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ABSTRACT

Detecting the presence of a signal embedded in noise from a

multi-sensor system is a fundamental problem in signal and

array processing. In this paper we consider the case where

the noise covariance matrix is arbitrary and unknown but we

are given both signal bearing and noise-only samples. Using

a matrix perturbation approach, combined with known results

on the eigenvalues of inverse Wishart matrices, we study the

behavior of the largest eigenvalue of the relevant covariance

matrix, and derive an approximate expression for the detec-

tion probability of Roy’s largest root test. The accuracy of

our expressions is confirmed by simulations.

Index Terms— signal detection, Roy’s largest root test,

matrix perturbation, inverse Wishart distribution.

1. INTRODUCTION AND PROBLEM SETUP

Detecting the presence of a signal corrupted by additive Gaus-

sian noise from a multi-sensor system is a fundamental prob-

lem in signal and array processing. When the noise covari-

ance matrix is the identity, the performance of signal detec-

tion schemes is well understood [1]. In this paper we focus

on the case of an unknown and arbitrary noise covariance ma-

trix, estimated from noise-only samples.

We consider the following setup. Let xi ∈ R
m, i =

1, . . . , nH , denote nH i.i.d. observations from the following

”signal plus noise” model

x =
√
ρsuh+ σξ (1)

where h is an unknown channel vector, u is a random vari-

able distributed N (0, 1), ρs is the signal strength, σ is the

noise level and ξ is a random noise vector with a multivariate

Gaussian distribution N (0,Σ).
A fundamental problem in signal processing is to distin-

guish, given observed data, between the two hypothesis

H0 : no signal, ρs = 0 vs. H1 : signal present, ρs > 0. (2)
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If the noise covariance matrix Σ is known, the observed data

can be whitened viaΣ−1/2
xi. Various signal detection meth-

ods, based on the eigenvalues of the whitened matrix Σ
−1H

can be employed, where

H =
1

nH

nH
∑

i=1

xix
T
i

is the sample covariance of the original observations.

In this paper we consider the case whereΣ is arbitrary and

unknown, but we have at our disposal another independent

set {zj}nE

j=1
of nE noise-only i.i.d. observations of the form

z = σξ. In this setting, it is common to estimate the noise

covariance matrix via

E = Σ̂ =
1

nE

nE
∑

i=1

ziz
T
i

and consider a function of the eigenvalues of E−1H (instead

of the unknownΣ−1H) as a test statistic for signal detection.

Zhao et. al. [2] were among the first to consider this set-

ting, and derived an iterative sphericity test combined with an

information theoretic criteria. Whereas [2] used all eigenval-

ues for signal detection, recently Rao and Silverstein [3] de-

veloped an improved detection method that sequentially tests

the significance of each of the largest eigenvalues of E−1H .

In this paper, using a matrix perturbation approach, we

study the distribution of the largest eigenvalue ofE−1H when

a signal is present, and derive simple approximate expressions

for the detection probability of this test. Our analysis allows,

for a given false alarm rate and the various system parameters

(number of sensors, samples, etc.), to determine the required

signal strength for detection with high probability, which is

an important quantity for system design. While beyond the

scope of this paper our analysis has applications to several

other hypothesis testing problems in multivariate statistics.

2. DETECTION BY ROY’S LARGEST ROOT TEST

Let ℓ1 = ℓ1(E
−1H) denote the largest eigenvalue of E−1H .

The estimator suggested in [3] is a sequential version of the



well known Roy’s largest root test in multivariate analysis of

variance (MANOVA), see [4]. In our single signal setting,

given a false alarm rate α ≪ 1, a signal is detected if

ℓ1 > th(α) (3)

where th(α) is the corresponding threshold.

To set the threshold, the right tail distribution of ℓ1(E
−1H)

under the null is needed. For the probability of detection,

PD = Pr[ℓ1(E
−1H) > th(α) |H1]

the distribution of ℓ1 under the alternative and its dependence
on the various problem parameters needs to be understood.

Accurate and efficiently computable expressions for the

distribution of the largest eigenvalue of E−1H , under both

the null and alternative hypotheses, have been an open prob-

lem in multivariate analysis, and a subject of several works. In

principle, the exact distribution can be represented in terms of

a hypergeometric function of matrix argument, see [4] for ref-

erences. However, unless all problem parameters m,nH , nE

are small, this representation is difficult to evaluate numeri-

cally. Similarly, it is also difficult to analyze theoretically.

Recently, using tools from random matrix theory, John-

stone [4] proved that under the null hypothesis, asymptot-

ically as m,nE , nH → ∞, with their ratios converging to

fixed constants, log(ℓ1(E
−1H)) follows a Tracy-Widom dis-

tribution, after appropriate scaling and centering.

Theorem: Let W = log(nH

nE

ℓ1(E
−1H)). Then in the

joint limit as m,nE , nH → ∞

Pr
[

W−µTW

σTW

< s
]

→ F1(s)

where F1(s) is the Tracy-Widom distribution of order one,

and the centering and scaling constants are given by

µTW = 2 log tan
(

ϕ+γ
2

)

(4)

σ3
TW =

16

(nE + nH − 1)2
1

sin2(ϕ+ γ) sin(ϕ) sin(γ)
(5)

where the angle parameters γ, ϕ are

sin2
(γ

2

)

=
m− 1/2

nE + nH − 1
, sin2

(ϕ

2

)

=
nH − 1/2

nE + nH − 1
.

3. ON THE DISTRIBUTION OF THE LARGEST

ROOT TEST

The goal of this paper is to study, under the presence of a

single signal (e.g., under H1), the distribution of the largest

eigenvalue of E−1H , in particular its mean and variance.

As mentioned above, while the exact distribution can be

written in terms of a hypergeometric function of matrix argu-

ment. this representation is difficult to analyze.

Recently, Rao and Silverstein [3] studied the largest

eigenvalue of E−1H in the joint limit as m,nE , nH → ∞,

under the alternative hypothesis of signals present. As in

principal component analysis with a spiked covariance ma-

trix, there is a phase transition phenomenon whereby to be

detected by the largest eigenvalue, the signal strength must

be larger than some threshold. In [3] the authors derived both

this limiting threshold, as well as the deterministic limit for

ℓ1(E
−1H) when the signal is sufficiently strong,

ℓ1 → 2cHλH

2cH + cE

(

1− cH − λH +
√

f(λH , cH)
) (6)

where cE = m/nE , cH = m/nH ,

f(λH , cH) = (λH − (1−√
cH)2)(λH − (1 +

√
cH)2)

and λH is the limiting value of the largest eigenvalue of the

whitened matrix (σ2
Σ)−1H [5, 6, 7]

λH =
1

σ2
(λs + σ2)

(

1 +
m− 1

nH

σ2

λs

)

(7)

with λs = ρs‖Σ−1
h‖2 the (whitened) signal strength.

It is instructive to consider the asymptotics of Eq. (6)

when λH ≫ (1 +
√
cH)2. We then have that

ℓ1 → λH
1

1− cE
+

cE
(1− cE)2

+O

(

1

λH

)

. (8)

Eq. (8) shows that the largest eigenvalue of E−1H is larger

than that of the matrixH itself, to leading order due to a mul-

tiplicative factor 1/(1 − cE) > 1 and to second order due to

an additive constant cE/(1− cE)
2 that is independent of λH .

Since the exact limit in Eq. (6) was derived by analyzing

the limiting Stieltjes transform of the spectral density of the

matrixE−1H as bothm,nE , nH → ∞, its accuracy for finite

values of m,nE , nH is unclear. Furthermore, although [3]

suggested, by analogy to PCA, that asymptotically the largest

eigenvalue may follow a Gaussian distribution, no expression

for its asymptotic variance was derived.

3.1. A Matrix Perturbation Approach

In this paper we present a simple explanation for the emer-

gence of the first two terms in Eq. (8), and also derive an

approximate expression for the variance of the largest eigen-

value of E−1H . This allows computation of the approximate

power of Roy’s largest root test, as well as its analytic com-

parison to several alternative popular test statistics.

Following [7], our technique is based on a matrix per-

turbation approach, considering the noise level σ as a small

parameter. In our analysis, the dimension m as well as the

sample sizes nE and nH are all fixed. Therefore, rather than

relying on random matrix theory, we use well known results

regarding the eigenvalues of finite inverse Wishart matrices.



Our point of departure is the following observation: Since

E−1H = (Σ−1E)−1(Σ−1H), rather than working with E
and H we can instead consider the whitened matrices Σ−1E
andΣ−1H . For analysis purposes, we thus assume thatE fol-

lows a Wishart distribution Wm(nE , Im), and similarly that

H is distributed as Wm(nH , σ2
Im + λshh

T ), namely a co-

variance matrix with a single spike.

Next, rather than studying the non-symmetric matrix

E−1H , we work with the symmetric matrix E−1/2HE−1/2,

which has the same eigenvalues as E−1H . We denote by

{ai}i the (random) orthonormal basis that diagonalizes the

matrix H ,

H =

m
∑

i=1

hiaia
T
i (9)

where h1 ≥ h2 ≥ . . . ≥ hm are the sample eigenvalues of

H , sorted in decreasing order of magnitude.

We also denote by µi and ψi the real-valued eigenvalues

and orthonormal eigenvectors of the symmetric matrixE−1/2

E−1/2 =

m
∑

i=1

µiψiψ
T
i .

Two important properties of the eigenvalues and eigenvectors

of E−1/2, that follow from the invariance property of Wishart

matrices to unitary transformations, are as follows: i) The

eigenvalues µi are independent of the eigenvectors ψi, and

ii) The eigenvectors ψi are uniformly distributed, with Haar

measure, on the unit sphere of Rm.

We study ℓ1(E
−1H) in the case where λs ≫ σ2

√

m/nH .

In this case h2, . . . , hm are all O(σ2), whereas h1 is substan-

tially larger. We thus write the matrix H as

H = H0 + σ2H1, (10)

where H0 = h1a1a
T
1 and H1 = σ2

∑m
j=2

h̃jaja
T
j , with

h̃j = hj/σ
2 = O(1). Similarly, we view the matrix

σ2E−1/2H1E
−1/2 as a perturbation of E−1/2H0E

−1/2.

We thus expand the leading eigenvalue and corresponding

eigenvector of E−1/2HE−1/2 in a Taylor series,

ℓ1(E
−1/2HE−1/2) = λ0 + ǫλ1 + . . .

v(E−1/2HE−1/2) = v0 + ǫv1 + . . .
(11)

where ǫ = σ2 is the small perturbation parameter. Our first

result is the following:

Theorem: The first two terms in Eq. (11) are given by

λ0 = h1

∑

i µ
2
i 〈a1,ψi〉2 = h1a

T
1 E

−1
a1 (12)

λ1 =
1

∑

j µ
2
j 〈a1,ψj〉2

m
∑

i=2

h̃i

(

∑

j

µ2
j 〈a1,ψj〉〈ai,ψj〉

)2

= a
T
1 E

−1H1E
−1

a1/(a
T
1 E

−1
a1) (13)

Remark: Eqs. (12) and (13) reveal several interesting points.

First, to leading order the largest eigenvalue depends on three

independent factors. One factor is the largest eigenvalue h1

of the matrix H , the second is the eigenvalues µ2
i of the in-

verse of a Wishart matrix, and the third factor, as captured

by 〈a1,ψi〉2, is purely geometric, as it measures the inco-

herence between two random orthonormal bases in R
m. The

second remark is that to leading order there are no interac-

tions between the eigenvalues hi of H , in the sense that the

largest eigenvalue h1 ofH affects only the leading order term

whereas the remaining ones affect the next order term.

Next, we compute the leading order mean and variance of

the largest eigenvalue, as described by the following theorem.

Theorem: As σ → 0, the leading order terms for the

mean and variance of ℓ1(E
−1H) are given by

E[ℓ1(E
−1H)] = E[λ0] + σ2

E[λ1] + o(σ2) + t.s.t. (14)

where t.s.t. stands for transcendentally small terms, and

E[λ0] = E[h1] ·
1

1− m+1

nE

(15)

E[λ1] =
m− 1

nE
· 1

1− m
nE

· 1

1− m+1

nE

(

1 +O( 1

nH

, 1

nE

)
)

(16)

As for the variance, to leading order and up to terms o(1/nE)
and o(1/nH),

V ar[ℓ1(E
−1H)] =

2(λs + 1)2
(

1− m+1

nE

)(

1− m+3

nE

) ×

{

1

nH
+

1

nE

1

1− m+1

nE

}

. (17)

Remarks: i) The additional transcendentally small terms

of the form Ce−A/σ2

arise from the small probability of an

eigenvalue swap, see [7].

ii) Eqs. (15)-(16) with fixed m,nE and nH , for the means of

the first two terms in the Taylor expansion, shed light on the

asymptotic formula (8). In particular, up to a correction fac-

tor O(1/nE), E[λ0] is identical to the first term in (8). Simi-

larly, when all ofm,nE , nH are large, E[λ1] ≈ cE/(1−cE)
2

which is the second term in (8). Our analysis thus shows that

the limiting Eq. (6) of [3] is quite accurate for the mean of

ℓ1(E
−1H) also for finite and small values of m,nE , nH .

3.2. Power Calculations

We consider the case where both nE , nH ≫ 1. Then, both

h1 and the random variable B =
∑

j µ
2
j 〈a1,ψj〉2 approxi-

mately Gaussian distributed, and by the Delta method, so is

their product. We thus write

ℓ1(E
−1H) ≈ E[ℓ1] + σ(ℓ1)η
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Fig. 1. Mean of ℓ1(E
−1H) vs. signal strength. The black

vertical line is the limiting threshold for signal detection
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Fig. 2. Variance of ℓ1(E
−1H) vs. signal strength. Top two

curves are comparison of simulation with Eq. (17).

where η ∼ N(0, 1). Then an approximate expression for the

detection probability of Roy’s largest root test is

PD = Pr[ℓ1(E
−1H) > th(α) |H1] (18)

= Pr

[

η >
th(α)− E[ℓ1]

σ(ℓ1)

]

= Φc

(

th(α)− E[ℓ1]

σ(ℓ1)

)

where Φ(z) is the cdf of a standard Gaussian r.v.

4. SIMULATIONS

To illustrate the accuracy of our expressions, we performed

simulations with real-valued signals with an array of m = 20
sensors, and with nH = 60 signal-bearing samples and nE =
120 noise-only samples. Figs. 1 and 2 show the mean and

variance of ℓ1 vs. signal strength λs. Fig. 3 compares the

empirical detection performance to Eq. (18).

5. DISCUSSION

In this paper we presented a perturbation approach for the dis-

tribution of the largest eigenvalue (Roy’s largest root), in the
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Fig. 3. Probability of detection at α = 0.01.

presence of a single signal. The simulation results show that

when nE , nH ≫ 1 our theoretical formula for the detection

performance is quite accurate. When nE , nH andm are small

Eq. (18) is less accurate due to the non-Gaussian distribution

of ℓ1(E
−1H). More precise approximations are a subject of

future study. Finally, while here we considered the case of a

single real-valued signal, the analysis may be extended both

to several signals as well as to the complex valued case.
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