
Diffusion Maps, Spectral Clustering and
Eigenfunctions of Fokker-Planck Operators
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Abstract

This paper presents a diffusion based probabilistic interpretation of
spectral clustering and dimensionality reduction algorithms that use the
eigenvectors of the normalized graph Laplacian. Given the pairwise adja-
cency matrix of all points, we define a diffusion distance between any two
data points and show that the low dimensional representation of the data
by the first few eigenvectors of the corresponding Markov matrix is opti-
mal under a certain mean squared error criterion. Furthermore, assuming
that data points are random samples from a densityp(x) = e−U(x) we
identify these eigenvectors as discrete approximations ofeigenfunctions
of a Fokker-Planck operator in a potential2U(x) with reflecting bound-
ary conditions. Finally, applying known results regardingthe eigenvalues
and eigenfunctions of the continuous Fokker-Planck operator, we provide
a mathematical justification for the success of spectral clustering and di-
mensional reduction algorithms based on these first few eigenvectors.
This analysis elucidates, in terms of the characteristics of diffusion pro-
cesses, many empirical findings regarding spectral clustering algorithms.

Keywords: Algorithms and architectures, learning theory.

1 Introduction

Clustering and low dimensional representation of high dimensional data are important
problems in many diverse fields. In recent years various spectral methods to perform these
tasks, based on the eigenvectors of adjacency matrices of graphs on the data have been
developed, see for example [1]-[10] and references therein. In the simplest version, known
as the normalized graph Laplacian, givenn data points{xi}n

i=1 where eachxi ∈ R
p, we

define a pairwise similarity matrix between points, for example using a Gaussian kernel
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with width ε,

Li,j = k(xi,xj) = exp

(

−‖xi − xj‖2

2ε

)

(1)

and a diagonal normalization matrixDi,i =
∑

j Li,j . Many works propose to use the
first few eigenvectors of the normalized eigenvalue problemLφ = λDφ, or equivalently
of the matrixM = D−1L, either as a low dimensional representation of data or as good
coordinates for clustering purposes. Although eq. (1) is based on a Gaussian kernel, other
kernels are possible. While for actual datasets the choice ofa kernelk(xi,xj) is crucial, it
does not qualitatively change our asymptotic analysis [11].

The use of the first few eigenvectors ofM as good coordinates is typically justified with
heuristic arguments or as a relaxation of a discrete clustering problem [3]. In [4, 5] Belkin
and Niyogi showed that when data is uniformly sampled from a low dimensional manifold
of R

p the first few eigenvectors ofM are discrete approximations of the eigenfunctions of
the Laplace-Beltrami operator on the manifold, thus providing a mathematical justification
for their use in this case. A different theoretical analysisof the eigenvectors of the matrix
M , based on the fact thatM is a stochastic matrix representing a random walk on the graph
was described by Meilǎ and Shi [12], who considered the case of piecewise constanteigen-
vectors for specific lumpable matrix structures. Additional notable works that considered
the random walk aspects of spectral clustering are [8, 13], where the authors suggest clus-
tering based on the average commute time between points, and[14] which considered the
relaxation process of this random walk.

In this paper we provide a unified probabilistic framework which combines these results
and extends them in two different directions. First, in section 2 we define a distance func-
tion between any two points based on the random walk on the graph, which we naturally
denote thediffusion distance. We then show that the low dimensional description of the
data by the first few eigenvectors, denoted as thediffusion map, is optimal under a mean
squared error criterion based on this distance. In section 3we consider a statistical model,
in which data points are iid random samples from a probability densityp(x) in a smooth
bounded domainΩ ⊂ R

p and analyze the asymptotics of the eigenvectors as the number of
data points tends to infinity. This analysis shows that the eigenvectors of the finite matrix
M are discrete approximations of the eigenfunctions of a Fokker-Planck (FP) operator with
reflecting boundary conditions. This observation, coupledwith known results regarding the
eigenvalues and eigenfunctions of the FP operator provide new insights into the properties
of these eigenvectors and on the performance of spectral clustering algorithms, as described
in section 4.

2 Diffusion Distances and Diffusion Maps

The starting point of our analysis, as also noted in other works, is the observation that the
matrixM is adjoint to a symmetric matrix

Ms = D1/2MD−1/2. (2)

Thus,M andMs share the same eigenvalues. Moreover, sinceMs is symmetric it is diag-
onalizable and has a set ofn real eigenvalues{λj}n−1

j=0 whose corresponding eigenvectors
{vj} form an orthonormal basis ofRn. The left and right eigenvectors ofM , denotedφj

andψj are related to those ofMs according to

φj = vjD
1/2, ψj = vjD

−1/2 (3)

Since the eigenvectorsvj are orthonormal under the standard dot product inR
n, it follows

that the vectorsφj andψk are bi-orthonormal

〈φi, ψj〉 = δi,j (4)



where〈u,v〉 is the standard dot product between two vectors inR
n. We now utilize the

fact that by constructionM is a stochastic matrix with all row sums equal to one, and can
thus be interpreted as defining a random walk on the graph. Under this view,Mi,j denotes
the transition probability from the pointxi to the pointxj in one time step. Furthermore,
based on the similarity of the Gaussian kernel (1) to the fundamental solution of the heat
equation, we define our time step as∆t = ε. Therefore,

Pr{x(t+ ε) = xj |x(t) = xi} = Mi,j (5)

Note thatε has therefore adual interpretation in this framework. The first is thatε is the
(squared) radius of the neighborhood used to infer local geometric and density information
for the construction of the adjacency matrix, while the second is thatε is the discrete time
step at which the random walk jumps from point to point.

We denote byp(t,y|x) the probability distribution of a random walk landing at location
y at timet, given a starting locationx at timet = 0. For t = k ε, p(t,y|xi) = eiM

k,
whereei is a row vector of zeros with a single one at thei-th coordinate. Forε large
enough, all points in the graph are connected so thatM has a unique eigenvalue equal
to 1. The other eigenvalues form a non-increasing sequence of non-negative numbers:
λ0 = 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0. Then, regardless of the initial starting pointx,

lim
t→∞

p(t,y|x) = φ0(y) (6)

whereφ0 is the left eigenvector ofM with eigenvalueλ0 = 1, explicitly given by

φ0(xi) =
Di,i

∑

j

Dj,j
(7)

This eigenvector also has a dual interpretation. The first isthatφ0 is the stationary proba-
bility distribution on the graph, while the second is thatφ0(x) is a density estimate at the
pointx. Note that for a general shift invariant kernelK(x−y) and for the Gaussian kernel
in particular,φ0 is simply the well known Parzen window density estimator.

For any finite timet, we decompose the probability distribution in the eigenbasis {φj}

p(t,y|x) = φ0(y) +
∑

j≥1

aj(x)λt
jφj(y) (8)

where the coefficientsaj depend on the initial locationx. Using the bi-orthonormality
condition (4) givesaj(x) = ψj(x), with a0(x) = ψ0(x) = 1 already implicit in (8).

Given the definition of the random walk on the graph it is only natural to quantify the sim-
ilarity between any two points according to the evolution oftheir probability distributions.
Specifically, we consider the following distance measure attime t,

D2
t (x0,x1) = ‖p(t,y|x0) − p(t,y|x1)‖2

w (9)

=
∑

y

(p(t,y|x0) − p(t,y|x1))
2w(y)

with the specific choicew(y) = 1/φ0(y) for the weight function, which takes into account
the (empirical) local density of the points.

Since this distance depends on the random walk on the graph, we quite naturally denote it
as thediffusion distance at timet. We also denote the mapping between the original space
and the firstk eigenvectors as thediffusion map

Ψt(x) =
(

λt
1ψ1(x), λt

2ψ2(x), . . . , λt
kψk(x)

)

(10)

The following theorem relates the diffusion distance and the diffusion map.



Theorem: The diffusion distance (9) is equal to Euclidean distance inthe diffusion map
space with all(n− 1) eigenvectors.

D2
t (x0,x1) =

∑

j≥1

λ2t
j (ψj(x0) − ψj(x1))

2
= ‖Ψt(x0) − Ψt(x1)‖2 (11)

Proof: Combining (8) and (9) gives

D2
t (x0,x1) =

∑

y

(

∑

j

λt
j(ψj(x0) − ψj(x1))φj(y)

)2

1/φ0(y) (12)

Expanding the brackets, exchanging the order of summation and using relations (3) and (4)
betweenφj andψj yields the required result. Note that the weight factor1/φ0 is essential
for the theorem to hold. �.

This theorem provides a justification for using Euclidean distance in the diffusion map
space for spectral clustering purposes. Therefore, geometry in diffusion space is meaning-
ful and can be interpreted in terms of the Markov chain. In particular, as shown in [18],
quantizing this diffusion space is equivalent to lumping the random walk. Moreover, since
in many practical applications the spectrum of the matrixM has aspectral gap with only
a few eigenvalues close to one and all additional eigenvalues much smaller than one, the
diffusion distance at a large enough timet can be well approximated by only the first few
k eigenvectorsψ1(x), . . . , ψk(x), with a negligible error of the order ofO((λk+1/λk)t).
This observation provides a theoretical justification for dimensional reduction with these
eigenvectors. In addition, the following theorem shows that thisk-dimensional approxima-
tion is optimal under a certain mean squared error criterion.

Theorem: Out of allk-dimensional approximations of the form

p̂(t,y|x) = φ0(y) +

k
∑

j=1

aj(t,x)wj(y)

for the probability distribution at timet, the one that minimizes the mean squared error

Ex{‖p(t,y|x) − p̂(t,y|x)‖2
w}

where averaging over initial pointsx is with respect to the stationary densityφ0(x), is
given bywj(y) = φj(y) andaj(t,x) = λt

jψj(x). Therefore, the optimalk-dimensional
approximation is given by the truncated sum

p̂(y, t|x) = φ0(y) +
k

∑

j=1

λt
jψj(x)φj(y) (13)

Proof: The proof is a consequence of a weighted principal componentanalysis applied to
the matrixM , taking into account the biorthogonality of the left and right eigenvectors.

We note that the first few eigenvectors are also optimal underother criteria, for example for
data sampled from a manifold as in [4], or for multiclass spectral clustering [15].

3 The Asymptotics of the Diffusion Map

The analysis of the previous section provides a mathematical explanation for the success of
the diffusion maps for dimensionality reduction and spectral clustering. However, it does
not provide any information regarding the structure of the computed eigenvectors.

To this end, and similar to the framework of [16], we introduce a statistical model and
assume that the data points{xi} are i.i.d. random samples from a probability densityp(x)



confined to a compact connected subsetΩ ⊂ R
p with smooth boundary∂Ω. Following

the statistical physics notation, we write the density in Boltzmann form,p(x) = e−U(x),
whereU(x) is the (dimensionless) potential or energy of the configuration x.

As shown in [11], in the limitn → ∞ the random walk on the discrete graph converges
to a random walk on the continuous spaceΩ. Then, it is possible to define forward and
backward operatorsTf andTb as follows,

Tf [φ](x) =

∫

Ω

M(x|y)φ(y)p(y)dy, Tb[ψ](x) =

∫

Ω

M(y|x)ψ(y)p(y)dy (14)

whereM(x|y) = exp(−‖x − y‖2/2ε)/D(y) is the transition probability fromy to x in
timeε, andD(y) =

∫

exp(−‖x − y‖2/2ε)p(x)dx.

The two operatorsTf andTb have probabilistic interpretations. Ifφ(x) is a probability
distribution on the graph at timet = 0, thenTf [φ] is the probability distribution at time
t = ε. Similarly,Tb[ψ](x) is the mean of the functionψ at timet = ε, for a random walk
that started at locationx at timet = 0. The operatorsTf andTb are thus the continuous
analogues of the left and right multiplication by the finite matrixM .

We now take this analysis one step further and consider the limit ε → 0. This is possible,
since whenn = ∞ each data point contains an infinite number of nearby neighbors. In
this limit, sinceε also has the interpretation of a time step, the random walk converges to a
diffusion process, whose probability density evolves continuously in time, according to

∂p(x, t)

∂t
= lim

ε→0

p(x, t+ ε) − p(x, t)

ε
= lim

ε→0

Tf − I

ε
p(x, t) (15)

in which case it is customary to study the infinitesimal generators (propagators)

Hf = lim
ε→0

Tf − I

ε
, Hb = lim

ε→0

Tb − I

ε
(16)

Clearly, the eigenfunctions ofTf andTb converge to those ofHf andHb, respectively.

As shown in [11], the backward generator is given by the following Fokker-Planck operator

Hbψ = ∆ψ − 2∇ψ · ∇U (17)

which corresponds to a diffusion process in a potential fieldof 2U(x)

ẋ(t) = −∇(2U) +
√

2Dẇ(t) (18)

wherew(t) is standard Brownian motion inp dimensions andD is the diffusion coefficient,
equal to one in equation (17). The Langevin equation (18) is acommon model to describe
stochastic dynamical systems in physics, chemistry and biology [19, 20]. As such, its
characteristics as well as those of the corresponding FP equation have been extensively
studied, see [19]-[22] and many others. The term∇ψ · ∇U in (17) is interpreted as adrift
term towards low energy (high-density) regions, and as discussed in the next section, may
play a crucial part in the definition of clusters.

Note that when data is uniformly sampled fromΩ, ∇U = 0 so the drift term vanishes and
we recover the Laplace-Beltrami operator onΩ. The connection between the discrete ma-
trix M and the (weighted) Laplace-Beltrami or Fokker-Planck operator, as well as rigorous
convergence proofs of the eigenvalues and eigenvectors ofM to those of the integral opera-
torTb or infinitesimal generatorHb were considered in many recent works [4, 23, 17, 9, 24].
However, it seems that the important issue of boundary conditions was not considered.

Since (17) is defined in the bounded domainΩ, the eigenvalues and eigenfunctions ofHb

depend on the boundary conditions imposed on∂Ω. As shown in [9], in the limitε → 0,
the random walk satisfies reflecting boundary conditions on∂Ω, which translate into

∂ψ(x)

∂n

∣

∣

∣

∂Ω
= 0 (19)



Table 1: Random Walks and Diffusion Processes

Case Operator Stochastic Process
ε > 0 finite n× n R.W. discrete in space
n <∞ matrixM discrete in time
ε > 0 operators R.W. in continuous space
n→ ∞ Tf , Tb discrete in time
ε→ 0 infinitesimal diffusion process
n = ∞ generatorHf continuous in time & space

wheren is a unit normal vector at the pointx ∈ ∂Ω.

To conclude, the left and right eigenvectors of the finite matrix M can be viewed as discrete
approximations to those of the operatorsTf andTb, which in turn can be viewed as approx-
imations to those ofHf andHb. Therefore, if there are enough data points for accurate
statistical sampling, the structure and characteristics of the eigenvalues and eigenfunctions
of Hb are similar to the corresponding eigenvalues and discrete eigenvectors ofM . For
convenience, the three different stochastic processes areshown in table 1.

4 Fokker-Planck eigenfunctions and spectral clustering

According to (16), ifλε is an eigenvalue of the matrixM or of the integral operatorTb based
on a kernel with parameterε, then the corresponding eigenvalue ofHb is µ ≈ (λε − 1)/ε.
Therefore the largest eigenvalues ofM correspond to the smallest eigenvalues ofHb. These
eigenvalues and their corresponding eigenfunctions have been extensively studied in the
literature under various settings. In general, the eigenvalues and eigenfunctions depend
both on the geometry of the domainΩ and on the profile of the potentialU(x). For clarity
and due to lack of space we briefly analyze here two extreme cases. In the first caseΩ = R

p

so geometry plays no role, while in the secondU(x) = const so density plays no role.
Yet we show that in both cases there can still be well defined clusters, with the unifying
probabilistic concept being that the mean exit time from onecluster to another is much
larger than the characteristic equilibration time inside each cluster.

Case I:Consider diffusion in a smooth potentialU(x) in Ω = R
p, whereU has a few local

minima, andU(x) → ∞ as‖x‖ → ∞ fast enough so that
∫

e−Udx = 1 <∞. Each such
local minimum thus defines a metastable state, with transitions between metastable states
being relatively rare events, depending on the barrier heights separating them. As shown
in [21, 22] (and in many other works) there is an intimate connection between the smallest
eigenvalues ofHb and mean exit times out of these metastable states. Specifically, in the
asymptotic limit of small noiseD � 1, exit times are exponentially distributed and the first
non-trivial eigenvalue (afterµ0 = 0) is given byµ1 = 1/τ̄ whereτ̄ is the mean exit time to
overcome the highest potential barrier on the way to the deepest potential well. For the case
of two potential wells, for example, the corresponding eigenfunction is roughly constant
in each well with a sharp transition near the saddle point between the wells. In general,
in the case ofk local minima there are asymptotically onlyk eigenvalues very close to
zero. Apart fromµ0 = 0, each of the otherk − 1 eigenvalues corresponds to the mean
exit time from one of the wells into the deepest one, with the corresponding eigenfunctions
being almost constant in each well. Therefore, for a finite dataset the presence of onlyk
eigenvalues close to 1 with aspectral gap, e.g. a large difference betweenλk andλk+1

is indicative ofk well definedglobal clusters. In figure 1 (left) an example of this case is
shown, wherep(x) is the sum of two well separated Gaussian clouds leading to a double
well potential. Indeed there are only two eigenvalues closeor equal to 1 with a distinct
spectral gap and the first eigenfunction being almost piecewise constant in each well.
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Figure 1: Diffusion map results on different datasets. Top -the datasets. Middle - the
eigenvalues. Bottom - the first eigenvector vs.x1 or the first and second eigenvectors for
the case of three Gaussians.

In stochastic dynamical systems a spectral gap correspondsto a separation of time scales
between long transition times from one well or metastable state to another as compared
to short equilibration times inside each well. Therefore, clustering and identification of
metastable states are very similar tasks, and not surprisingly algorithms similar to the nor-
malized graph Laplacian have been independently developedin the literature [25].

The above mentioned results are asymptotic in the small noise limit. In practical datasets,
there can be clusters of different scales, where a global analysis with a singleε is not suit-
able. As an example consider the second dataset in figure 1, with three clusters. While
the first eigenvector distinguishes between the large cluster and the two smaller ones, the
second eigenvector captures the equilibration inside the large cluster instead of further dis-
tinguishing the two small clusters. While a theoretical explanation is beyond the scope of
this paper, a possible solution is to choose a location dependentε, as proposed in [26].

Case II: Consider a uniform density in a regionΩ ⊂ R
3 composed of two large con-

tainers connected by a narrow circular tube, as in the top right frame in figure 1. In this
caseU(x) = const, so the second term in (17) vanishes. As shown in [27], the second
eigenvalue of the FP operator is extremely small, of the order of a/V wherea is the radius
of the connecting tube andV is the volume of the containers, thus showing an interesting
connection to the Cheeger constant on graphs. The corresponding eigenfunction is almost
piecewise constant in each container with a sharp transition in the connecting tube. Even
though in this case the density is uniform, there still is a spectral gap with two well defined
clusters (the two containers), defined entirely by the geometry of Ω. An example of such a
case and the results of the diffusion map are shown in figure 1 (right).

In summary the eigenfunctions and eigenvalues of the FP operator, and thus of the cor-
responding finite Markov matrix, depend on both geometry anddensity. The diffusion
distance and its close relation to mean exit times between different clusters is the quantity
that incorporates these two features. This provides novel insight into spectral clustering
algorithms, as well as a theoretical justification for the algorithm in [13], which defines
clusters according to mean travel times between points on the graph. A similar analysis
could also be applied to semi-supervised learning based on spectral methods [28]. Finally,
these eigenvectors may be used to design better search and data collection protocols [29].
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