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Abstract
Ionic diffusion through and near small domains is of considerable importance
in molecular biophysics in applications such as permeation through protein
channels and diffusion near the charged active sites of macromolecules. The
motion of the ions in these settings depends on the specific nanoscale geometry
and charge distribution in and near the domain, so standard continuum type
approaches have obvious limitations. The standard machinery of equilibrium
statistical mechanics includes microscopic details, but is also not applicable,
because these systems are usually not in equilibrium due to concentration
gradients and to the presence of an external applied potential, which drive a
non-vanishing stationary current through the system. We present a stochastic
molecular model for the diffusive motion of interacting particles in an external
field of force and a derivation of effective partial differential equations and
their boundary conditions that describe the stationary non-equilibrium system.
The interactions can include electrostatic, Lennard-Jones and other pairwise
forces. The analysis yields a new type of Poisson–Nernst–Planck equations,
that involves conditional and unconditional charge densities and potentials.
The conditional charge densities are the non-equilibrium analogues of the
well studied pair correlation functions of equilibrium statistical physics. Our
proposed theory is an extension of equilibrium statistical mechanics of simple
fluids to stationary non-equilibrium problems. The proposed system of
equations differs from the standard Poisson–Nernst–Planck system in two
important aspects. First, the force term depends on conditional densities and
thus on the finite size of ions, and second, it contains the dielectric boundary
force on a discrete ion near dielectric interfaces. Recently, various authors have
shown that both of these terms are important for diffusion through confined
geometries in the context of ion channels.
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1. Introduction

With ongoing advances in technology and experimental techniques, the physical systems that
are either studied or designed become smaller and smaller, nowadays reaching nanometre
and nanosecond length and timescales, respectively. In this paper we focus on a particular
type of system, containing a nanoscale (nearly picoscale) pore connected to two large
reservoirs of electrolyte solutions. Two examples of such a system, of great importance to
molecular biophysics and biotechnological applications, are ionic permeation through protein
channels [1, 2] and through carbon nanotubes [3].

These nanoscale systems exhibit a range of phenomena not encountered in larger
macroscopic systems. For example, due to the confined geometry of the pore through
which the fluid flows, ions typically cannot pass by each other, leading to single filing
phenomena, complex relations between unidirectional currents and other nonlinear phenomena
in mixtures [2]. The confined geometry enhances the importance of individual ion–ion
interactions, which are thought to be the cause of the high selectivity of these nanopores
to specific ionic species [4].

The function of these systems depends not only on the nanoscale atomic details and
geometry of the pore, but also on experimentally controlled macroscopic variables, such as the
applied electrostatic potential and the surrounding bath concentrations. Therefore, the function
of these systems involves many different time and length scales, from the femtosecond and
ångström scales for the motion of single water molecules, up to the microsecond timescale at
which current measurements are made, and micro- to millimetre distances at which measuring
devices are placed. One final important feature worth mentioning is that these systems almost
always function away from equilibrium, as does almost all biology. These nanopores separate
regions of different concentrations and a voltage difference is usually present across them.
Therefore, these systems can be viewed as nanodevices, with well defined input and output
relations that are the purpose of the device.

Many of these biological systems are of interest because they are highly sensitive, with
atomic scale details controlling macroscopic flows. Mutations or modifications to the atomic
structure of the nanopore lead to significant changes in its characteristics. Thus, the theoretical
analysis of such systems necessarily resides at the interface between continuum and discrete
atomic molecular physics, presenting new challenges in non-equilibrium statistical physics.
On the one hand, due to the importance of confined geometry, discrete ion–ion interactions
and non-uniform dielectric coefficient, standard continuum equations of electrolyte solutions,
such as Poisson–Boltzmann (PB), Poisson–Fokker–Planck, or Poisson–Nernst–Planck (PNP)
are not valid [5–7]. On the other hand, due to the wide range of time and length scales
involved—mixing nanoscale and continuum—direct molecular dynamics (MD) simulations
are impractical for the study of the macroscopic function of these systems. Regretfully, even
coarse grained Brownian dynamics (BD) simulations are not always the appropriate tool to
study such systems. For example, it is not possible to study the effects of a 10µM concentration
of calcium ions in a 100 mM Na+Cl− electrolyte in a simulation that contains only a few hundred
ions, even though the biological effects of such trace concentrations are often of overwhelming
importance [8]. Therefore, there is a need for a hierarchy of models each valid in its own scale,
and connections between them.

While the standard PNP system may not be valid in confined geometries, it is important
to note the advantages of a continuum description of nanoscale systems. The computational
complexity of continuum descriptions, that typically involve the solution of a system of coupled
partial differential equations, is often orders of magnitude lower than that of corresponding
BD or MD simulations. Another significant advantage of continuum descriptions over BD
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and MD simulations is that they easily accommodate non-equilibrium boundary conditions
for the macroscopic electrostatic potential and ionic concentrations. Simulations in the
chemical tradition have difficulty with such conditions (see however [9]). The goal, then,
is to derive continuum equations for non-equilibrium systems that include molecular details,
absent in the PNP theory. We note that for the corresponding equilibrium problem, the
theory of equilibrium statistical mechanics of simple fluids incorporates particle–particle
interactions by the Bogolyubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [10, 11].
This hierarchy, coupled with a closure relation, has proven successful in the calculation of a
number of important macroscopic properties of electrolytes from their underlying molecular
interactions [12].

The main problem discussed in this paper is thus how to generalize the theory of
equilibrium statistical mechanics of simple fluids,which is based on the equilibrium Boltzmann
distribution, to stationary non-equilibrium problems. To this end, we note that one of the
key missing elements in the equilibrium theory is the dynamics of the moving particles.
The Boltzmann distribution defines the probability of configurations but does not include
a description of how individual particles move in the system. In non-equilibrium problems
there is usually a net flow of particles. It is not possible to compute net fluxes from equilibrium
theories. In this paper, following our previous work [5], we present a molecular model
of permeation, based on diffusive motion of ions, and propose a mathematical averaging
procedure that results in a hierarchy of Poisson and Nernst–Planck type equations containing
conditional and unconditional charge densities. The proposed conditional system, called
C-PNP, includes molecular details such as excluded volume effects and the dielectric force
on a discrete ion that are absent in the standard PNP system. Recently, various authors have
shown that both of these terms are important for diffusion through confined geometries, in
the context of ion channels [4, 13–16]. The C-PNP system, along with a closure relation
and boundary conditions, provides a theoretical framework for the study of non-equilibrium
diffusing systems. The C-PNP system reduces to the BBGKY hierarchy when equilibrium
boundary conditions are given, thus generalizing equilibrium statistical mechanics to stationary
non-equilibrium problems. Application of C-PNP to ion channels can be expected to predict
blocking and possibly selectivity.

The paper is organized as follows. In section 2 we describe the standard Poisson–
Boltzmann and Poisson–Nernst–Planck theories and discuss their limitations in confined
geometries. Then, in section 3, we briefly review the theory of equilibrium statistical mechanics
of simple fluids, and its limited applicability to non-equilibrium systems. The main results
of this paper are described in sections 4 and 5, where we formulate a non-equilibrium
stochastic molecular model based on trajectories, and present a mathematical derivation of the
corresponding continuum equations. We conclude in section 6 with summary and discussion.

2. Standard continuum treatments and their failure in confined systems

We consider the setup shown in figure 1 (left). A rigid nanopore connects two reservoirs
of electrolyte solutions. The system is kept in a stationary non-equilibrium condition by an
external feedback mechanism that maintains average concentrations cL and cR in the left and
right reservoirs, respectively, and an average applied voltage V across them. The problem
at hand is to compute the stationary ionic current through the nanopore as a function of the
parameters of the system: the geometry, dielectric coefficients, and fixed charge distribution
of the pore, the atomic characteristics of the ions (e.g., radii, ion–ion interaction forces, and
their diffusion coefficients), and as a function of the experimentally controlled macroscopic
variables, cL, cR and V .
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Figure 1. A typical system with a nanoscale channel pore connecting two large electrolyte solutions
(left), and typical timescales of various processes for permeation through a protein channel (right).

(This figure is in colour only in the electronic version)

Throughout this paper we consider modelling approaches at the level of the primitive
model [10, 19] that do not consider explicitly the individual molecules of the solvent (water),
but rather treat them as a continuous structure-less dielectric, and as a viscous and noisy
medium. Some of the limitations of this approach are discussed in the summary section. For
simplicity, we consider an ionic solution with only two ionic species, with positive and negative
charges, such as Na+Cl−, although this assumption can easily be relaxed.

Two of the most common mean-field continuum theories of ionic solutions are the
equilibrium Poisson–Boltzmann (PB) and the non-equilibrium Poisson–Nernst–Planck (PNP)
theories [10, 11]. Both PB and PNP assume a constitutive relation of the form

Jp(x) = −Dp

(
∇cp(x) + cp(x)

ezp

kBT
∇ψ(x)

)
between the local averaged particle flux of the positive ionic species at location x, called
Jp(x), their concentration cp(x), and a potential of mean field ψ(x). In this equation kB is
Boltzmann’s constant, T is temperature, Dp is the diffusion coefficient of the positive ions and
zp is their valence. A similar equation for the flux of the negative ions is also assumed. The
equilibrium PB theory assumes that the local flux vanishes everywhere,

Jp(x) = Jn(x) = 0, (1)

while the PNP theory assumes conservation of flux, e.g. the Nernst–Planck equation,

∇ · Jp(x) = ∇ · Jn(x) = 0. (2)

The simplicity of these two theories lies in their crude approximation for the potential of
the mean field. Both PB and PNP assume that the potential ψ(x) satisfies Poisson’s equation
with the average concentrations cp(x) and cn(x),

∇ · [ε(x)∇ψ(x)] = −e
[
zpcp(x)− zncn(x) + ρfixed(x)

]
, (3)

where ε(x) is the location dependent dielectric coefficient and ρfixed is the concentration of
fixed charges in the system. In this approximation, the electrostatic field exerted on an ion at
location x is computed by the gradient of the mean electrostatic potential (3).

The PB theory is often the starting point of modern electrochemistry, with the famous
Debye–Hückel theory of ionic shielding [11, 17]. The PNP theory has also found numerous
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applications in the study of electrolyte transport, plasma physics and in modelling of
semiconductor devices [11, 18].

Both of these theories represent the ions as a continuous charge distribution in an ambient
mean potential field, defined by the Poisson equation (3). Both theories neglect effects due
to the finite size of ions and due to the discrete nature of their charge. The limitations of the
PB approach, even in bulk electrolyte solutions with moderate to high concentrations, are well
known [11, 17, 19]. Recently, the failure of PB and PNP in confined geometries has also been
shown both in simulations [6, 7] and in theoretical treatments [5].

3. Equilibrium statistical mechanics of simple fluids

The preceding discussion indicates that the problem at hand is how to include molecular
details in non-equilibrium continuum type equations. It is important to note that molecular
details can be included in continuum models with satisfactory results. For example, the
theory of equilibrium statistical mechanics of simple fluids yields continuum type equations
with molecular detail, and has proven successful in the computation of many macroscopic
quantities [11, 12], some of which (e.g., activity of ions) are difficult to determine in MD
or BD simulations. We now briefly describe the key elements in equilibrium theory and its
limitations for non-equilibrium systems. For simplicity we consider the canonical (NVT )
ensemble formulation.

The classical description of the statistical physics of interacting particles (at the level of
the primitive model) starts with a finite system of N particles in a finite volume V at a fixed
temperature T with N particles at locations x1, . . . ,xN . It is usually assumed that the potential
of the forces acting on the ions, U(x1,x2, . . . ,xN ), is explicitly known, and is a sum of pair
radial interactions,

U(x1,x2, . . . ,xN ) =
∑
i< j

Ui, j (|xi − x j |),

with the role of forces at the boundary and electrostatic interactions with boundary charges
often being ignored. The configurational partition function for this system is defined as

QN (β) =
∫

· · ·
∫

V N
e−βU(x1,...,xN )

N∏
i=1

dxi,

where β = 1/kBT . The main assumption of the theory is that the probability of a given
configuration of the N particles follows the Boltzmann distribution,

p(x1,x2, . . . ,xN ) = e−βU(x1,...,xN )

QN
. (4)

Since the number of particles in a given system is usually of the order of Avogadro’s number,
one must consider a reduced description of the system; thus sometimes the marginal densities
of only one or two particles are considered. By definition, the average physical density at
location x1 is given by

ρ(x1) = N
∫

· · ·
∫

V N−1
p(x1, . . . ,xN )

N∏
i=2

dxi . (5)

In equilibrium statistical mechanics, it is often customary to consider the limit of very large
systems, namely N, |V | → ∞, such that N/|V | = ρ. In this limit, it is possible to show that
ρ(x) satisfies the following equation, known as the first BBGKY equation,

∇ρ(x) + ρ(x)
∫

1

kBT
∇xU1,2(x − y)ρ(y|x) dy = 0, (6)
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whereρ(y|x) describes the conditional density of particles at y, given the presence of a particle
at x. By definition,

ρ(y|x) = ρ(x,y)

ρ(x)
,

where ρ(x,y) is the joint physical concentration of a pair of particles.
For homogeneous infinite systems ρ(x) is uniform, due to symmetry, and thus equal to

the bulk concentration ρ. The microscopic structure of the solution is described by the pair
correlation function g2(x,y), which is the non-dimensional version of ρ(x,y), given by

g2(x1,x2) = ρ(x1,x2)

ρ2
= lim

N,V →∞
N(N − 1)

∫
· · ·

∫
V N−2

p(x1,x2, . . . ,xN )

N∏
i=3

dxi . (7)

The pair correlation function is important for the determination of many thermodynamic
properties of an equilibrium system, such as the free energy, pressure, chemical potential
and compressibility of electrolytes, to name just a few [11, 12].

By differentiating (7) with respect to x1, it is possible to show that g2 satisfies the second
BBGKY equation, which depends on the higher order triplet correlation function g3,

kBT∇x1 g2 + g2∇x1U1,2 + ρ
∫

∇x1U1,3(|x1 − x3|)g3(x1,x2,x3) dx3 = 0. (8)

Equations (6) and (8) correspond to a system with only one species of interacting
particle. In the case of two species of interacting particle—say positive and negative ions—
there are two singlet density functions, gp

1 and gn
1, for the positive and negative species,

respectively. There are also four pair correlation functions, gα,β2 , where α, β are one of
the four possible combinations (α, β) ∈ {(p, p), (p, n), (n, p), (n, n)}, though obviously
gp,n

2 (x,y) = gn,p
2 (y,x). All of these quantities satisfy first and second BBGKY equations

similar to (6) and (8).
The BBGKY equations constitute an infinite hierarchy of forwardly coupled integro-

differential equations. Further approximations are needed to solve the problem. For example,
approximate solutions for the single and pair densities are often computed using closure
relations, such as HNC or MSA, relating higher order correlation functions to lower order
correlation functions, and the relevant thermodynamical quantities are calculated from the
resulting densities [11, 12].

3.1. Equilibrium versus non-equilibrium statistical mechanics

In contrast to the simple equilibrium system described in the previous section, the biophysical
systems we consider are in steady state, but not equilibrium. Our system is connected to an
energy source, either a natural one, as in living organisms, or an artificial one that mimics
the natural one, but also allows experimental control of parameters. Usually the nanopore
carries a steady net flux of particles (e.g., either into or out of a biological cell). A steady
state system carrying a constant flow cannot be described by the equilibrium theory, since
the Boltzmann distribution assumes a symmetrical velocity distribution with zero mean and
thus zero net flux. The question, then, is how to generalize the equilibrium theory to such
non-equilibrium systems. In the next section we construct a non-equilibrium analogue of the
Boltzmann distribution and use it to calculate fluxes.

It is instructive to note that the first BBGKY equation (6) can be rewritten as

J(x) = 0, (9)
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where J(x) is the average flux at location x,

J(x) = −D

[
∇ρ(x)− ρ(x)

f̄(x)

kBT

]
,

with D the diffusion coefficient and f̄(x) the average force on a particle at x, given by

f̄(x) = −
∫

∇xU1,2(x − y)ρ(y|x) dy.

Upon comparison of equation (9) with (1) and (2) for the PB and PNP fluxes, it is tempting to
write the following equation for the non-equilibrium case,

∇ · J(x) = 0.

This result, however plausible, cannot be derived from the assumptions of equilibrium statistical
mechanics, because those assumptions imply J(x) = 0. We present below a derivation of this
non-equilibrium equation from the dynamics of diffusing ions.

4. Non-equilibrium statistical mechanics

4.1. A trajectory based approach

Our point of departure for the statistical description of non-equilibrium systems of diffusing
particles is a probability measure defined by their trajectories in phase space, rather than by the
statistics of points in configuration space, which is the starting point of traditional equilibrium
statistical mechanics.

First, we introduce some notation. We consider a finite domain�, that consists of the two
macroscopic reservoirs and the connecting rigid nanopore (see figure 1, left). Its boundary ∂�
is composed of reflecting boundaries ∂�R and the feedback boundaries ∂�F. We assume that
there are Nh ions of species h (h = Ca2+, Na+,Cl−, . . .) in �, which are numbered at time
t = 0,

∑
h Nh = N , and we follow their trajectories at all times t > 0. The coordinates of a

point are x = (x, y, z), while the location and velocity coordinates of the j th ion of species h
at time t are xh

j (t) and vh
j (t), respectively. According to our assumptions, an ion that reaches

∂�F is instantly re-injected by the feedback mechanism at one or another part of the boundary,
so that its individual identity is preserved, and consequently the total number of ions inside
� is fixed at all times. The feedback mechanism serves as the energy source for the system,
keeping it in stationary non-equilibrium by keeping average concentrations cL and cR in the
left and right reservoirs and a constant applied voltage V across the system. In experimental
situations, electronic devices and chemical apparatus provide the energy and feedback. In
biological systems, metabolic machinery and the active transport systems it fuels provide the
energy and feedback.

The evolution of the joint probability density function (PDF) of all the ions and water
molecules in this system can be described by the Liouville equation. However, at the level of
the primitive model, we follow the evolution of the PDF of only the ions in the system, which
is a lower dimensional projection of the former.

Since the motion of ions in solution is strongly overdamped, on timescales larger than
the relaxation time of the solution, memory effects due to the thermal motion of the solvent
can be neglected [10], and the joint motion of only the ions can be described as diffusion
with interactions. Therefore, our starting point is a memoryless system of coupled Langevin
equations for the different ion species h = Ca2+,Na+,Cl−, etc, j = 1, . . . , Nh ,

ẍh
j + γ h(xh

j )ẋ
h
j = f h

j

Mh
+

√
2εhγ h(xh

j )ẇ
h
j , (10)
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where a dot on a variable indicates differentiation with respect to time, γ h(xh) is the location
dependent friction coefficient per unit mass, Mh is the effective mass of an ion of species h
and εh = kBT/Mh . The force on the j th ion of species h is fh

j and includes all ion–ion
interactions. It thus depends on the locations of all ions. The functions ẇh

j are, by assumption,
independent standard Gaussian white noises. Thus, the effects of the solvent are modelled as
a source of noise and friction for ionic motion and as an averaged dielectric coefficient for the
ion–ion interactions. We discuss the limitations of these approximations in section 6.

4.2. The Fokker–Planck equation

We define by pN(x1, . . . ,xN ,v1, . . . ,vN ) the stationary PDF of the system of all N ions.
Since the coupled motion of all ions is governed by the Langevin system (10) with independent
noise terms, the stationary PDF pN satisfies the multi-dimensional stationary Fokker–Planck
equation (FPE) [20]:

0 =
∑

h

N h∑
j=1

Lh
j pN , (11)

where Lh
j is the Fokker–Planck operator acting on the phase space coordinates of the j th ion

of species h. It is given by

Lh
j pN = ∇vh

j
·
(
γ h(xh

j )v
h
j − f h

j

Mh

)
pN +	vh

j
εhγ h(xh

j )pN − vh
j · ∇xh

j
pN ,

where the operators∇v and	v denote the gradient and the Laplacian with respect to the variable
v, respectively. Equation (11) is defined in the 3N dimensional region (x1, . . . ,xN ) ∈ �N

and (v1, . . . ,vN ) ∈ R3N .
The solution pN of the stationary FPE (11) is the non-equilibrium analogue of the

Boltzmann distribution. It is the stationary transition probability density function of the 6N-
dimensional trajectory of the system in phase space and thus it is also the probability density
function of the particle configurations in phase space. Obviously, since the FPE is defined in a
finite region, a unique solution is determined only after specification of appropriate boundary
conditions. As shown in [21], if no-flux boundary conditions are given, the FPE (11) can be
solved explicitly and the solution is the Boltzmann distribution. Thus, our formulation of a
non-equilibrium system reduces to the equilibrium theory in this special case. It is thus clear
that the boundary conditions are what drive the system out of equilibrium. The boundary
conditions for the FPE (11) need to be determined from the action of the feedback mechanism
at the boundaries and will be described in a separate publication [21].

Finally, we note that a time dependent FPE, similar to (11), was suggested [10, 22] as the
starting point for the study of the transport characteristics of bulk electrolytes, by an analysis
of the decay into equilibrium of transient infinite non-equilibrium electrolyte systems.

5. The C-PNP system

With the interpretation of the stationary joint transition PDF of the phase-space trajectories,
pN (x1, . . . ,v1, . . .), as the probability density of configurations of all particles in phase space,
we can follow the steps taken in the theory of equilibrium statistical mechanics, and study the
single and pair densities. An equation similar to (5), for ch(x), the time-averaged steady state
physical concentration of ions of species h at location xh

1, is given by

ch(xh
1) = Nh

∫
�N−1×R3N

pN (x
h
1, . . . ,v

h
1 , . . .)

∏
(i,h′) �=(1,h)

dxh′
i

∏
i,h′

dvh′
i . (12)
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In the equilibrium case, equation (4) gives an explicit expression for pN, so that some of the
integrations in (12) can be performed explicitly. Moreover, in deriving the BBGKY equation,
the limit N, |V | → ∞ is taken. In the non-equilibrium case, the system remains finite and pN

is not known explicitly. What is known is only that pN satisfies the FPE equation (11) in a
finite domain. However, by integration of this equation over all particle coordinates but one,
the following Nernst–Planck type equation for the concentration ch(x) can be derived [5]:

0 = −∇x · Jh(x), (13)

where Jh(x) is the flux density of type h ions, given by

Jh(x) = −Dh(x)

[
∇ch(x)− f̄ h(x)

kBT
ch(x)

]
, (14)

where Dh(x) = kBT/Mhγ h(x) is the local diffusion coefficient of species h. The quantity
f̄ h(x) in (14) is the average force on a single ion of type h. It is given by

f̄ h(x) =
∫
�N−1

f h
1 pN−1(x̃

h
1|xh

1 = x) dx̃h
1, (15)

where x̃h
1 is the vector of all N − 1 particle coordinates except xh

1 and pN−1(x̃
h
1|xh

1 = x) is the
conditional probability density of the N − 1 remaining ions given that the first ion of species
h is located at x.

In the case of charged ions in solution, the ion–ion interaction forces are pair-wise additive,
and thus the force on the first ion of species h can be written as

f h
1 = f h

ed(x
h
1) +

∑
(i,h′) �=(1,h)

f h,h′
(xh′

i ,x
h
1), (16)

where f h,h′
is the ion–ion interaction force that an ion of type h′ acts on an ion of type h.

It includes both Coulombic interactions as well as short range interactions, such as excluded
volume or Lennard-Jones forces. The force fh

ed contains both the effects of an applied external
field as well as the dielectric self-force near dielectric boundaries [5, 13, 23]. Interactions
between charges in the system and boundary charges, including both fixed and induced charges,
may determine the entire behaviour of the system, e.g., to stop the flow of ions through an
open pore. These interactions change the energy of the system also in the equilibrium case.

As shown in [5], with the specific form (16) for the force on a single ion, equation (15)
for the average force simplifies to

f̄ h(x) = f h
ed(x) + f̄ h

SR(x)− zhe∇yφ̄
h(y|x)|y=x,

where

f̄ h
SR(x) =

∑
h′

∫
�

f h,h′
SR (y,x)ch′|h(y|x) dy (17)

is the average short range force on a type h ion, zh is the valence of type h ions and φ̄h(y|x) is
the conditional electrostatic potential at y given a type h ion at x. It satisfies the (conditional)
Poisson equation

∇y · [
ε(y)∇yφ̄

h(y|x)] = −e
∑

h′
zh′

ch′|h(y|x), (18)

where ε(y) is the dielectric coefficient at y. In both equation (17) and (18), ch′ |h(y|x) is the
conditional concentration of h′ ions at y given an h-type ion at x. In terms of unconditional
quantities, it is given by

ch′ |h(y|x) = ch,h′
(x,y)

ch(x)
.
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To summarize, the density ch(x) satisfies a Nernst–Planck type equation (13), with an
average force f̄ h that is the sum of a dielectric self force, an averaged short range force (17)
and an averaged electrostatic force. The latter is a solution of a conditional Poisson equation
that depends on conditional densities, in contrast to the unconditional densities in the standard
PNP formulation, equation (3). We call this resulting system of conditional Poisson and
Nernst–Planck equations C-PNP.

The NP equation (13) is defined in the finite domain �. Therefore, in addition to the
determination of the averaged force f̄ h , boundary conditions on ∂� must be specified in
order to determine the unique solution for ch(x). Obviously, on ∂�R, ch(x) satisfies no flux
boundary conditions,

Jh(x) · ν|x∈∂�R = 0.

In addition, on ∂�F, according to our assumptions, the average concentrations ch(x) are
maintained at fixed known values ch

F(x) by the feedback mechanism. Therefore, regardless of
the exact method by which the feedback mechanism maintains these average concentrations,

ch(x) = ch
F(x), for x ∈ ∂�F.

5.1. The C-PNP hierarchy

An important difference between the PNP and the C-PNP systems is that the C-PNP system
is not closed, because, as seen from (17) and (18), the averaged force in the Nernst–Planck
equation (13) depends on conditional higher order concentrations. Specifically, we consider
the equation for the pair concentrations. Employing similar methods to those of [5], we obtain
that ch,h′

(x,y) satisfies the six-dimensional Nernst–Planck equation

∇xh · Jh,h′
xh (x,y) + ∇yh′ · Jh,h′

yh′ (x,y) = 0, (19)

where

Jh,h′
xh (x,y) = −Dh(x)

[
∇xch,h′

(x,y)− f̄ h,h′
(x,y)

kBT
ch,h′

(x,y)

]

and f̄ h,h′
(x,y) is the average force on an ion of species h located at x, given an ion of species

h′ located at y. The second flux Jh,h′
yh′ is given by a similar expression. For the case of pairwise

additive forces, this force can be simplified to

f̄ h,h′
(x,y) = f h

ed(x) + f h,h′
(x,y) + f̄ h,h′

SR (x,y)− ezh∇zφ̄
h,h′
(z|x,y)|z=x,

where f̄ h,h′
SR and φ̄h,h′

are the higher order analogues of (17) and (18), which depend on the third
order conditional concentrations ch′′ |h,h′

. Equation (19) is the non-equilibrium analogue of the
second BBGKY equation (8), and as in equilibrium, determination of the forces f̄ h,h′

(x,y)
requires knowledge of the triplet densities ch,h′,h′′

(x,y, z).
Similarly, it is possible to write an equation for the triplet density, whose average forces

depend on fourth order conditional densities. We arrive this way at an infinite hierarchy of
conditional Poisson and Nernst–Planck type equations, all defined in finite domains. The
resulting equations are very similar to those used in the study of macroscopic bulk dynamical
properties of electrolytes [10], where the time dependence of similar equations is considered
in infinite domains. In these studies, closure relations between the triplet and pair densities,
similar to those of equilibrium statistical mechanics, are employed in order to compute the
average forces [24]. Closure relations require further physics or approximations, or both.

In our case, however, since we are concerned with a finite system in non-equilibrium,
a closure relation between the triplet and the pair densities is not enough to close the
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system. Specifically, the Smoluchowski type equation (19) is defined in the finite domain
(x,y) ∈ �× �. Therefore, to uniquely determine its solution, boundary conditions have to
be prescribed on the domain boundaries, e.g. for (x,y) ∈ ∂�×� and (x,y) ∈ �×∂�. Only
after these boundary conditions are specified, the pair concentration ch,h′

(x,y) is completely
determined, provided the forces f̄ h,h′

(x,y) are known. As in the case of the single ion densities,
the boundary conditions for the pair densities should also be determined by the action of the
feedback mechanism. The derivation of boundary conditions for the pair concentrations,
as well as for higher order densities, requires a more detailed description of the feedback
mechanism [21].

5.2. PNP revisited

The simplest possible closure is

ch′ |h(y|x) = ch′
(y), (20)

which assumes independence of ions and thus neglects ion–ion finite size effects. Therefore,
it is also necessary to neglect all short range forces in this approximation, if one wishes to
be consistent. This closure recovers the (unconditional) PNP system, but with an additional
force term, fed , the dielectric boundary force on a single ion near dielectric interfaces. This
term represents the forces on a single ion by surface charges induced by the ion itself at
dielectric interfaces [13, 23]. This force term has a crucial importance in the determination of
the permeation characteristics of the gramicidin channel, see [13].

The above analysis of this closure clarifies the assumptions and validity of PB and PNP.
These two theories are obtained as approximations of the exact BBGKY and C-PNP systems
by use of the simple closure (20) that neglects both the discreteness of charge and the finite size
of ions. Therefore, in any system where discreteness of charge and the finite size of particles
are important, such as near dielectric interfaces or in confined regions, the validity of these
theories is questionable.

6. Summary and discussion

The function of biological systems such as ion channels typically involves the atomic control of
macroscopic flows. These channels are nanoscale non-equilibrium systems connecting large
electrolyte reservoirs, so their description involves many different length and timescales. Yet,
the majority of published work on channels typically considers only a single level of modelling,
which is valid or computable on limited time and length scales. In order to study the function
of such systems, connections between theories at different levels are essential. In this paper
we presented a connection between the level of Brownian dynamics (BD), represented by the
system of coupled Langevin equations (10) and of continuum theories, represented by the
C-PNP hierarchy (13), (19) and so forth. This connection is shown graphically as the diagonal
arrow in figure 1 (right).

Since Brownian dynamics simulations are based on the numerical solution of the Langevin
system (10), our analysis shows an equivalence between BD simulations and the C-PNP
hierarchy. This equivalence can be used to validate specific closure relations as well as
BD computer codes by comparing the results of the two computations. The resulting C-
PNP hierarchy is not closed as it involves conditional and unconditional charge densities.
We find that it is the boundary conditions that drive the system out of equilibrium. When
equilibrium boundary conditions are imposed the equilibrium BBGKY hierarchy is recovered
from the C-PNP equations. While the single ion densities satisfy simple concentration and no
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flux boundary conditions, the corresponding conditions for the higher order densities are not
obvious and require further analysis [21].

The two main force terms that appear in the C-PNP system and are absent in standard PNP
are the dielectric boundary force and the effects due to the finite size of ions. Both of these
terms have been shown to be important in the context of narrow protein channels [4, 13–16].
However, to the best of our knowledge, the validity of various closure relations has not yet
been considered in confined and highly non-homogeneous systems.

The derivation presented in this paper is at the level of the primitive model and thus relies on
a few assumptions concerning the properties of the implicit solvent. One of these assumptions
is that the noise terms of different ions are independent. This assumption may not hold in
very narrow regions occupied by one or more ions and only a few water molecules, where
ions and water may move in a highly coordinated fashion. The analysis of this configuration
requires separate analysis. Another assumption concerns the representation of the solvent
as an effective dielectric constant. Given the substantial frequency dependence [25], and
possible location dependence of induced charge, higher resolution methods must be used,
along with experimentation, to evaluate this representation and its parameters. Specifically,
the description of induced charge by a dielectric coefficient (with its inherent assumption of a
linear invariant relation between induced charge and local electrical field) must be validated,
and the frequency/time and location dependence of this dielectric coefficient evaluated. Such
high resolution calculations are not trivial because they themselves must be shown to represent
the electric field accurately over the relevant length and timescales. We note that in the context
of proteins, the dielectric coefficient for dielectric boundary forces may not be the same as the
coefficient for charge–charge interactions [26].

Finally, we note that in this paper we assumed that the nanopore is rigid. If this is not
the case, then the dynamics of the fluctuations of the nanopore structure from its average
configuration should be coupled to the Langevin equations for the motion of all the ions
as described in [5]. This would result in a conditional Poisson equation with a conditional
averaged structure of the nanopore, that depends on the location of the mobile ion inside it. It
seems likely that gating can be described by such a coupled system of equations.

References

[1] Eisenberg R S 1999 From structure to function in open ionic channels J. Membr. Biol. 171 1–24
[2] Hille B 2001 Ionic Channels of Excitable Membranes 3rd edn (Massachusetts: Sinauer Associates)
[3] Joseph S, Mashl R J, Jacobsson E and Aluru N R 2003 Ion channel based biosensors: ionic transport in carbon

nanotubes Technical Proc. 2003 Nanotechnology Conf. vol 1, pp 158–61
[4] Gillespie D, Nonner W and Eisenberg R S 2002 Coupling Poisson–Nernst–Planck and density functional theory

to calculate ion flux J. Phys.: Condens. Matter 14 12129–45
[5] Schuss Z, Nadler B and Eisenberg R S 2001 Derivation of PNP equations in bath and channel from a molecular

model Phys. Rev. E 64 036116
[6] Moy G, Corry B, Kuyucak S and Chung S 2000 Tests of continuum theories as models of ion channels. I.

Poisson–Boltzmann theory versus Brownian dynamics Biophys. J. 78 2349–63
[7] Corry B, Kuyucak S and Chung S 2000 Tests of continuum theories as models of ion channels. II. Poisson–

Nernst–Planck theory versus Brownian dynamics Biophys. J. 78 2364–81
[8] Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2002 Molecular Biology of the Cell 4th edn

(New York: Garland)
[9] Jacoboni C and Lugli P 1989 The Monte Carlo Method for Semiconductor Device Simulation (New York:

Springer)
[10] Barthel J M, Krienke H and Kunz W 1998 Physical Chemistry of Electrolyte Solutions (New York: Springer)
[11] Berry R S, Rice S and Ross J 2000 Physical Chemistry 2nd edn (Oxford: Oxford University Press)
[12] Rowley R L 1994 Statistical Mechanics for Thermophysical Property Calculations (Englewood Cliffs, NJ:

Prentice-Hall)



Ionic diffusion through confined geometries S2165

[13] Nadler B, Hollerbach U and Eisenberg R S 2003 Dielectric boundary force and its crucial role in gramicidin
Phys. Rev. E 68 021905

[14] Corry B, Kuyucak S and Chung S 2003 Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck
models of on channels Biophys. J. 84 3594–606

[15] Mamonov A, Coalson R, Nitzan A and Kurnikova M 2003 The role of the dielectric barrier in narrow biological
channels: a novel composite approach to modeling single channel currents Biophys. J. 84 3646–61

[16] Gillespie D, Nonner W, Henderson D and Eisenberg R S 2002 A physical mechanism for large-ion selectivity
of ion channels Phys. Chem. Chem. Phys. 4 4763–9

[17] Bockris J and Reddy A 1998 Modern Electrochemistry 2nd edn, vol 1 (New York: Plenum)
[18] Selberherr S 1984 Analysis and Simulation of Semiconductor Devices (New York: Springer)
[19] Henderson D 1992 Fundamentals of Inhomogeneous Fluids (New York: Dekker)
[20] Schuss Z 1980 Theory and Application of Stochastic Differential Equations (New York: Wiley)
[21] Schuss Z, Singer A, Nadler B and Eisenberg R S 2004 The singlet and pair correlation functions of interacting

particles in non-equilibrium diffusion: equations and boundary conditions Phys. Rev. E at press
[22] Ebeling W, Feistel R, Kelbg G and Sandig R 1978 J. Non-Equilib. Thermodyn. 3 11
[23] Allen R, Hansen J-P and Melchionna S 2001 Electrostatic potential inside ionic solutions confined by dielectrics:

a variational approach Phys. Chem. Chem. Phys. 3 4177–86
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