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Langevin Trajectories between Fixed Concentrations
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We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations
connected by a channel, e.g., a protein channel of a biological membrane. The steady state influx and
efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the
two baths is replicated by termination of outgoing trajectories and injection according to a residual phase
space density. We present a simulation scheme that maintains averaged fixed concentrations without
creating spurious boundary layers, consistent with the assumed physics.
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Introduction.—We consider particles that diffuse in a
domain � connecting two regions, where fixed, but pos-
sibly different, concentrations are maintained by connec-
tion to practically infinite reservoirs. This is the situation in
the diffusion of ions through a protein channel of a bio-
logical membrane that separates two salt solutions of dif-
ferent fixed concentrations [1].

Continuum theories of such diffusive systems describe
the concentration field by the Nernst-Planck equation with
fixed boundary concentrations [1–4]. On the other hand,
the underlying microscopic theory of diffusion describes
the motion of the diffusing particles by Langevin’s equa-
tions [2,4–6]. This means that on a microscopic scale there
are fluctuations in the concentrations at the boundaries.
The question of the boundary behavior of the Langevin
trajectories (LT), corresponding to fixed boundary concen-
trations, arises both in theory and in the practice of particle
simulations of diffusive motion [7–14].

When the concentrations are maintained by connection
to infinite reservoirs, there are no physical sources and
absorbers of trajectories at any definite location in the
reservoir or in �. The boundaries in this setup can be
chosen anywhere in the reservoirs, where the average
concentrations are effectively fixed. Nothing unusual hap-
pens to the LT there. Upon reaching the boundary they
simply cross into the reservoir and may cross the boundary
back and forth any number of times. Limiting the system to
a finite region necessarily puts sources and absorbers at the
interfaces with the baths, as described in [15].

The boundary behavior of diffusing particles in a finite
domain � has been studied in various cases, including
absorbing, reflecting, sticky boundaries, and many other
modes of boundary behavior [16,17]. In [18] a sequence of
Markovian jump processes is constructed such that their
transition probability densities converge to the solution of
the Nernst-Planck equation with given boundary condi-
tions, including fixed concentrations and sticky bounda-
ries. Brownian dynamics simulations with different bound-
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ary protocols seem to indicate that density fluctuations near
the channels are independent of the boundary conditions, if
the boundaries are moved sufficiently far away from the
channel [19]. However, as shown in [20], many boundary
protocols for maintaining fixed concentrations lead to the
formation of spurious boundary layers, which in the case
of charged particles may produce large long range fluc-
tuations in the electric field that spread throughout the
entire simulation volume �. The analytic structure of these
boundary layers was determined in [21,22], following
several numerical investigations (e.g., [23]).

It seems that the boundary behavior of LT of particles
diffusing between fixed concentrations has not been de-
scribed mathematically in an adequate way. From the
theoretical point of view, the absence of a rigorous mathe-
matical theory of the boundary behavior of LT diffusing
between fixed concentrations, based on the physical theory
of the Brownian motion, is a serious lacuna in classical
physics.

It is the purpose of this Letter to analyze the boundary
behavior of LT between fixed concentrations and to design
a Langevin simulation that does not form spurious bound-
ary layers. We find the joint probability density function of
the velocities and locations, where new simulated LT are
injected into a given simulation volume, while maintaining
the fixed concentrations. As the time step decreases the
simulated density converges to the solution of the Fokker-
Planck equation (FPE) with the imposed boundary condi-
tions without forming boundary layers.

Trajectories, fluxes, and boundary concentrations.—We
assume fixed concentrations CL and CR on the left and
right interfaces between � and the baths B, respectively,
with all other boundaries of � being impermeable walls,
where the normal particle flux vanishes. We assume that
the particles interact only with a mean field, whose poten-
tial is ��x�, so the diffusive motion of a particle in the
channel and in the reservoirs is described by the Langevin
equation (LE)
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x�0� � x0; v�0� � v0;
(1)

where ��x� is the (state-dependent) friction per unit mass,
" is a thermal factor, and _w is a vector of standard inde-
pendent Gaussian 	-correlated white noises [6].

The probability density function (PDF) of finding the
trajectory of the diffusing particle at location x with ve-
locity v at time t, given its initial position, satisfies the FPE
in the bath and in the reservoirs,
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In the Smoluchowski limit of large friction the stationary
solution of (2) admits the form [5]
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where the flux density vector J �x� is given by
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In one dimension, the stationary PDFs of velocities of the
particles crossing the interface into the given volume are
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where J is the net probability flux through the channel.
The source strengths (unidirectional fluxes at the interfa-
ces) are given by [5]
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Application to simulation.—Langevin simulations of ion
permeation in a protein channel of a biological membrane
have to include a part of the surrounding bath, because
boundary conditions at the ends of the channel are un-
known. The boundary of the simulation has to be interfaced
with the bath in a manner that does not distort the physics.
This means that new LT have to be injected into the
simulation at the correct rate and with the correct distribu-
tion of displacement and velocity, for otherwise, spurious
boundary layers will form [20].

Consider a single simulated trajectory that jumps ac-
cording to the discretized LE (1)

x �t� �t� � x�t� � v�t��t;

v�t��t� � v�t��1� ��t� � rx��x�t���t

�
���������
2"�

p
�w�t�;

(6)

where �w is normally distributed with zero mean and
variance �t. The trajectory is terminated when it exits �
for the first time. The problem at hand is to determine an
injection scheme of new trajectories into � such that the
interface concentrations are maintained on the average at
their nominal values CL and CR and the simulated density
profile satisfies (3).

To be consistent with (3), the injection rate has to be
equal to the unidirectional flux at the boundary (5). New
trajectories have to be injected with displacement and
velocity as though the simulation extends outside �, con-
sistently with the scheme (6), because the interface is a
fictitious boundary. The scheme (6) can move the trajec-
tory from the bath B into � from any point � 2 B and with
any velocity �. The probability that a trajectory, which is
moved with time step �t from the bath into � or from �
into the bath, will land exactly on the boundary is zero. It
follows that the PDF of the point �x;v�, where the trajec-
tory lands in � in one time step, at time t0 � t��t, say,
given that it started at a bath point ��;�� (in phase space)
is, according to (6),

Prfx�t0��x;v�t0��vjx�t���;v�t���g
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4"��t

�
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(7)

The stationary PDF p��;�� of such a bath point is given in
(3). The conditional probability of such a landing is
Prfx;vjx 2 �; � 2 Bg �

R
R3 d�

R
B d� Prfv�t0� � v; x�t0� � xj�;�gp��;��

Prfx 2 �; � 2 Bg
; (8)
where the denominator is a normalization constant such
that Z

R3
dv

Z
�
dxPrfx;vjx 2 �; � 2 Bg � 1:
Thus the first point of a new trajectory is chosen according
to the PDF (8) and the subsequent points are generated
according to (6), that is, with the transition PDF (7), until
the trajectory leaves �. By construction, this scheme
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recovers the joint PDF (3) in �, so no spurious boundary
layer is formed.

As an example, we consider a one-dimensional
Langevin dynamics simulation of diffusion of free particles
between fixed concentrations on a given interval.
Assuming that in a channel of length L
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FIG. 1 (color online). Left panel: Concentration against dis-
placement of a LD simulation with injecting particles according
to the residual distribution (9) (top trace, blue online), and
according to the Maxwellian velocity distribution (10) exactly
at the boundary (bottom trace, red online). The two graphs are
almost identical, except for a small boundary layer near x � 0 in
the residual distribution. Right panel: Zoom in of the concen-
tration profile in the boundary layer x < 0:01 �

���
"

p
=�.
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which means that � is sufficiently large, the flux term in
Eq. (3) is negligible relative to the concentration term. The
concentration term is linear with slope J and thus can be
approximated by a constant, so that p��� � p�0� �
O���1� in the left bath. Actually, the value of p�0� � 0
is unimportant, because it cancels out in the normalized
PDF (8), which comes out to be
Prfx; vjx > 0; � < 0g �
expf� v2

2"�1����t�2	g
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In the limit �t ! 0 we obtain from Eq. (9)

Prfx; vjx > 0; � < 0g !
2	�x�H�v����������

2�"
p e�v2=2"; (10)

where H�v� is the Heaviside unit step function. This means
that with the said approximation, LT enter at x � 0 with a
Maxwellian distribution of positive velocities. Without the
approximation the limiting distribution of velocities is (4).
Note, however, that injecting trajectories by any
Markovian scheme, with the limiting distribution (10)
and with any time step �t, creates a boundary layer [20].

A Langevin dynamics (LD) simulation with CL � 0,
CR � 0, and the parameters � � 100, " � 1, L � 1, �t �
10�4 with 25000 trajectories, once with a Maxwellian
distribution of velocities at the boundary x � 0 (bottom
trace on the left panel and top trace on the right panel, red
online) and once with the PDF (9) (top trace on the left
panel and bottom trace on the right panel, blue online)
shows that a boundary layer is formed in the former, but not
in the latter (see Fig. 1).

An alternative way to interpret Eq. (9) is to view the
simulation (6) as a discrete time Markovian process
�x�t�;v�t�� that never enters or exits � exactly at the
boundary. If, however, we run a simulation in which par-
ticles are inserted at the boundary, the time of insertion has
to be random, rather than a lattice time n�t. Thus the time
of the first jump from the boundary into the domain is the
residual time �t0 between the moment of insertion and the
next lattice time �n� 1��t. The probability density of
jump size in both variables has to be randomized with
�t0, with the result (9).
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