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Memoryless control of boundary concentrations of diffusing particles

A. Singe# and Z. Schuss
Department of Applied Mathematics, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel

B. Nadlef
Department of Mathematics, Yale University, 10 Hillhouse Ave., P. O. Box 208283, New Haven, Connecticut 06520-8283, USA

R. S. Eisenbery
Department of Molecular Biophysics and Physiology, Rush Medical Center, 1750 Harrison St., Chicago, lllinois 60612, USA
(Received 3 August 2004; published 22 December 2004

Flux between regions of different concentration occurs in nearly every device involving diffusion, whether
an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory
has calculated that flux since the time of F{d855, and the flux has been known to arise from the stochastic
behavior of Brownian trajectories since the time of Einstgifi05), yet the mathematical description of the
behavior of trajectories corresponding to different types of boundaries is not complete. We consider the
trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations.
Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain
average concentrations at the boundaries of the region at their values in the baths, a control mechanism is
needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin
and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time
evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference
between the time evolution and the steady state concentrations. While the time evolution of the density is
governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator.
The boundary conditions for the time dependent density depend on the model of the controller; however, this
dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers,
however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, be-
cause even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains
concentrations of noninteracting particles without creating spurious boundary layers at the interface requires
the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a
source of ingoing trajectories on the boundétye so called albedo problem
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[. INTRODUCTION reflected(or otherwise reinjecteddelayed; and so on. None
of this is described by the Langevin equations. Brownian
We consider particles that diffuse between two regionsjynamics cannot describe such boundary behavior, because
where average concentrations are maintained at constant uBrownian particles have no definite velocity, being functions
equal valuegsee Fig. 1 Flux between regions of different of infinite variation. Particles with positivée.g., incoming
concentration occurs in nearly every device involving diffu- velocities can be distinguished from those with negative
sion, whether an electrochemical cell, a bipolar transistor, ofe.g., outgoing velocities, only if their velocity is well de-
a protein channel in a biological membrane. Continuunfined [8]. The Langevin equations are often directly inte-
theories of such diffusive systems describe the concentratiograted in simulation$11-21.
field by the(time independentNernst-Planck equation with In de\(ices, the interact_iqn between the t(ajectories and the
fixed boundary concentratiori—7). boundaries must be specified because the inputs, outputs, and
The microscopic theory underlying diffusion describesPOWer supplies of dev_lces are at their boundaries; in physical
motion of particles by Langevin's equatiofi3,5,8—1Q ev- systems, the boundaries are where charge, matter, and energy

erywhere, except at the boundaries. The behavior of thare injected into a device; in biological systems boundaries

Langevin trajectories at the boundaries depends on the intef€Present reservoirs maintained atreearly fixed electro-

action between the particles and the boundaries. Thus, foqhemlcal potential by active processes of the cell

: : : . The formulation of boundary conditions for the particle
example, outgoing trajectories can be termingissorbey] concentration is obvious in macroscopic models, but formu-

lation of boundary conditions for the underlying trajectories
is not so clear cut, particularly because many different physi-

*Electronic address: amits@post.tau.ac.il cal or computational control mechanisms can maintain a
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The description of this simplified model of diffusion of

T noninteracting particles is apparently different: we include a
reflecting detailed description of the physical mechanism that main-
boundaries O tains the nonequilibrium state of the system. Similar descrip-
tions are needed when particles interact.
membrane
control control
“ boundary channel boundary Il. FORMULATION

We consider a system composed of two finite macro-
scopic volumes containing electrolyte solutions of different
concentration C_ concentration Cy, ionic species, connected by a macroscopic or microscopic
channel. A control mechanism keeps different average con-
centrations in the two volumes, so that a steady current flows
through the systensee Fig. }, thus keeping it out of equi-

FIG. 1. The concentration cell of experimental electrochemistry“b”um' As seen in the figure, the control mechanism is lo-

and molecular biophysics. The regiéhtypically consists of small cated only on parts of the boundaries of the system, at mac-

parts of two large baths of effectively constant concentrations, sepa[—OSCOplc dIStan.Ces a"‘(ay from Fhe Con.necm.]g channel. The
rated by a permeable membrane in experimental electrochemistrﬁomrOI mecha!’llsm re-injects ex't'”g tra}JeCtO”es at Ohe or the
or (in biophysicy an impermeable membrane containing one Orother b'oundarles In away that. maintains average fixed con-
more channels. centrations near the boundaries at all times. We have in
mind, for example, a typical setup used to measure the dif-
ous boundary layers that do not exist at those locations in thision of ions through a protein channel of a biological cell
physical systems being simulated. Spurious boundary layeigembrane that separates two solutions of different fixed con-
are particularly damaging to simulations of charged particlesgentrationg[1]. Alternatively, all trajectories are reflected at
A boundary layer leads to large fluctuations in the electrothe boundary so that the system reaches equilibrium after a
static field which spreads over the entire simulation regionjong time, but the long lasting transient regime is the non-
This was clearly demonstrated in R¢lL6] for a problem  equilibrium regime in which an almost steady current flows
with equal boundary concentrations in a simulation with apetween the baths. This time behavior occurs when the num-
buffer zone. ber of particles that flow through the channel during the pe-

In this paper we provide a general description of the conriod of measurement is much smaller than the total number
centration and flux of noninteracting particles diffusing be-of ions in either bath.

tween constant average concentrations near the boundaries.The problem at hand is to describe the steady diffusion

We study renewal-type controllers that maintain fixed con-—current flowing between the two baths, in terms of the mo-
centrations near the boundaries, determining the time coursgcular properties of the diffusing ions, such as their radii and
both of concentratiofin phase spageand current. This kind  interaction forces, as a function of the experimentally con-
of controllers is often used in simulations. We show that therolled variables, such as the concentrations in the two baths
concentration is a weighted sum of “left” and “right” con- and the external potential, and as a function of the system
centrations, each of which satisfies a different integro-partialyeometry, e.g., the geometry and charge distribution of the
differential equation and different boundary conditions. Inchannel.

the steady state the phase space concentration is the weightedthe particles diffuse in a domaift that consists of the
sum of the solutions of two stationary solutions of the Sotwo macroscopic volumes and the connecting channel. We
calledalbedoproblem[29-34. The albedo problem was first assume that there areN' ions of species h(h
posed by Wang and Uhlenbef&5] in 1945 and its analytic =cg+* Na*,CI,...) in Q, which are numbered at time
solution was first found by Marshall and Wats[86]. Fur- =0, S,N'=N, and we follow their trajectoriesx(t)
ther progress was made by Hagan, Doering, and Levermorg(xh(t) Y1), 2'(1) at all timest>0 [x(t) is the Iocatioln of
[37,39, who used complex analysis to solve the half rangeg,]e’jth ,ian 0} épecieﬁw at timet]. ]

expansion problem. The solution employed here was foun For future use, the coordinate and velocity vectors of all

by K+03€k[39]' The weights in the sum of “left” and r|gh_t ._ions in the N-dimensional configuration space, are denoted
concentrations are the rates at which the controllers inject hy

trajectories into the system. by %=1, ... Xy X2, .. Xy, ) andX or B,
Different control mechanisms that maintain the same con-

centrations near the boundaries produce different time opera-
tors that govern the evolution of the “left” and “right” con-
centrations. Each evolution is non-Markovian. The removal As in Ref.[5], we assume that the motion of an ion in the
and injection—or re-injection—of particles into the systemsolution is overdamped diffusion in a field of force. The
by renewal-type boundary controllers are described byource of the noise and friction is the thermal motion of the
renewal-type integral operators that govern the time evolusolvent(e.g., watey and both are interrelated by Einstein’s
tions of these concentrations, in contrast to the Fokkerfluctuation-dissipation principlg¢3]. More specifically, our
Planck or Nernst-Planck equations that are commonly usedstarting point is a memoryless systemMNtoupled Langevin

Equations of motion
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equations for the dynamics of all particles of the differentsources, respectively. For example, if both sources are Max-

speciesh=Ca™*,Na",CI, ..., wellian, then
L "% 2 MkeT
) hyoh — Bloh i h
X+ Y% = II\/I“ + Mlh W, (j=1,2,...N", ) )
1) s (v)= ‘Jﬁe_v 2€ = sR(-v), v>0. (4)
v

where a dot on top of a variable means differentiation with

respect to time)”(x") is the location dependent friction co- _ . o
P 7" b As shown below, the precise velocity distribution of the

efficient per unit mass, arld" s the effective mass of an ion sources is unimportant for measurement of concentrations
gci%eecsle;l?.io?-];r:?l:ig:ég(i)or?sn a;[r:]g {Lhuslogeogrfgse ((:)Ir? S':;le o2&y from the boundaries.
P The dynamicg1) and the boundary behavior provide a

cations of all ions. The functions' are, by assumption, omplete description of the trajectories, and therefore deter-
independent standard Gaussian White noises. The parame?er b pton ot the tray ' .
mine the probability distribution of the random particle tra-

kg is Boltzmann's constant antlis absolute temperature. As . Co : X
jectories in the system at any time. Assuming, as we may,

seenin Fig. 1, some parts of the boundafy are r_eflectlng, that the precise velocity distribution is unimportant, there are
while other parts contain the control mechanism. At the

boundaryd(), the random trajectories of the Langevin equa-28%btgoofarzmceltssrsigothbee Sdittirg'gﬁg’ tﬂgﬂgg’a.;ﬁo?]xed
tions (1) are either reflected or are redirected by the external r ot p y ; ;
. probability R. These two parameters determine uniquely the
control mechanism. .
two measured concentratio® andCg.
Let pi(x,v,t) be the probability of finding théh particle

at locationx and velocityv at timet, given that it was in-

The solution of Eq(1) depends on the specific choice of Jected to the bath at time=0, from either the left or right
control mechanism. We first analyze controls for one-Poundary with probabilitie® andL, and the corresponding
dimensional noninteracting systems because the treatment ¥¢locity distributionss, andsg. Since the particles are inde-
three-dimensional interacting particle systems is more comPendent and interchangeable, we find thatp,=---=py,
plicated. In this section we show that renewal conttsbe ~ and setp(x,v,t)=p;(x,v,1). Let p(x,v) be thesteady state
defined in Sec. Il Greproduce correct macroscopic proper- density of a single particle, i.ep(x,v)=lim; .. p(x,v,t).
ties such as total net flux and concentration profile, but alsd he steady state concentration at locatiois given by
produce nonphysical boundary layers for noninteracting dif-
fusive particle systems.

Consider particles diffusing in the interv@=[0,d]. The *
control mechanism maintains average concentratinand Cx)=N f p(x,v)dv. (5)
Cr at 0<x <xg<d, respectively,away from the bound- -
aries, where concentrations are actually measured. Each par- We use renewal theorjd0] to calculatep(x,v). Suppose

IIl. RENEWAL CONTROLS

ticle satisfies a Langevin equation the device was turned on at tinhe 0. Lett, be the first time
L N that the particle was injected into the system. Then the prob-
X+ yx+U'(x) = V2yew. (2) anility of finding the particle in locatiorix,v) of the phase

In order to complete the description of the dynamics we havépace at time is given by
to describe the motion of particles at the boundaries, i.e., to
describe the action of the control mechanism. t
A. Probabilistic control p(x.v,t) = fo p(x,v,tty=9s)q(s)ds. (6)

A possible control mechanism operates as follows: when a
particle reaches either one of the boundaries, it tosses a Ber-
noulli coin with probabilities(L,R), L+R=1, L, R=0. The Let r; be the first passage time of the particle to the bound-
control mechanism decides to re-enter the particle at the leftry. Conditioning onr, yields
boundaryx=0 with probabilityL, and to re-inject the particle
to the bath at the right boundaxy-d with probabilityR. The

re-injections occur at random times; a particle that reached B t * B B

the boundary at timg is delayed in the boundary a random p(x.v,0)= | q(9)ds| p(xv,tto=s7=r)

time T and re-injected at timée+T. The random tim€T is a 0 0

non-negative random variable with PDF, X p(r =r|ty=9)dr, (7)
g(s)ds=Prods< T <s+dsg}. 3

The velocity of injection is distributed according to pre- wherep(r,=r|ty=s)=p(7=r-s)=0 forr <s. We separate the
determined distributions, (v) andsg(v) of the left and right integral into two parts,
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t t
p(x,v,t):f q(s)dsj p(X,v,tltg=s, 7 =r)p(r=r —s)dr
0 0
t o0
+J q(s)dsJ p(X,v,tltg=s, 7 =r)p(r=r —s)dr
0 t

t t
:f q(s)dsf p(x,v,t =r)p(r=r—s)dr + f(x,v,t),
0 0

)

where

t o
f(x,v,t) = f q(s)dsJ p(X,v,t[tg=s,7 =r)p(r=r —9)dr.
0 t

9

Changing the order of integration in E) we obtain

t t
p(x,v,t)=f p(x,v,t—r)drf q(s)p(r=r —s)ds+ f(x,v,t)
0 0

t
= f p(x,v,t=1)(p,* Q) (r)dr + f(x,v,t)
0

= (p*p,* () + f(X0,1), (10

where=* denotes convolution. Taking the Laplace transform

of the equation gives

R f(x,v,0)
pX,v,0) = ————. (11)
1-p(0)q(o)
The steady state distribution is given by
) ) . . 6f(x,v,t9)

x,v) = lim p(x,v,t) = lim 6p(x,v,0) = lim —————.

p(x,v) lim p(x,v,t) fim p(x,v, ) i~ p.A0)(0)
(12)

Both numerator and denominator of the right hand side van-
ish as @ tends to 0. Expanding the denominator in Taylor

series, we find that

B f(x,v,&z 0)

p(X,v) = EPY (13)

where(r) is the mean first passage tifldFPT), and(T) is

the mean delay time before re-injection.

PHYSICAL REVIEW E 70, 061106(2004)

IpL ~ P I , PPL
—= =—p—+— + +ey—=
p Ly,PL="0v x @ {{yw+U'(X)]p}+ ey w2’
(14
with the initial condition
PLXv,t=0) = 8x - 07)s.(v), (19
and the absorbing boundary conditions
PL(x=0,0,t)=0, v>0, (16)
P(x=d,v,t)=0, v<O. a7

Equations(14)—«17) define the time dependent albedo prob-
lem. In the limit of high friction a new time scale is often
used[10],

t=t/y, (18)
so Eq.(14) is rewritten as

1dp ~
=P B (19
Y ot

We define the function
co~ ~ 1 oc~
PL(X,U):J pL(va,t)dT:_f pL(x,v,t)dt.  (20)
0 YJo

The function yP (x,v) is the average time that a particle
spends at locatiofx,v) prior to its absorption, given that it
was injected from the left electrode at tineO0. It follows
from Eqgs.(14)<(17) that P, the solution of the steady state
albedo problem, satisfies

1
LyPL=- ;5(X - 07)s.(v), (21)
with the absorbing boundary conditions

PL(XZO_,U)ZO, U>0,

P (x=d,v)=0, v<O0. (22)

The MFPT to the boundaryr ) of a particle that was in-

jected from the left electrode is given by

d ro
(1) =J f yPL(X,v)dxdv. (23
0 J-

To evaluaté(x,v ,0=0), we consider a Langevin particle
in the interval[0,d] which is injected at timeg=0 atx=0  Similarly, we defineyPg as the mean time spent by a trajec-
with velocity distributions, (v). When the particle reaches tory at the point(x,v) prior to its absorption, given that it
one of the boundaries, it is absorbed, and its trajectory isvas injected to the bath from the right electrodexad at
terminated at once. L&, (x,v,t) be the probability density timet=0. The functionPy satisfies similar equations, and its

function of the particlép should not to be confused wifh ;

the subscriptlL stands forleft). The densityp, satisfies the

Fokker-Planck equation,

integral is the MFPT 7).
Using the definition of(x,v,t), Eqg.(9), and changing the
order of integration, we find that
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o L - -
Hx.020) = J o Ot ProNz(t) = 0} = Prod((x(t),v(t)) & A}
0

o0 t
= f dtf g(s)ds
0 0

xf p(X,v,tltg=s, 7 =r)p(r=r —s)dr
t

t
X lf f (s) ProgNx(t - s) = O}ds

0

+ fw fL(s)ds} , (29
t

. . ProlNk(t) = 1} = Pro(x(),v(t)) € A}
:J q(s)dsj p(r=r—s)dr

0 S

0

t
X {f f (s) ProgNj(t - s) = O}ds

r
Xf p(X,U,t|t0:S, T = I’)dt (24) o
s + f f (s)ds | + Prod(x(t),v(t)) & A}
t
We identify the inner two integrals as the mean total time t
that a particle had spent in tlig,v) location of phase space Xf fL(s) Prok{Nk(t -s)=1}ds, (30)
0

prior to its first absorption. Sinc&; q(s)ds=1, we find that

ProN5(t) = n} = Prob(x(t),v(t)) € A}

f(xv,0=0) = LyPL(xv) + RyPr(xv),  (25)
t
xf f_(s) ProgNL(t—s) =n - 1}ds
and o - A
LyPL(.v) + RyPr(X,0) +Prof(x(®.v(v) & A
P = = R + (D) (26) ‘
L R ><J f (s) ProgdN5(t—s)=n}ds n>1.
0
from which the concentration in phase space is given by (31)
LyP, (x,0) + RyPg(X, Thus the expected value df(t) is given by
Clx,v) = Np(x,p) = NEZLX0) * RYPRX0) g A
L{7) + R{rp) +(T) oo
(Nx(D) = 2 n Proi{Nj(t) = n} = ProH{(x(t), v()) e A}
Equation(27) relates the probabilistic control mechanism to n=1
its resulting phase space steady state concentration, that sat- t %
isfies the steady state Fokker-Planck equation with flux xlf fL(S)(NK(t— s))ds+f fL(s)ds}
boundary condition$21). 0 0
t
B. Rate control + Prod(x(t),v(t)) & A} f fL(SKNA(t - 5))ds
0
Another possible renewal control consists of two sources, t
placed at the left and right boundaries, which inject particles =ProH(x(t),v(t)) € A} +f fL(S)(N4(t—5))ds.
into the system. When a particle reaches the right or left 0
boundary, its trajectory is terminated at once. The sources (32

inject particles at identical independent distribugeidd.) in-

terarrival random time3, andTg, whose probability density Dividing by the aredA| of A and taking the limi{A| -0, we
functions aref, (t) andfg(t), respectively. The rates of injec- obtain the number of particles per unit length and per unit
tion are defined as velocity, which we call the phase space den€ltyx,v,t). It

satisfies the renewal equation
1 1

= = CH(x,v,t) =P, (X,0,t) + (f, * CH)(x,v,t). 33
T AR T (29) (X,0,t) =PL(X,0,1) + (f_* C)(x,v,1) (33

AL
Taking the Laplace transform with respectttave find that

Note that the number of particles in the system does not

remain fixed for this rate control mechanism. For any rect- éL(X v.6) = PL(X,v,0) (34)
angleAC[0,d] X R, we denote byN5(t) the number of par- Y 1-%,(0) '

ticles in A at timet, that were originated at the left source.

Then N,ﬁ(t) satisfies a set of renewal equatidd$)], and the steady state density is given by
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L N H L X
C (X.U) = tlm C (X,U,t) QOUT(X,U) - C|:f eU(Z)/edZ_ erU(x)/e] +D+ 0(7—2)’
~ ~ 0 Y
— I|m %L()favyg) — pL(<)-(I:U>1 O) (40)
0 1-10) : with
=N PL(Xv,0). (35 QU0 {(%) +B5
_ -2
We obtain from Eq(20) that C= 7’\““2 T geu(z)/fdz+ O(y™),
:ﬁL(X,v,O) =f PLx,v,t)dt=yP (x,0). (36) U0/ 1
° D==——|¢5)+Bs|+0(r, (41)
YVE

The linearity of the expectation implies that the steady state
concentration is WhereBg is a constant that depends on the velocity distribu-
L R B tion of the left source, and denotes the Riemann zeta func-
Clxv) = C(x,v) + C(x,v) = YA PL(X,0) + YARPR(X,V). tion [¢(3)=-1.460035. ]. The outer solutiol°VT approxi-
(37) mates Q at distancesO(y ') away from the boundaries.
Similar expressions can be written BE.

C. Renewal control E. Concentration profile and net flux

Even though the two control models described above are
different, and have different time evolutiga.g., the number
of particles inside the domain is bounded by for the

Equation(27) gives the concentration &t which is estab-
lished by the probabilistic control mechanism, as

former, and unbounded for the Iat},e.they haveidentical _ 00 = NY[LP,(X) + RPx(X)] 2
steady state phase space concentrations. Indeed, choosing L(r) +R(r) +(T)
A= NL . AR= NR , Therefore
L{7) + R{rr) +(T) L{7) + R{rp) +(T)
(39) CL _ LPi(xy) + RPR(xy) (43)

. N . Cr LPL(X) +RPg(xp)
we find that Eqs(27) and(37) are identical. This is no mere

coincidence:both controls are special cases of renewal We now solve Eq(43) for the yet-undetermined parameter
controls that keeps constant concentratio@is and Cr. SinceL=1
Definition 1. A source that injects particles into the do- —R, the solution is given by
main at random time®=Ty,<T;<T,...<T,<...,such that
Y,=T,-Tn, are iid. with (Y;)<= is called a renewal L= CrPr(X1) = C Pr(Xp) (44
source Ci[PL(x) = Pr(X2)] = CRIPL(x1) = Pr(Xq)]
Definition 2. A control made of renewal sources located
at the absorbing boundary of the domain is called a renewal
control. Ny c
Theorem 1 The steady state phase space concentration = L , (45)
of a renewal control is given by E¢37), wherex =1/(Y}), (D +(T)  LPL(x) + RPr(x)
Ar=1/(YD) are the rates of the left and right renewal and the two parameters of the control mechanisnandL,

sources, respectively _ _ are uniquely determined. We assume that the left and right
Proof. The proof is given in the previous subsection.  sources have the same velocity density distributigtty)

=sx(-v),v>0, which guaranteeB;=B5= B,. The resulting
D. Calculation of P, and Pg: The albedo problem concentration ax away from the boundary is given by

Substituting in Eq(42) we find that

As seen above, all renewal control mechanisms requirec(x)
the knowledge of, and Pg, which are the solutions of the

: U(x)-UM e [ XonU(2)e U0p)-UG0Ye [ X JU(2)e
steady state albedo problem. It was shown in R&9] that _ C eV Uief gl @leqiz + Coel V0 UIier ¥ elPledz
P, is given by fiieU(Z)ledZ '
1
PL(X,U)= ”_e—UZ/ZEe—U(X)/EQ(X,U), (39) (46)
\Zme

which is the same as given in EQ.5) of Ref.[8]. Note that
whereQ=Qg, +QE, +QCUT, with Q5 the boundary layer so- the constant factot (%)+Bo cancels out, and therefore it
lutions, which decay exponentially fast away from thecannot be seen, if only concentrations are measured. The
boundaries, an@°VT the outer solution, given by total net flux is given by
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vp(x,v)dv = ﬁ vP(x,v)dv, boundaries.
- v - As mentioned above, replacing the baths with renewal
(47)  sources is a mathematical idealization that can produce arti-
) i ficial boundary effects. The renewal control effectively ter-
whereP=LP,_+RPg. The flux is constant and to leading or- minates trajectories at boundaries and starts new trajectories

- f” o conditions, including fixed concentrations and sticky
J(x) =N

L
der iny ™ is given by there. Most experiments do not. In real physical systems,
€ C eV0xle — Celtalle particles that reach the boundary usually move into a “guard”

J=- (48) region, from which they often return to the domdinith

X2 U(2)/ o ] . . O ]
Y ine "dz some probability, with a given time distribution. To capture

this behavior by a mathematical model, the entire pdf of the
first passage time for the albedo problem has to be found, not
only its first moment. The spurious boundary layers will be
avoided if the correct time course of recycling trajectories in
and out of the domain is used. We postpone this calculation,
which we could not find in the literature, to a future paper.
The time evolution of systems whose average concentra-
tions near the boundaries are maintained by renewal controls
is complicated and cannot be described, in general, by a
The renewal controls studied here maintain systems o$ingle partial differential equation. We have shown that the
noninteracting particles at constant average concentratiorghase space concentration is a sum of two components, each
near the boundaries, and away from the boundaries they prof which satisfies a different integral-partial-differential
duce the stationary Nernst-Planck equation of classical difequation with different boundary conditions. Only in the
fusion theory. steady state does the concentration satisfy the Fokker-Planck
We have proven that all renewal controls produce thesquation with boundary conditions identical to those of the
same steady state concentration and flux, even though thesteady state albedo problem. Although the overdamped limit
time evolutions can differ qualitatively. However, renewal is a useful approximation inside the domain, it cannot be
controls—that are widely used in computer simulations—araused near the boundaries, where the full Fokker-Planck equa-
problematic because they produce spurious boundary layerson has to be solved. For particle systems with only short
These boundary layers are expected to appear in interactimgnge interactions, the outer solution—which is the solution
particle systems driven out of equilibrium by renewalto the Smoluchowski equation—determines the concentra-
controls. tion and correlation functions away from the boundaries.
The existence of such boundary layers may be of littleOne can hope that a simple boundary condition can be found
importance if the particles interact only through short rangdor such systems, similar to the simple boundary condition
forces, such as Lennard-Jones forces, or the forces that pritat exists for noninteracting systems.
vent overlap of hard spheres. However, the boundary layers From the theoretical point of view, the absence of a rig-
can have a catastrophic effect for particles that interacorous mathematical theory of the boundary behavior of
through long range forces, such as ions that interact electr@drownian trajectories diffusing between fixed concentra-
statically. The net charge carried by only a tiny fraction oftions, based on the physical theory of the Brownian motion,
the total number of ions is, after all, responsible for electricalis a serious gap in classical physics. This paper is a step
signaling in the nervous system and the electrical potentialioward the bridging of this gap.
in electrochemical cells and these potentials extend over
large distances, from micron to many meters, e.g., in the ACKNOWLEDGMENTS
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We see that the macroscopic net flid) is O(y™1), and
coincides with that given in Eq3.7) of Ref.[8] and in Ref.
[1]. Theorem 1 then implies that Eqgl6) and(48) describe
the concentration and the flux for all renewal control
mechanisms.

IV. DISCUSSION
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