigenvalue
multiplicity. Consider learning three different functions,y1(x) = 1x1>0.5, y2(x) = 1x1>x2/0.8 and
y3(x) = 1x2/0.8>x3/0.6. Even though all three functions are relatively simple, allhaving a linear
separating boundary between the classes on the manifold, asshown in the experiment described in
Figure 4, the Eigenvector based method (15)–(16) gives markedly different generalization perfor-
mances on the three targets. This happens both when the number of eigenvectorsp is set top = l/5
as suggested by Belkin and Niyogi, as well as for the optimal (oracle) value ofp selected on the test
set (i.e. a “cheating” choice representing an upper bound onthe generalization error of this method).
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The reason for this behavior is thaty2(x) and even more soy3(x) cannot be as easily approximated
by the very few leading eigenfunctions—even though they seem “simple” and “smooth”, they are
significantly more complicated thany1(x) in terms of measure of simplicity implied by the Eigen-
vector Method. Since the density is uniform, the graph Laplacian converges to the standard Lapla-
cian and its eigenfunctions have the formψi,j,k(x) = cos(iπx1) cos(jπx2/0.8) cos(kπx3/0.6),
making it hard to represent simple decision boundaries which are not axis-aligned.

7 Discussion

Our results show that a popular SSL method, the Laplacian Regularization method (1), is not well-
behaved in the limit of infinite unlabeled data, despite its empirical success in various SSL tasks.
The empirical success might be due to two reasons.

First, it is possible that with a large enough number of labeled points relative to the number of
unlabeled points, the method is well behaved. This regime, where the number of both labeled and
unlabeled points grow whilel/u is fixed, has recently been analyzed by Wasserman and Lafferty
[9]. However, we do not find this regime particularly satisfying as we would expect that having
more unlabeled data available should improve performance,rather than require more labeled points
or make the problem ill-posed. It also places the user in a delicate situation of choosing the “just
right” number of unlabeled points without any theoretical guidance.

Second, in our experiments we noticed that although the predictor ŷ(x) becomes extremely flat, in
binary tasks, it is still typically possible to find a threshold leading to a good classification perfor-
mance. We do not know of any theoretical explanation for suchbehavior, nor how to characterize
it. Obtaining such an explanation would be very interesting, and in a sense crucial to the theoretical
foundation of the Laplacian Regularization method. On a very practical level, such a theoretical un-
derstanding might allow us to correct the method so as to avoid the numerical instability associated
with flat predictors, and perhaps also make it appropriate for regression.

The reason that the Laplacian regularizer (1) is ill-posed in the limit is that the first order gradient
is not a sufficient penalty in high dimensions. This fact is well known in spline theory, where the
Sobolev Embedding Theorem [1] indicates one must control atleast d+1

2 derivatives inR
d. In the

context of Laplacian regularization, this can be done usingthe iterated Laplacian: replacing the
graph Laplacian matrixL = D −W , whereD is the diagonal degree matrix, withL

d+1

2 (matrix to
the d+1

2 power). In the infinite unlabeled data limit, this corresponds to regularizing all order-d+1
2

(mixed) partial derivatives. In the typical case of a low-dimensional manifold in a high dimensional
ambient space, the order of iteration should correspond to the intrinsic, rather then ambient, dimen-
sionality, which poses a practical problem of estimating this usually unknown dimensionality. We
are not aware of much practical work using the iterated Laplacian, nor a good understanding of its
appropriateness for SSL.

A different approach leading to a well-posed solution is to include also an ambient regularization
term [5]. However, the properties of the solution and in particular its relation to various assumptions
about the “smoothness” ofy(x) relative top(x) remain unclear.
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