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Abstract. A fundamental question for edge detection is how faint an
edge can be and still be detected. In this paper we offer a formalism
to study this question and subsequently introduce a hierarchical edge
detection algorithm designed to detect faint curved edges in noisy im-
ages. In our formalism we view edge detection as a search in a space
of feasible curves, and derive expressions to characterize the behavior of
the optimal detection threshold as a function of curve length and the
combinatorics of the search space. We then present an algorithm that
efficiently searches for edges through a very large set of curves by hi-
erarchically constructing difference filters that match the curves traced
by the sought edges. We demonstrate the utility of our algorithm in
simulations and in applications to challenging real images.

1 Introduction

This paper addresses the problem of detecting faint edges in noisy images. Noisy
images with low signal to noise ratio (SNRs) are common in a variety of do-
mains in which pictures are captured under limited visibility. Examples include
electron microscopy (EM) images taken under certain protocols (e.g., cryo-EM),
fingerprint images with low tissue contrast, photos acquired under poor lighting,
etc. Edges are important since they mark the boundaries of shapes and provide
cues to their relief and surface markings. Extracting edges from such images is
important, therefore, to allow proper interpretation of their content. Moreover,
the study of edge detection under such extreme visual conditions may potentially
lead also to better algorithms for handling photographs of natural scenes.

Noise poses a challenge to edge detection, because it can change the contrast
along edges, and even lead to local contrast reversals. Smoothing the image (e.g.,
with a Gaussian filter) reduces the noise, but it may also weaken the contrast
across the edges and blend adjacent edges. An ideal filter would match the curve
traced by an edge – such a filter can smooth along both sides of the edge to reduce
the effect of noise (the longer the filter is, the more the noise is attenuated), while
maintaining the contrast across the edge. Utilizing such ideal filters, however,
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is problematic, since the curves traced by the edges are unknown a-priori. Edge
detection, therefore, can be viewed as a search in the space of possible curves.
Below we use this view to offer a formalism to study a basic question: how high
the contrast of an edge has to be to enable its detection. We further propose a
method to detect faint edges by searching through a very large set of curves.

Existing edge detection methods use various strategies to overcome noise.
Methods that use isotropic smoothing (e.g. [1]) are limited, since aggressive
smoothing tends to smear the edges. Anisotropic diffusion methods [2] too face
difficulties dealing with low SNRs, as they are typically initialized by local image
gradients, whose estimation in noisy images may be unreliable. Recent methods
use a variety of filter banks to improve the detection of faint edges, e.g., rectan-
gular filters [3], curvelets [4], shearlets [5], and beamlets [6]. For example, [3,6]
use rectangular filters of varying lengths and orientations. These filters are opti-
mized for straight edges and their ability to detect faint curved edges is limited.
Other methods compare histograms of intensities and textures in two adjacent
half-disks [7,8]. Also related is [9]’s compositional approach to salient curve de-
tection. Finally, [10] considers the statistical problem of detecting the presence
of a single monotone edge emanating from a given pixel, but does not consider
estimating its exact path.

Below we study the problem of faint edge detection by first characterizing the
minimal detectable contrast as a function of curve length and the combinatorics
of the set of considered curves. We further show detection limits when all mono-
tone (and consequently also general) curves are considered. Subsequently, we in-
troduce a method to detect curved edges at very low SNRs. The method utilizes
a hierarchical quadtree data structure to efficiently search through a very large
(superpolynomial) set of feasible curves and find the curves that elicit optimal
responses. The data structure is analogous to that of the beamlet transform [11],
but we use it to search through a much larger set of curves (monotone or non-
self intersecting vs. mere straight line segments in each tile), thereby smoothing
the noise adaptively along curves of varying shapes as opposed to only straight
line segments. We demonstrate the utility of our method by simulations and by
applying it to real images.

2 Minimal Detectable Contrast

To study the problem of edge detection in noisy images we view edge detection as
a search in a collection of acceptable curves. We address the following question:
given the level of noise in the image, what curves can safely be discarded as
ones that do not mark an edge. Our aim is to derive a threshold that optimally
discard such curves. Naturally such a threshold should depend on the length of
the considered curves, and should comply with the following trade off. On one
hand we expect the threshold to decrease with curve length since by averaging
along longer curves noise is more aggressively attenuated. On the other hand,
if the number of curves in our considered collection grows with their lengths
then so may the number of false detections; hence we may need to increase



752 S. Alpert et al.

the threshold to control for this growth. This interplay determines the rate of
decay of the threshold. Finally, this derivation can tell us the minimal detectable
contrast, i.e., whether or not very faint edges can be detected at all.

2.1 Derivation

To fix the rate of false detections we consider a pure noise image, I(x, y), with
N = n2 pixels where each pixel is distributed as N (0, σ2). Consider a curved
filter of width w measuring the average value of pixels along a curve of length
L (i.e., we assume the number of i.i.d. pixel measurements that enter one filter
application is wL and hold w fixed in this analysis). Suppose the edges can trace
any of NL different curves. With each potential curve Γi, 1 ≤ i ≤ NL we associate
a response Ri corresponding to the average value obtained by the corresponding
curved filter. Clearly, Ri is a random variable distributed as Ri ∼ N (0, σ2

L),
where σ2

L = σ2/(wL). Let T = T (L, NL) denote the detection threshold, i.e., an
edge of length L is discarded if |Ri| < T . Since our image contains only noise
each such detection is a false detection. Let Rmax = max1≤i≤NL |Ri|. To fix the
rate of false detections, we set T to satisfy P (Rmax ≤ T ) ≥ 1 − δ, for a small
constant δ (0 < δ ≤ 0.5) independent of L.

To derive the threshold we assume that all Ri’s are independent and subse-
quently that T � σL. Under these assumptions we obtain

P (Rmax ≤ T ) = [P (|Ri| ≤ T )]NL . (1)

Using properties of Q-functions (tails of Gaussians) we can approximate (1) as

P (|Ri| ≤ T ) ≈ 1 −
√

2
π

σL

T
exp

(
− T 2

2σ2
L

)
. (2)

Consequently, P (Rmax ≤ T ) � 1 − δ implies

δ

NL
�

√
2
π

σL

T
exp

(
− T 2

2σ2
L

)
. (3)

Thus, by taking the natural logarithm, substituting for σL, and ignoring small

terms we obtain a lower bound for the threshold, i.e., T ≥ σ
√

2 ln(NL/δ)
wL . We set

the threshold conservatively to this lower bound, i.e.,

T (L, NL)
def
= σ

√
2 lnNL

wL
(4)

while ignoring the effect of δ as it is set to a small constant. This expression is
similar to the one derived in [3], with the exception that there NL was set to N
reflecting the number of straight edges of length L considered by that method.

A key assumption to our derivation is that the filter responses of the NL

feasible curves are statistically independent. In practice, this assumption may not
hold, as curves may intersect or even partly overlap. As a result the corresponding
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threshold may be lower. However, despite this simplification we show simulations
on large sets of curves demonstrating a good fit to our predictions.

Equipped with an expression for the threshold we can proceed to determine
the detection limits of faint edges for different sets of curves. We consider both
the set of monotone curves (curves whose orientations at all points lie in a
single quadrant) and the set of general curves with no self-intersections. For the
monotone curves we assume that L �

√
N and for general curves that L � N

since these are the longest such curves that can be obtained in an image. We
are interested in two quantities that characterize the detectability of faint edges.
The decay rate of the threshold as a function of curve length is captured by the
ratio

ρα =
T (L, NL)

T (αL, NαL)
=

√
α ln NL

ln NαL
(5)

(with a constant α > 0 typically set to α ∈ {2, 4}), and the limit T∞ =
limL,N→∞ T expresses the limiting value of the threshold. We distinguish be-
tween two cases. When T∞ > 0 edges with contrast lower than T∞ cannot be
detected reliably. In this case longer filters do not improve detection. Conversely,
when T∞ = 0 (e.g., when lim infL→∞ ρα > 1) the threshold decays polynomially
as T (L, NL) = O(1/Llogα ρα). In this case in theory even the faintest edge can
be detected, provided that it is sufficiently long.

2.2 Lower Bound for the Full Set of Curves

A basic question is to determine whether very faint edges can be detected if
we consider the full set of general, non-self intersecting curves. Obviously this
set is exponential in L, since the number of monotone curves in a 4-connected
lattice is 2N ·2L, and monotone curves form a subset of the non-self intersecting
curves. However, while our analysis above implies that T∞ does not vanish for
exponential sets of curves, it is based on the independence assumption.

The following argument suggests that indeed T∞ is strictly positive. We prove
this by deriving a lower bound on T∞ for the subset of monotone curves. We
show this on a 4-connected lattice, but the result immediately extends to lattices
with a larger number of connections. As before we consider a noise image. To
derive the bound we consider a greedy approach to selecting the monotone curve
of highest response emanating from a given point p0. Let Ω ⊂ R

2 denote a 4-
connected lattice in 2D, and let I(x, y) denote the i.i.d. random variable at
pixel (x, y) ∈ Ω, I(x, y) ∼ N (0, σ2). Beginning at p0 = (x0, y0) ∈ Ω, suppose
at step i we reach the point pi = (xi, yi), we proceed according to pi+1 =
argmax(I(xi+1, yi), I(xi, yi+1)). Clearly, at every step we choose the maximum
of two random variables which are independent of all those previously considered
variables. Consequently, the distribution of the random variable at each pixel on
this selected monotone curve is determined by X = max(Y1, Y2) where Y1, Y2 ∼
N (0, σ2). Such a curve of length L (and width 1) generates a sequence of L
i.i.d random variables, whose mean and variance are σ/

√
π and σ2(1 − 1/π),

respectively (e.g., [12]). Therefore, the mean and the variance of the response
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associated with the selected curve are σ/
√

π and σ2(1 − 1/π)/L, respectively.
Moreover, using the strong law of large numbers, as L → ∞ the probability
that the response will obtain the value σ/

√
π approaches 1. This shows that for

any reasonable value of δ (the false detection rate) T∞ must be strictly positive
(and ≥ σ/

√
π). Consequently, faint edges with contrast lower than T∞ cannot

be detected unless we allow accepting a considerable number of false positives.
Note finally that the main arguments in this section extend also to other (non-
gaussian), i.i.d. noise.

3 The Beam-Curve Pyramid

As very faint edges cannot be detected when the full set of curves is considered,
we turn to constructing an edge detection algorithm that searches through a
very large subset of curves while maintaining the detectability of very faint
edges. Below we describe the basic principles behind our algorithm and provide
expressions for its detection threshold according to the derivations in Sec. 2.

3.1 Construction

Let Ω ⊂ R
2 be the discrete two-dimensional grid of image pixels. We associate

with Ω a system of square tiles of different areas that are arranged in a quadtree
as follows. We use j = 0, 1, 2, ... to denote scale. At every scale j we cover Ω with
a collection of tiles of size (2j + 1)× (2j + 1) pixels such that each two adjacent
tiles share a common side (see Figure 1). The tiles of different scales are aligned
such that each tile of scale j + 1 is subdivided into four sub-tiles of scale j.

To each pair of points p1 and p2 on different sides of a tile S(j) of scale j
we associate a unique curve which we refer to as beam-curve. At the finest scale
j = j0 the beam-curve is the straight line connecting p1 and p2. At coarser
scales j > j0 the beam-curve connecting p1 and p2 is constructed recursively
from beam-curves of scale j − 1 according to pre-specified rules. These rules
include constraints, specifying the set of curves that can be considered to form
beam-curves, and a rule for selecting the optimal beam-curve between p1 and
p2 among the feasible curves. For optimality we typically choose the curve of
highest filter response.

Fig. 1. From left to right: the beam-curve pyramid is a quad-tree structure (left) made
of tiles of size 2j + 1, j = 0, 1, 2... (second panel). A monotone (third panel) and a
general beam-curves (right) at scale j = 4 are constructed by stitching curves from the
next finer scale (j = 3). Here the base level is j0 = 2.
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Below we consider two types of constraint rules. general, simple beam-curves
in a tile S traverse up to four contiguous sections within the four sub-tiles of S,
where the traversal through the sub-tiles is either clockwise or counter-clockwise
(Figure 1). In particular, these beam-curves are non-self intersecting and lie
completely within their respective tile. Monotone beam-curves are curves that
are monotone with respect to the coordinate axes. A curve is monotone if its
tangent vectors at all points along the curve lie within one quadrant. Note that
monotonicity depends on the choice of coordinate system.

As we show in Sec. 3.2 below, the construction of the beam-curve pyramid
allows us to search through a superpolynomial set of curves, NL = O(NLlog L).
This set of curves is a much larger superset of the straight line segments used
in both [11,3]. Still beam-curves do not include various curves such as closed
curves, spirals, and very windy curves. Our method represents such curves as
a concatenation of (usually few) beam-curves and improves their detection by
smoothing along each of the constituent beam-curves.

While a superpolynomial number of curves is scanned with this algorithm, the
number of beam-curves stored in the pyramid and the cost of its construction are
polynomial. The number of beam-curves at every scale is roughly 6N where N
denotes the number of pixels in the image (see Appendix for details). The total
number of beam curves therefore is O(N log N) [11]. The cost of constructing
a full pyramid of general beam-curves is O(N5/2), and the cost of constructing
a pyramid of monotone curves is O(N2). Our implementation below focuses on
monotone beam-curves. While these complexities may be high for certain prac-
tical applications, they can be reduced considerably by terminating the pyramid
construction at a fixed scale or sparsifying the beam-curves through pruning.
Speedup can also be gained by utilizing a parallel implementation.

3.2 Detection Thresholds

Below we apply our analysis of Sec. 2 to compute the detection thresholds in
the beam-curve algorithm. In particular, we show that while for both monotone
and general beam-curves the algorithm searches through a superpolynomial set
of curves, the detection threshold decays polynomially with curve length.

Monotone beam-curves. Monotone beam-curves at each scale j > 0 can pass
through up to three sub-tiles of scale j−1 in either clockwise or counter-clockwise
order. The number of pairs of crossings in both directions is roughly 22j−1 and
so for two fixed endpoints the number of possible curves at scale J connecting
the endpoints is

∏J
j=1 22j−1. Since the total number of endpoint pairs at scale

J is 6N , the total number of possible beam-curves is

NL = 6N
J∏

j=1

22·j−1 = 6N · 2J2
, (6)

where L = 2J is roughly the mean length of curves at scale J . Hence

NL = 6NLlog2 L, (7)
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Fig. 2. Comparison of the threshold obtained with our analysis for monotone (left)
and general (right) beam-curves with an empirical study

indicating that the set of monotone beam-curves is superpolynomial yet sub-
exponential in L, i.e., asymptotically Lp � NL � 2L for any fixed p. Plugging
this into (4) we get that T∞ = 0. The ratio

ρ2 =

√
2(ln(6N) + J2 ln 2)

ln(6N) + (J2 + 2J + 1) ln 2
(8)

is about
√

2 for short curves (ln2 L � ln N) and somewhat lower for longer curves
(ln2 L ≈ ln N). By differentiating (8) w.r.t. J we see that for typical values of
104 ≤ N ≤ 106 ρ2 obtains minimal values of about 1.25− 1.27. In summary, for
monotone beam-curves the threshold undergoes a polynomial decay indicating
that very faint curves can be detected at a sufficiently large scale. Figure 2(left)
shows a plot of T (L, NL) for a N = 1000× 1000 image.

General beam-curves. Next we consider general beam curves. Consider the
curves obtained at level j > 0 connecting points on the sides of tiles. At scale j
there are 2j +1 pixels in each side of a tile. Such a curve can go through the four
sub-tiles of level j − 1 in either clockwise or counter-clockwise order. At every
crossing from one sub-tile to the next we have 2j−1 + 1 possible crossing pixels,
yielding roughly 23j−2 triplets of crossings in both directions. Applying this
recursively, the total number of curves considered by the beam-curve pyramid
between any two fixed endpoints at scale J is roughly

∏J
j=1 23j−2. Since the

total number of pairs of endpoints at scale J is 6N , the total number of possible
beam curves at scale J is

NL = 6N

J∏
j=1

23j−2 = 6N · 2 1
2 (3J2−J), (9)

where L = 4J is approximately the average curve length at scale J . As in the case
of monotone beam-curves (9) implies that NL grows with L at a superpolynomial
rate. Plugging this into (4) we get that T∞ = 0. The ratio

ρ4 = 2

√
2 ln(6N) + (3J2 − J) ln 2

2 ln(6N) + (3J2 + 5J + 2) ln 2
(10)

is about 2 for short curves (ln2(L) � ln(N)) and somewhat lower for longer
curves (ln2 L ≈ ln N). By differentiating (10) we see that for the typical values
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of 104 ≤ N ≤ 106 ρ4 obtains minimal values of about 1.71 − 1.76. Figure 2
(right) shows a plot of T (L, NL) for a N = 1000× 1000 image.

4 Algorithm

We present an edge detection algorithm that is based on constructing a beam-
curve pyramid as described in Section 3 and on applying the adaptive threshold
derived in Section 3.2. The algorithm includes the following main steps:

1. Initialization: Construct the bottom level of the beam-curve pyramid by
computing straight edge responses in 5 × 5 (j0 = 2) tiles.

2. Pyramid construction: Construct level j + 1 given level j. Obtain curved
responses by stitching up to 3 (for monotone curves) or 4 (for general beam-
curves) sub-curves from level j and store for every beam pair the curve of
maximal response provided it exceeds the low threshold αT (L, NL).

3. Edge selection: In post processing –
(a) Discard curves whose associated response falls below the threshold

T (L, NL).
(b) Discard curves made of short scattered edges.
(c) Apply spatial non-maximal suppression.
(d) Apply inter-level suppression.

We next explain these steps in more detail.

Initialization: We begin at level j0 = 2 with tiles of size 5 × 5 and associate
a straight edge response with each pair of points on different sides of each tile.
The mean intensity of a straight line γ connecting two points p1 and p2 is

F (γ) =
1

L(γ)

∫ p2

p1

I(p)dp, (11)

where we define the length as L(γ) = ‖p2 − p1‖∞. We use the 
∞ norm since it
correctly accounts for the number of pixel measurements used to compute the
mean. The mean is calculated by utilizing bi-cubic interpolation to achieve sub-
pixel accuracy. We further calculate both F and L using the trapezoidal rule so
that the end points are counted with weight 1/2.

We next define a response filter, R(γ), for a line γ between p1 and p2 as
follows. If p1 and p2 fall on opposite sides of a tile the filter forms the shape of
a parallelogram with

R(γ) =

∣∣∣∣∣
∑w/2

s=1 (L(γ+s)F (γ+s) − L(γ−s)F (γ−s))∑w/2
s=1 (L(γ+s) + L(γ−s))

∣∣∣∣∣ , (12)

where γs is the offset line connecting p1 + (s, 0) with p2 + (s, 0) (or p1 + (0, s)
with p2 + (0, s)) if the points lie on a vertical (respectively horizontal) side,
−w/2 ≤ s ≤ w/2 integer. Otherwise, if p1 and p2 fall respectively on horizontal
and vertical sides the filter forms the shape of a general quadrangle (see Fig. 3).
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Fig. 3. Straight line filters of width w = 4 in a 5× 5 tile forming a parallelogram (left)
and a general quadrangle (middle). Notice that offset curves can exceed beyond the
boundaries of a tile. Right: Stitching three straight filters at level j0 = 2 to produce a
monotone curve at level 3.

The response is computed as in (12), where now the offset lines connect p1+(s, 0)
with p2 ± (0, s), depending on which of the four sides each of the points resides
on. Note that the offset lines may fall partly outside a tile. In addition, every
corner point is considered twice, once as lying on a horizontal side and once on
a vertical side.

Pyramid construction: Once a level j ≥ j0 in a pyramid is computed we
proceed to constructing level j + 1. For each pair of points p1 and p2 on two
different sides of a tile at level j + 1 we consider all the curves that begin at
p1 and end at p2 that can be obtained by stitching up to three curve segments
of level j while preserving monotonicity (or up to four segments in the case
of general curves, see Figure 3). We then store for each such pair the curve
that elicits the highest response, provided that the response exceeds the low
threshold αT (L, NL), where L is the length of the curve (defined below) and
0 ≤ α ≤ 1 is constant. We use a low threshold at this stage to allow weak edges
to concatenate to produce longer curves that can potentially pass the (high)
threshold. For the stitching we consider two curved segments γ1 connecting p1

with p2 and γ2 connecting p2 with p3 on two adjacent tiles at level j. We define
the mean intensity of γ = γ1 ∪ γ2 by

F (γ) =
1

L(γ)
(L(γ1)F (γ1) + L(γ2)F (γ2)) , (13)

where L(γ) = L(γ1)+L(γ2). Note that due to the use of the trapezoidal rule the
point p2 is counted exactly once. For the response we stitch the corresponding
offset curves. We then compute their lengths and means (using (13)) and finally
apply (12) to obtain a response. Note that by utilizing differences of means
our algorithm deviates from the requirements of dynamic programming, since in
some cases the optimal curve at a level j + 1 may be composed of sub-optimal
curves at level j.

Edge selection: After constructing the pyramid we perform a top-down scan
to select the output edges. This is needed since high contrast edges can also
give rise to responses that exceed threshold in adjacent locations and in curves
that include the real edge as a sub-curve. We consider only curved edges whose
response exceeds the (high) threshold T (L, NL). We further apply a local statis-
tical significance test to distinguish curves whose contrast is consistent along the
curve from curves made of short, scattered edges. For each curve γ we denote
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Fig. 4. Simulation examples: Three of the 63 simulation images are shown (left column)
including simple patterns in significant noise (SNR 1.8). Each pair of rows shows the
result of applying various edge detection algorithms to one of the noisy images. From
left to right: our detection algorithm, oriented means, BEL, brightness gradients (top
row), Canny, Beamlets, Sobel, and Curvelets (bottom row).

by σlocal the average of the two empirical standard deviations of the intensity
profiles of the offset curves on the two sides of γ. Hence σlocal is an estimate of
the local noise in analogy to the global noise σ. We then remove edges for which
the response falls below cσlocalT (L, NL)/σ (typically c ≈ 0.8). We follow this by
spatial non-maximum suppression. In each tile we process the remaining curves
in descending order of their responses. We start by accepting the curve of high-
est response. Then, for each subsequent curve, we accept it if its offset curves
do not overlap with previously selected curves. If however they partially overlap
with more salient curves we discard the overlapping portion and compute the
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statistical significance of the remaining portion as a single curve. We conclude
this part by applying inter-level non-maximum suppression. Proceeding from top
to bottom, for every curve γ detected at some level J we consider its sub-curves
at levels j0 ≤ j < J . Finally, we remove curves in those levels whose symmetric
median Hausdorff distance to a sub-curve of γ falls below a certain threshold. We
then output the collection of curved edges that survived this selection process.

5 Experiments

We evaluate our algorithm both in simulations and on real images and show re-
sults on challenging images acquired under unfavorable photography conditions.
In all runs we restricted the scope of the algorithm to monotone beam-curves; we
noticed at times that general beam-curves tend to produce wiggly curves due to
nearby noise. For simulations we prepared 63 binary images of size 129×129 each
containing either of three patterns, (1) four concentric circles of widths 4, 7, and
12 pixels separated by 3 pixel gaps, (2) a square of width 20, 40, or 60 pixels, and
(3) three sine patterns of widths 3, 5, and 7 separated by 4 pixel gaps. We next
scaled the intensities in each image by a factor τ and added i.i.d. zero mean Gaus-
sian noise with standard deviation σ, thus producing images with SNR τ/σ. We
compare our algorithm (σ = 13, α = 0.5, c = 0.75) to several other algorithms in-
cluding Matlab implementations of Canny [1] (Smoothing with std 2) and Sobel,
Local brightness gradients (PB) [13], Boosted edge learning (BEL) [7], oriented
means [3], curvelets [4] and our implementation of beamlets [6]. For evaluation
we used the F-measure [14], F = 2PR/(P + R), which trades between precision
P and recall R. Figure 4 shows examples of the three patterns along with detec-
tion results for the various algorithms. Our algorithm managed to detect nearly
all the edges with very few false positives. The results are summarized in Fig. 5.
It can be seen that our method came in first in nearly all conditions. A notable
exception is the case of sine patterns at very low SNR. With such patterns our
method is limited by the monotonicity assumption. Still, the method was able
to detect sine patterns at slightly higher SNRs better than any of the other

1

1.2

Fig. 5. Simulation results: F-measures obtained with various edge detection algorithms
as a function of SNR, from left to right, for the circle, square, and sine patterns. The
table on the right shows the average F-measures (average obtained with SNR ranging
from 0.8 to 2 in 0.2 intervals).
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Fig. 6. Real images: Each pair of rows shows the original image and a comparison of
our results with those obtained by other algorithms. Results are given in the same
order as in Fig. 4.
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methods. It should be noted however that some of the compared algorithms are
not designed specifically to handle significant amounts of noise.

We next tested our algorithm on the 100 gray level images of the Berkeley
segmentation dataset and human annotation benchmark [13]. For this test we
associated with each curve point a confidence value computed as in [8] with a
disc of radius 8. With an F-measure of 0.61, our method was ranked on par with
the other leading edge detection methods that rely solely on intensity gradients
(e.g., [13] and [3] reported respectively F-measures of 0.60 and 0.61), but was
inferior to methods that incorporate texture (F-measures between 0.63 and 0.68
were reported, e.g., by [8,7,15]). This may reflect the relative importance of
texture vs. noise in natural images. The median runtime of our algorithm on
these images was roughly 8 minutes. Finally, Figures 6 shows the application of
our method to challenging images of various sources. To assess the quality of
each method one should note not only the accuracy of the true detections, but
also the number of associated false detections.

6 Conclusion

We studied the problem of edge detection in noisy images viewing the problem
as search in a space of feasible curves. We showed that the combinatorics of the
search space plays a crucial role in the detection of faint edges and subsequently
developed an algorithm that searches through a very large set of curves, but
while maintaining detectability. In future work we hope to further investigate
useful shape priors for edges and incorporate those into our formalism.
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Appendix: Complexity Analysis

We denote the number of pixels by N = n × n and assume further that n =
2k + 1 for some integer k ≥ 0, k ≈ log n. At scale j, j = 0, 1, ..., k a row of
tiles includes 2k−j square tiles of size (2j + 1) × (2j + 1). Consequently, the
total number of tiles at scale j is 22(k−j). A beam curve connects two pixels
on the perimeter of a tile, and we exclude curves that connect two pixels that
lie on the same side of a tile. The number of beam curves in a tile therefore is
2(2j +1)×3(2j +1) = 6(2j +1)2 ≈ 3 ·22j+1. The total number of beam curves at
scale j is 22(k−j) × 3 · 22j+1 = 3 · 22k+1 ≈ 6N . The total number of beam curves
at all scales is

∑k
j=0 6N ≈ 6N log N .

Next we analyze the time complexity of constructing the beam curves. We
begin with the general curves. At every scale j we construct a beam curve by
connecting up to four sections in either clockwise or counter-clockwise order. The
cost of connecting four sections in both orientations is 2(2j−1 + 1)3 ≈ 23(j−1)+1.
Since the total number of beam curves at scale j is 6N we get 6N × 23(j−1)+1 =
3N · 23j−1. Summing this over all scales we get the complexity 1.5N

∑k
j=0 23j ≈

1.5N · 23(k+1) = 12N · 23k = 12N5/2.
For the monotone curves at each scale j we construct a beam curve by connect-

ing up to three sections in either clockwise or counter-clockwise order. The cost of
connecting three sections in both orientations is 2(2j−1 + 1)2 ≈ 22(j−1)+1. Since
the total number of beam curves at scale j is 6N we get 6N×22(j−1)+1 = 3N ·22j .
Summing this over all scales we get the complexity 3N

∑k
j=0 22j ≈ 3N ·22(k+1) ≈

12N2.
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