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Dielectric boundary force and its crucial role in gramicidin
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In an electrostatic problem with nonuniform geometry, a ch&@g@ one region induces surface charges
[called dielectric boundary chargé®BC)] at boundaries between different dielectrics. Thiesicedsurface
charges, in return, exert a for€ealled dielectric boundary forcédBF)] on the charge that induced them.

The DBF is often overlooked. It is not present in standard continuum theori€goaft) ions in or near
membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst-
Planck. The DBF is important when a chai@Qés near dielectric interfaces, for example, when ions permeate
through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it
explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In
general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial
differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through
the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed
charge forcFCF) produced by the permanent charge of the gramicidin polypeptide, and so the net force on
the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and sarépeilséte

force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is
excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged
positive ions to move into and through the channel. The DBF is not directly responsible, however, for selec-
tivity between the alkali metal ion@.g., Li*, Na", K*): we prove that the DBF on a mobile spherical ion is
independent of the ion’s radius.
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[. INTRODUCTION acting on the ions is the gradient of a mean-field potential
that satisfies a suitable Poisson equatimnself-consistent
Complex systems of atoms are necessarily studied otheories. Continuum theories do not, however, include struc-
many length scales. While essential properties often depertdre (on the atomic scajebecause discrete particles are not
on the behavior of the individual atoms at the picosecondfound in these theories. Continuum theories usually ignore
Angstrom time and length scales, the macroscopic functiomhe finite volume of atomsgand resulting effects of crowd-
of many systems is usually characterized by the collectivéng), and so their structure is, in fact, specifigdostly) by
behavior at much coarser time and length scales. Studyingthae spatial distribution of dielectric coefficient and diffusion
system that operates on a micron/microsecond scale, by eefficient, and a continuum description of fixed charges.
detailed molecular simulation of all the motions of all par- We now see the essence of the problem of computing
ticles, is a daunting process, not always necessary and pgsroperties of ions in solutions and proteins. On the one hand,
haps even impossible because of the enormous number obntinuum treatments automatically satisfy conservation
numbers needed to describe the wildly fluctuating potentialdaws, and are built to describe the constitutive equations that
forces, concentrations, and fluxes of atoms on the femtosedescribe the averaged properties of such systems on the
ond and even picosecond time scales. Even if it were posnicron/microsecond scale, but the roles of atomic structure
sible to calculate so many numbers reliably, it is not clearand forces are unclear. On the other hand, patrticle treatments
what one would do with all of them. Clearly, some averagechave well-defined structures and forces on the atomic scale,
estimators are needed to characterize atomic motions. Fortbut contain huge fluctuations, may be impossible to compute
nately, atomic fluctuations are usually dramatically smoothedeliably for the required time scales, and may not even sat-
when considered on the micron/microsecond time scale abfy macroscopic conservation laws and constitutive equa-
biological function and can be described in a greatly contions.
densed manner by only a few numbers. What is needed is thus a mathematical averaging proce-
Continuum theories tacitly avoid these fluctuations by us-dure, to derive exact macroscopic equations from the under-
ing constitutive relations andmacroscopit conservation lying molecular model. In Ref{5], we began a systematic
laws. In the Gouy-Chapman, Debye-Huckel, Poissongeneral analysis of this problem. Starting from a molecular
Boltzmann or Nernst-Planck treatments of ions in solutionsmodel of diffusing and interacting particles, a mathematical
near membranes and proteifis-4], the concentrations are derivation of continuity equations is presented. As shown in
described by mean values of number density, and the forcRef. [5], the averaged single particle density satisfies a
Nernst-Planck«drift-diffusion) type equation, driven by an
average force. This force contains three terms. The first is the
*Electronic address: boaz.nadler@yale.edu averaged electrostatic force acting on a point particle, the
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second is the average short range force due to particleneation of positive ions that make gramicidin a conducting
particle Lennard-Jones-type interactions, and the third is thehannel. The balance between the DBF and the FCF needs to
dielectric boundary forcéDBF). The last two terms, each of be investigated further in other proteins and enzymes.
considerable importance in the context of molecular biology,
are absent from the standard continuum theories.

In this paper, we concentrate on the DBF defined below,
show how the DBF can be included in continuum treatments, For simplicity, we consider the dielectric boundary force
and estimate its size and importance. In Sec. Il, we definéor an electrostatic problem defined in whole space. The
precisely the dielectric boundary force, discuss different posmodifications needed in a finite computational region with
sible ways to efficiently compute it, and show that for theDirichlet (or othe) boundary conditions are straightforward,
case of charged spheres, the DBF is independent of the rand do not change the main results of this section.
dius of the sphere. It is the same on a point particle and a Consider thus the following setup: The three-dimensional
spherical particle. Mathematically, this result is important be-space is composed of an arbitrary number of regions of ar-
cause it allows the DBF to be naturally added into the usuabitrary shapes, denoted Wy;. Further assume that in each
continuum treatment of point particles, allowing the consid-region{}; the dielectric coefficient is constant with valeg.
erable investment in such models to remain productive. BioNow consider a charge distribution located, for example, in-
logically, the independence of particle size is also importantside the regiorf);. A simple example is an ion in an aquatic
the DBF is not directly responsible for the selectivity of pro- solution withe,=80, located near the wall of a biological
tein channels to differenfspherical ions such as the alkali membrane withe,=2.
metal ions Li", Na*, K. In Sec. Ill, we calculate the di- In the presence of a fixed charge, surface charges are in-
electric boundary force for two simple geometries. The firstduced at all boundaries between regions of different polariz-
is a point charge near a planar dielectric wall, for which anability, and most standard textbooks on electrostatics explic-
analytic solution is known. The second is a point charge in atly write formulas expressing these induced surface charges
narrow tunnel chosen to resemble the gramicidin channeks gradients of the electrostatic potenfiafg]. However, an
widely studied in channology6]. Our results show that important point, which is usually not discussed explicitly, is
while the DBF is not large even at microscopic distanceghat these induced surface charges, in turn, exert a force on
from a planar dielectric wall, it is certainly large in narrow the charge distribution itself. We denote this forceMyy,
channels. and refer to it as theielectric boundary force

In the gramicidin channel, comparing the DBF to the The force on a test particle in a homogeneous system can
fixed charge forcé FCP gives a striking result, directly re- be computed from the gradient of the electrostatic potential
lated to the function of this macromolecule. In gramicidin, due to allother charges, evaluated at the particle’s location
the DBF and FCF nearlgancelwhen the ion in the channel and ignoring the particle itself; this is not the case for an
has a single positive charge. It is this almost exact cancellanhomogeneous system. In inhomogeneous systems, an addi-
tion that allows monovalent positive ions to enter and pertional component of force—the DBF—is produced by the
meate through gramicidin. When the ion in gramicidin has asurface charges induced by the particle in question. There-
negative charge, however, both DBF and FCF forces are rdore, to compute these induced surface charges, the charge of
pulsive and add up in magnitude. The summation of the twdhe test particlgon which we want to compute the fojce
forces keeps negative ions out of gramicidin so that theynust be included in the Poisson equation. However, if the
cannot even begin to permeate through the channel. test particle is a point charge this introduces a singularity at

The addition of forces for negative iom®es notdepend the location of the particle. In the following section, we ex-
on a special property of gramicidin. It occurs automaticallyplicitly describe the calculation of the DBF for a charge dis-
in any channel with a negatively charged wall: negative iondribution and for a point charge.
are excluded from and therefore do not permeate channels
with negatively charged walls.

The cancellation of forces for positive iom®esdepend
on a special property of gramicidin. The cancellation does Le&t p(r) denote a charge distribution located only inside
not occur automatically for any positive ion in any narrow the region(), [that is,p(r)=0 for r ¢ ),]. The electrostatic
channel. Cancellation is a consequence of the particulgpotential in whole spaceh(r), satisfies the Poisson equation
structure of gramicidin, and its spatial distribution of fixed 1
charge.+ Indeed, our analysis sug_g_egts that divalent ions, such V. [e(nNVd(r)]=——p(r), (1)
as Cd ", do not permeate gramicidin because the DBF and €o
FCF are not in balance for them.

The cancellation of forces is evidently a result of the evo-where £(r) is the relative dielectric coefficient at Since
lution that Optlmlzed the architecture of the gl’amICIdIn S(r) is discontinuous across the boundam, the poten_

polypeptide to allow permeation of positive monovalenttia| ¢ (r) satisfies the standard jump conditions for the nor-
ions. Properties of the gramicidin polypeptide have been opma| component of the fielfi7]:

timized to perform a specific function, e.g., the spatial distri-
butions of fixed charge and dielectric coefficient have been
optimized to balance the DBF and FCF and allow the per-

Il. THE DIELECTRIC BOUNDARY FORCE

A. The dielectric boundary force on a charge distribution

[e(r)V®(r)-n]|y0,=0, @
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wheren is a unit vector in the outer normal direction to a

surface element oa();, and square brackets denote the dif- Fina= —f P(r)V‘D(f)df—f p(NVW(r)dr.  (7)
ference in the variables enclosed within them, between the

value outside the regiof2; and inside it. Equationg1) and(5) imply thatW(r) satisfies the following

In addition, we assume that the electrostatic potential aPoisson equation:
infinity is zero, so thatb(r) satisfies the additional condition

p(r)

€o€1

d(r)=0 as |r|—c. AW(r)= ®)
The presence of the charge distributiefr) induces sur-  as if the whole space was composed of a single dielectric
face charges,q at the dielectric boundarief();, given by  medium of strengthe;. In addition, becaus&® and ®,,q
satisfy the same jump conditions @®,;, W is continuous,
Tindloo, =[VP-n]|s0,- ()

[VW-n]|;0,=0. 9
These induced surface charges, in return, exert a force on the
charge distributiomp(r) that induced them. One way to com- Therefore W(r) is simply the free space Coulomb potential
pute this force is to first calculate these induced surfacereated by the charge distributienp(r),
charges, and then calculate the electric poterig|y(r)
formed by them. Then, the total force on the charge distribu- W(r)=— 1 p(§)
tion due to these induced surface charges is given by 4meqeq) [r—§

dé.

Thus,
Find:_f p(NVdin4(r)dr. 4
1 r—§
We now consider the equation that the potendia)q(r) f p(r)VW(r)dr=4W8180f f p(r)p(§)@drd§.

satisfies. Since the polarization of the different regiéns

has already been taken into account in the computation of the Thjs integral vanishes, because each pair of poirtg) (
induced surface charges via Eqel)—(3), the potential appears twice; once as-y (whenr=x,&=y) and once as
®iny(r) satisfies Laplace’s equation with a dielectric coeffi-y_x (whenr=y,&=x). The physical explanation is that this
cient of vacuum, i.e., with a relative dielectric coefficient jntegral is simply the total force that a charge distribution in

e(r)=1 throughout the whole space, free space exerts on itself, which is obviously zero according
to Newton’s third law. Combining this result with E@7)
Ad;ny(r)=0. G gives ’ ‘
In addition, as withd(r), the potentiatb;,4(r) also vanishes
as|r|—. The charge distributiop(r) is not present in Eq. Fing= —f p(r)Vo(r)dr. (10
(5), since the potentiakb;,q is only due to the surface
charges induced at the dielectric interfaces. Thus, for the purpose of computing the DBF, there is no need

While there are no dielectric boundaries for the potentiakg actually compute the induced potentigy, (r).
D;nq(r) [recall thate(r)=1 everywherg there are surface
charges, given by Eq3), located at these boundaries. This

o o B. The dielectric boundary force on a point charge and
amounts to the following jump conditions:

on a sphere

[V(I)ind'n“a(lizo'indlﬁﬂi- (6) Consider the case where the charge distribup¢n) is
either a point charge or a uniformly charged sphere of radius
According to this formulation, in order to compute the a, both centered at a poinf € {); and with overall charge.
dielectric boundary force, one has to compute the solution o¥Ve denote by®(r) and ®,(r) the corresponding electro-
two Poisson equations; one for the electrostatic potentiastatic potentials throughout space, andAgyr,) andF,(ry)
®(r) throughout space and another for the electrostatic pothe corresponding dielectric boundary forces. In the case of a
tential created only by the induced surface chadgg(r). charged sphere, we assume that its radius smaller than
However, as shown below, for any arbitrary continuumthe distance fronr, to d€};, so that the whole sphere is
charge distribution, it is possible to compute this force fromenclosed insidé) ;.
just the solution of the first Poisson equation for the electro- For the case of the charged sphere, we can apply formula
static potentiatb (r). The singular case of a point charge and(10) to compute~, . However, for the case of a point charge,
its connection with the DBF for a charged sphere are postwe cannot use Eq10) because(r) is a § function and the

poned to the following section. potential is singular at the required point. Instead, we have
We now show the connection between the dielectricthe following relation for this casgb].

boundary force, given by Eq@4), the induced potential Lemma 1The dielectric boundary force on a point charge

®,,4, and the electrostatic potentidl by writing ®;,4(r) of strengthq located atr, can be computed from the total

=®d(r)+W(r), so that potential throughout space by the following formula:
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but with nonzero jump conditions at the dielectric boundaries
1y 50,

=l
Fo(r))=—qV, | Dy(r)————
O( 1) q Vv 0( ) 4778081|r_r1| —
) ) [SVVa'n:”aQi:_[SVWa'n]|ain
In other words, the force acting on the point charge can be
computed by subtracting from the total electric potential the [eVVo-n]|s0=—[eVWy-n]|sq.- (15)

singular Coulombic term produced by the point charge, and
then computing the gradient of the resulting smooth potential;q\yever according to Eq3), W,(r)=W,y(r) for [r—r,]

at the charge location. - >a. Therefore, potential¥,(r) andV,(r) satisfy the same
Proof. Consider as above the decompositi®,=®  equation and the same boundary conditions. By the unique-
+W, thenW(r) is now given by ness of the solution of Poisson’s equation, it follows that
1 V() =Vy(r) for all r. By combining this with Eqs(13) and
W(r)=— —— _a (12), we conclude that

4778180 |r_r1| '
D, (1 =Dy(r) for |[r—ry>a.

Combining this equation with Eq7) proves the lemma.l

Note that the potentiaby(r) is proportional to the charge Therefore, by Eq(3), the induced surface charges created by
g at ry. Thus, according to Eq€3) (5), and (6) both the these two charge distributions are the saie.
induced surface charges and the potentigly are also pro- We can now prove the following theorem concerning the
portional toq. This renders the dielectric boundary force, size independence of the DBF.
given by Eq.(4), proportional tog?. Thus, as expected, the ~ Theorem The dielectric boundary force on a uniformly
dielectric boundary force has tlsamedirection and magni- charged sphere of total charges independent of the radius
tude regardless of the sign of the charge,at of the spherdprovided dist ¢;,9(,)>a, wherer, is the

Before showing that the dielectric boundary force is sizecenter of the spheteMoreover, this force can be computed
independent, we prove the following auxiliary lemma. by the following simplified formula:

Lemma 2 A point chargeq and a uniformly charged
sphere with the same overall charge, both centered,,at Fa(rl):_qvq)a(r)|r=r1- (16)

produce the same induced surface charges at dielectric ] o
boundariegprovided the radius of the sphere is less thanPToof According to Eq(4), the DBF is given by the follow-

dist (r1,0Q,)]. ing integral:
Proof. We decompose each of the potentidig(r) and
®(r) as the sum of the Coulombic part in a uniform dielec- = :J __4a Vo, (r)dr
. . . . . a ind .
tric £, and a correction term due to the different dielectric —rj<a 4
regions. That is, 37ma
D ,(r)=Wa(r)+Vq(r), (12 This integral includes all Coulombic interactions between the
induced surface charges and the charged sphere. However, as
D(r)=Wp(r)+Vo(r), is well known [7], the force on a charged sphere due to
another pointlor surface charge is equal to the force on a
where point charge located at the center of the sphere. Thus,
Wo(r)= q Fa:_vq)ind(r)|r:rl-

4778081|r_r1| '

As shown in Lemma 2, the induced surface charge is inde-
HereW, is given by([8] pendent of the radius of the sphere. Thus, the DBF is inde-
pendent of the radius of the sphere. Moreover, using the

3q 5 Ir—rq? Ir—ry|< decomposition®;,4(r) =®,(r) —W,(r) and noting that by
8mogea®lc 3 ) F=hi=a definition (13), VW,(r,)=0, we obtain Eq(16), which fin-
W,(r)= ishes the proof of the theorermnl
q 1 Ir—ry>a Corollary. The force on a uniform sphere of charge
dmegeq [r—r1q] ! denoted byF,(ry), is equal to the force on a point charge of
(13)  same strength:
The potentialdVy(r) andW,(r) satisfy Eq.(1) with the cor- Fo(ry)=Fu(ry). (17)
responding charge distribution, but not the jump conditions
at dielectric boundarieg(); . Therefore, the potentialé,(r) The theorem and its corollary have a simple application
and V,(r) satisfy homogeneous Poisson equatiirsplace ~ for the numerical computation of the dielectric boundary
equations force. For example, for the case of charged ions near a di-
electric wall, or inside the pore of a protein channel embed-
AVo(r)=AV,(r)=0, (14 ded in a lipid membrane, it is possible to model the ions as
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uniformly charged spheres instead of point charges, thus re DBF as function of distance from wall
moving the numerical difficulties associated with a singular ~ *® ! ! ! '
6 function. Moreover, to compute the dielectric boundary
force, it is only necessary to compute with good accuracy the
derivative at the center of the sphere and there is no need t 14
perform the volume integrdl). For the case of a Langevin @
simulation of many charged particles, in which the force on g
each of the simulated particles is recomputed at every times
step of the simulation, our analysis shows that by modeling’g
the mobile particles as charged spheres, one needs to con; osf
pute only the total electrostatic potentighe solution of

Poisson’s equatiorand then compute the total force on each
particle by computing the gradient of the total electrostatic ,
potential at the center of a particle’s sphere. Since these ; ; : :
forces are independent of the size of the particles, one cal  ozf- R SO ,,,,,,,,,, — .......... sz .......... e ........ o
solve Poisson’s equation with spheres of larger radius than o : : : ' : ' ;

16

12

1

DBF

06F--

3 i i i j y .

the physical particles, for better stability and convergence of 0 1 2 3 4 4 ° 10
the numerical scheme. x(A4)
We note that recently Allet al. have proposed a differ- FIG. 1. (Color onling The dielectric boundary force on a single

ent approach for the numerical computation of both the inpgint charge of strength inside an aqueous solution with =80
duced polarization charges and their effective forces, basegkar a dielectric wall withe,=2 (upper curvé and with e,= 10

on a variational approacf®]. In their method, a numerical (jower curve.
computation of the DBC is performed on a two-dimensional

grid at different dielectric boundaries, which should be more
computationally efficient than solving a three-dimensional q
Poisson equation.

282
q'=_—q. (19

, €17 ¢&2
Cegte, g1tey
Therefore, according to Eql1), the force on the charge is
lll. THE DIELECTRIC BOUNDARY FORCE IN TWO only in thex direction and is given by
SIMPLE GEOMETRIES
1 €17 &7 q2

We now present explicit computations of the dielectric Findx=5—— - (20)
boundary force for two simple generic geometries. The first 7 1Bmepe; g1t es o2
is the standard and well-known problem of a charge near an
infinite planar dielectric wall, where a closed analytical ex-  The top curve in Fig. 1 shows a plot of this force near a
pression is known, and the other is the dielectric boundarglielectric wall with values:; =80 ands,=2. As seen from
force on the axis of a narrow gramicidin-like channel geom-the figure, the dielectric boundary force is not exceedingly
etry. In general, closed form analytical solutions are possibléarge even at microscopic distances from the wall. It also
only for very few cases, see, e.g., Réf59—-11], so for most does not change much as longeas>¢,, as can be seen both

practical problems it is necessary to resort to numerical comfrom the graph and from formule20). _
putations. However, as pointed out in RgfL2], the fact that a point

charge induces surface charges on the wall has additional
consequences apart from the DBF on the particle that in-
duced them. For example, in the study of a multiparticle
Consider an infinite planar wall located on thez( plane,  system, the presence of induced surface charges leads to ad-
separating two regions with dielectric coefficients for x  ditional interaction forces between any two charged particles
>0 ande, for x<0. Consider a point charge located at anear the dielectric wall, other than their standard Coulombic
point (d,0,0) (d>0) in cartesian coordinates. In this case,force. For example, consider two equal point charges of
by the method of images, we can solve explicitly for thestrengthq located atr;=(d,0,0) and at,=(3d,0,0). In this
electric potentialb. In Cartesian coordinateg=(x,y,z), it ~ case the force on particle 2 due to particle 1 is only inxthe

A. A point charge near a planar dielectric wall

is given by direction and is given by
1 q + q , x>0 _ q2 B 1 n €17 &7 1
4mepeq \ |Xx—(d,0,0) |x—(—d,0,0)| 217 Amege, (2d)° 21t e (4d)? .
d(x)=
1 q x<0,  This force should be compared to the standard Coulombic
4mege, |x—(d,0,0)] interaction between the two charges. gk ¢,, this force
(18)  is only about 75% of the original Coulombic force between
the two particles. Similarly, the force on particle 1 is in-
where the image chargeg andq” are given by creased by 25% relative to the free space Coulomb interac-
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tion. The presence of these induced surface charges mightathematically rigorous manner by Schuessal. [5]. Re-
thus have a significant effect on the structure of an electroeently, both Corryet al.[19], and Mamono\et al.[20] have

lyte solution near a dielectric wall. This simple example studied the effects of the inclusion of this force term in modi-
shows that dielectric boundary charges are important in defied Poisson-Boltzmann and Poisson-Nernst-Planck equa-
termining the forcebetween twdor more charged particles tions applied to gramicidin-like and other channel-like geom-
near a dielectric boundary, as they are important in determinetries. Both groups report that explicit inclusion of the
ing the force on aingle particle near dielectric boundaries. gjelectric boundary force in a continuum formulation yields

In standard continuum theories, discrete charges are rgsetter results than the standard theories that omit this force
placed by continuum averaged densities that obviously leavg,

out the D.BF' The a_bove analy5|s shows that Interactions be- For the sake of our analysis, we assume that gramicidin is
tween discrete pairs of particles are also incorrectly de-

. . ; X embedded in a lipid membrane with a uniform low dielectric
scribed in such analysis. All in all, the correct treatment of - .

o ) . . . constant of value =2, while the pore of the channel and the
polarization effects of discrete particles in continuum di ic baths h dielectri @ni80
Poisson-Boltzmann-type theories requires further investigagl.Jrroun Ing aquatic baths have dielectric cons@ats0.
tion. ince gram|C|_d|n_|s a _Ion_g ar_ld_narrow channel,_ the move-

ment of mobile ions inside it is almost one dimensional
along the channel axis. Thus, we consider only the dielectric
boundary force along its axis, denoted thaxis. All numeri-

We now consider the dielectric boundary force inside acal computations presented in this section were performed
gramicidin-type channel geometry embedded in a membraneavith the “gramicidin” model described by Elbest al.[21],
Gramicidin is a small polypeptidaearly a proteijy widely  with ions represented as Gaussian spheres with effective ra-
used as a model of more complex natural chanf@sA  dii of 0.8 A. As predicted by the analysis of Sec. Il, and
dielectric boundary force in such a narrow channel wasverified numerically, changing this valyehile keeping the
present in the three-dimensional treatment of electrostatics afhole ion inside the channel pgrdoes not change the com-
Barcilon et al. [13,14], but the leading(one-dimensional  puted values for the dielectric boundary force.
term of their perturbation expansion provided only a poor (A forthcoming paper of Alleret al,, [22] proposes and
approximation to the DBF acting on ions in narrow channelsanalyzes a significantly different structure for gramicidin.
Dieckmannet al. [15] were amongst the first to realize the The proposed structure will modify estimates of energetics,
importance of the correct calculation and inclusion of thehowever they are made.

DBF into Nernst-Planck-type equations for ionic permeation In the left part of Fig. 2, the dielectric boundary force is
through narrow channels. Contemporaneously, Cetrgl.  plotted as a function of position along the channel axis, while
[16,17 as well as Grafet al. [18] also realized the impor- in the right part the corresponding potential is plotted. As
tance of this term in the context of Brownian dynamics andseen from the figure, the dielectric boundary force creates a
Monte Carlo simulations, respectively. The need for the in-high potential barrier of more than K2 Therefore, a simple
clusion of this force in a continuum description, derivedhole with the same geometry as the gramicidin channel, i.e.,
from an underlying molecular model has been shown in dength of about 25 A and diameter of about 4 A, but

B. Dielectric boundary force in gramicidin

Forces Potentials

—— Gramicidin
2| = = Dielectric |-:-------: P sew s —

5 : 3 ’

FIG. 3. (Color online The DBF and corre-
sponding potential on a point charge of strength
+ e on the channel axis of gramicididashed red
line), compared to the corresponding force and
potential due to the gramicidin fixed charges
(solid blug. The thin green line is the sum of the
two potentials and represents the net potential.

(units of kKT / )

z component of F (units of kT / A)

10 20

—26 —1'0 0 1‘0 2'0 —2'0 —16 0
z (&) z(A)
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FIG. 4. (Color online The DBF and corre-
sponding potential on a negative ion on the chan-
nel axis of gramicidin, compared to the corre-
sponding FCF and potential due to the gramicidin
fixed charges.
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with no protein with fixed charges in it, would be imperme- proportional tog?, the first is multiplied by two while the
able to passage of single positive ions. Since the dielectritatter by four, in comparison to the case of a positive ion.
boundary force is proportional @f (see Sec. )| the dielec- Therefore, as shown in Fig. 5, the dielectric boundary force
tric boundary force on a negative ion is the same as on dominates, and the DBF is not canceled by the interaction
positive ion, while the force on a doubly charged {soch as  with the gramicidin fixed charges. This leads to a potential
ca™) is four times as large. Therefore, a noncharged poréarrier more than 30 high.

opening in the membrane would be impermeable not only to Therefore, the cation selectivity of gramicidin can be ex-
a positive ion but also to a negative ion or a double chargeglained by a simple continuum-type analysis of the balance
ion. Note that this analysis applies only to the movement obetween the different forces acting on an ion inside a rigid
a single ion, and not to the coupled motion of a pair of saychannel. Recently, similar results have been independently
anion cation. This analysis also neglects the possible shieldbtained by Edwardst al. [23], who also state that such a
ing of this force by mobile ions in the surrounding electro- simplistic approach is not valid for quantitative results such
lytic solutions. While the Brownian dynamics simulation re- as computation of the net current through the channel. We
sults of Corryet al. [16] show that for a long and narrow stress that indeed the development of a quantitative theory
channel, this shielding is negligiblisee, for example, their requires the computation of diffusion, friction, and dielectric
Fig. 4 of Ref.[16] on page 235k in general these two issues coefficients inside and near the channel, using more refined
require further investigation. theories or molecular dynamics simulations that can give the

The gramicidin channel, however, differs from an ideal-dependence of these parameters on location, time, and ex-
ized noncharged pore. Although the gramicidin protein isperimental conditions. In addition, the assumption that the
overall neutral, there are nonvanishing partial charges alonghannel is rigid needs to be reconsidered as well. For a study
its atom groups that create a nonvanishing electrostatic paf the effective potential profile inside a nonrigid gramicidin
tential. In Fig. 3(left), the FCF, on an ion due to the grami- channel, see, for example, the recent paper by Mamonov
cidin fixed charges, is compared to the dielectric boundaret al. [20]. Finally, in the broader context of permeation
force. As seen from this figure, the two forces are nearlythrough protein channels, while the effects of single filing
opposite, yielding a much smaller net force on a positive ionand finite size of ions are easily modeled in simulations
with a corresponding potential barrier of abokfl5see Fig. [16,17,24,2% their inclusion into macroscopic theories is a
3 (right). formidable theoretical challend@6—-31].

For a negative ion, however, the situation is quite differ- It is instructive to have another look at the striking near
ent. While the dielectric boundary force remains the samegancellation between the dielectric boundary force and the
the force due to the Gramicidin channel is inverted with re-electrostatic interactions with the gramicidin fixed charges,
spect to the case of a positive ion because it is proportiondbr a positive ion(Fig. 3). It is our claim that the fact that
to g. Therefore, as shown in Fig. 4, now the two forces dothese two forces nearly cancel each other cannot be purely
not cancel each other, but rather add up to produce a higtoincidental. While the dielectric boundary force is a prop-
insurmountable barrier of more thankZ0 erty of the geometry and dielectric coefficients of the prob-

Finally, consider the case of a double charged ion such dem, independent of the fixed charges of the protein, the elec-
c&*. Since the FCF is proportional @pwhile the DBF is  trostatic potential of the protein depends directly on its fixed

Forces Potentials
; - 60

FIG. 5. (Color onling The dielectric bound-
ary force and potential on a €aon the channel
axis of gramicidin(dashed red line compared to
the corresponding force and potential due to the
gramicidin fixed chargegsolid blue ling. The
thin green line is the net effective potential.
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charge distribution. The fact that the dielectric boundaryconduct dc potentials at macroscopic distances, thereby pro-
force and the gramicidin force due to its fixed charges havelucing the well-known cable propertigge., transmission
extremal points(maxima and minimgat almost the same line behavioy of nerve fibers. Only recently has the simple
locations with almost the same heiglisee Fig. 4is char-  case of an electrolyte solution near an infinite dielectric wall
acteristic of adevice not a manmade one in our case, butheen analyzed theoretically by Aqua and CofB4]. Their
rather a natural biological device, designed or evolved tqesylts show that due to the shielding of the electrolyte solu-
‘have a purpose,” i.e., to have a simple reasonably robustion the dielectric boundary force decreases exponentially
input/output relation. It seems that the fixed charges Ofnstead of the long range inverse distance squared decay cal-

gramicidin have been optimized, by the course of evolution,ated for a single charge. Thus, the dielectric boundary
to almost cancel out the dielectric boundary force, and thu§

low th i f lent Ve i h h orce might not play a crucial role in the study of the prop-
{ahé)v(\:/hanenglermea ion of monovaient positive 10ns throlughgties of planar membranes. The DBF might well be impor-

tant, however, in the study of binding sites of enzymes, due
to its dependence on the geometry of the binding site. All in
all, the role of the dielectric boundary force may be signifi-

In an inhomogeneous system, chargdways interact cant in the binding of molecule&and macromoleculg¢go
with (induced dielectric boundary charges and with fixed active sites of proteins.
charges if these are present near the boun@asys usually For more complex systems, such as narrow pores or
the casg Then, the forces between charged particles depentighly charged binding sites of enzymes, the theoretical
as much on their distance to the boundary, and the shape aadalysis of the interplay between the dielectric boundary
dielectric propertiesand fixed chargeof the boundary, as on force and electrostatic shielding still awaits investigation.
the distance between them. The papers of Cornet al. [16,17] reporting Brownian dy-

In this paper, we took a step in the analysis of such probnamics simulation studies, clearly show that shielding effects
lems by considering the dielectric boundary force on a singlare important as the radii of the pores become wider. As
particle and its crucial role in the determination of the per-discussed in the Introduction, continuum theories such as PB
meation through a long and narrow protein channel such asr PNP replace discrete charges with continuum distributions
gramicidin. We confined our analysis to the computation ofcomposed of infinitely small charges, and thus discard the
the net force on a single mobile charge, due only to theliscrete polarization surface charges, and replace them with
dielectric boundary force and to the fixed charges of the prothe effective polarization due to the continuum charge. This
tein, neglecting the effects of other mobile charges eithemeans that the dielectric boundary force is immediately lost
inside the channel or in the surrounding electrolyte solutionsin this description5]. In addition, the non-Coulombic part of

Even though approximate and limited by our simplifying interactions between two discrete ions, which are non-
assumptions, our results show a striking cancellation beregligible near dielectric interfacdsee Sec. Ill as well as
tween the dielectric boundary force and the force due to th&ef. [12]), are also lost and thus may lead to incorrect re-
fixed charges of the gramicidin channel. This kind of cancelsults. As shown in a mathematically rigorous manner in Ref.
lation is characteristic of device in which the free param- [5], a Brownian(Langevin model for the motion of the mo-
eters, e.g., the fixed charges of the protein in our case, havsle ions is equivalent to a hierarchy of Poisson-Nernst-
been optimized to perform a certain function. The role of thePlanck-type equations containing conditional and uncondi-
dielectric boundary force, and cancellation of forces, needfional densities, which explicitly contain the dielectric
to be investigated in other channels, and proteins as welhoundary force. The derivation is similar to that of equilib-
before conclusions can be reached about its general imporium statistical mechanics, where Monte Carlo simulations
tance. sampling according to the Boltzmann distribution are equiva-

Obviously, in multiparticle systems, one has to considedent to the infinite Bogolyubov-Born-Green-Kirkwood-Yvon
the overall effect of all other mobile charges. It is a well equations containing continuum averaged dendifigsThus,
known and central result of equilibrium statistical mechanicso pursue further the analysis of shielding and the role of the
that in a homogeneous system composed of an infinite nundielectric boundary force from a theoretical approach, clo-
ber of charged particles, the shielding is perf&&,33. For  sure relations and/or other approximations that are valid near
inhomogeneous systems, either at equilibrium or at nonequdielectric interfaces need to be developed and checked
librium, similar analytical results are unknown. Indeed,against simulations. This presents new challenges in the
shielding cannot be the whole story in inhomogeneous sysstudy of microscopic equilibrium and nonequilibrium sys-
tems. lonic solutions within(nearly insulating cylinders tems, most common in molecular biology.

IV. SUMMARY AND DISCUSSION

[1] J.M.G. Barthel, H. Krienke, W. KunzPhysical Chemistry of  [3] B. Honig and A. Nicholls, Scienc268 1144(1995.
Electrolyte Solutions: Modern AspectSteinkopf, Springer, [4] S. McLaughlin, Annu. Rev. Biophys. Biophys. Chef@, 113

1998. (1989.
[2] R.S. Berry, S. Rice, and J. Rog3hysical Chemistry2nd ed. [5] Z. Schuss, B. Nadler, and R. Eisenberg, Phys. RewW4E
(Oxford University Press, Oxford, 2000 036116(2001).

021905-8



DIELECTRIC BOUNDARY FORCE AND ITS CRUCIA . .. PHYSICAL REVIEW E 68, 021905 (2003

[6] Gramicidin and Related lon Channel Forming Peptidedited ~ [20] A. Mamonov, R. Coalson, A. Nitzan, and M. Kurnikova, Bio-

by B.A. Wallace(John Wiley, New York, 1999 phys. J.84, 3646(2003.
[7] J3.D. JacksonClassical Electrodynami¢®nd ed.(Wiley, New [21] R. Elber, D. Chen, D. Rojewska, and R.S. Eisenberg, Biophys.
York, 1975. J. 68, 906 (1995.

[8] G. Joos Theoretical Physics3rd ed.(Dover, New York, 198/ [22] T.B. Allen, O.S. Andersen, and B. Rouxnpublishegl
[9] R. Allen, J.P. Hansen, and S. Melchionna, Phys. Chem. Chenj23] S. Edwards, B. Corry, S. Kuyucak, and S. Chung, Biophys. J.

Phys.3, 4177(2002). 83, 1348(2002.
[10] S. Kuyucak, M. Hoyles, and S. Chung, Biophys.74, 22 [24] D. Boda, D.D. Busath, B. Eisenberg, D. Henderson, and W.
(1998. Nonner, Phys. Chem. Chem. Phyis.5154(2002.
[11] lan SneddonMixed Boundary Value Problems in Potential [25] S.H. Chung, T.W. Allen, and S. Kuyucak, Biophys.83, 263
Theory(North-Holland, Amsterdam, 1966 (2002.
[12] R. Allen and J.P. Hansen, Mol. Phyo be publishef [26] W. Nonner, L. Catacuzzeno, and R.S. Eisenberg, Biophys. J.
[13] V. Barcilon, SIAM (Soc. Ind. Appl. Math. J. Appl. Math.52, 78, A96 (2000.
1391(1992. [27] W. Nonner, L. Catacuzzeno, and B. Eisenberg, Biophy89J.
[14] V. Barcilon, D.P. Chen, and R.S. Eisenberg, SIASbc. Ind. 1976(2000.
Appl. Math) J. Appl. Math.52, 1405(1992. [28] W. Nonner, D. Gillespie, D. Henderson, and B. Eisenberg, J.
[15] G. Dieckmann, J. Lear, Q. Zhong, M. Klein, W. DeGrado, and Phys. Chem. BLO5 6427 (2001).
K. Sharp, Biophys. J76, 618(1999. [29] D. Gillespie, W. Nonner, and R.S. Eisenberg, J. Phys.: Con-
[16] G. Moy, B. Corry, S. Kuyucak, and S. Chung, Biophys78. dens. Matterl4, 12129(2002.
2349(2000. [30] D. Gillespie, W. Nonner, D. Henderson, and R.S. Eisenberg,
[17] B. Corry, S. Kuyucak, and S. Chung, Biophys.78, 2364 Phys. Chem. Chem. Phy4, 4763(2002.
(2000. [31] R.S. Eisenberg, Biophys. Chert00, 507 (2003.
[18] P. Graf, A. Nitzan, M.G. Kurnikova, and R.D. Coalson, J. [32] P.A. Martin, Rev. Mod. Phys60, 1075(1988.
Phys. Chem. BLO4, 12324(2000. [33] D. HendersonFundamentals of Inhomogeneous Fluidi4ar-
[19] B. Corry, S. Kuyucak, and S. Chung, Biophys.83, 3594 cel Dekker, New York, 1992
(2003. [34] J.N. Aqua and F. Cornu, J. Stat. Phy85 211 (200J.

021905-9



