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FINITE SAMPLE APPROXIMATION RESULTS
FOR PRINCIPAL COMPONENT ANALYSIS:
A MATRIX PERTURBATION APPROACH1

BY BOAZ NADLER

Weizmann Institute of Science

Principal component analysis (PCA) is a standard tool for dimensional
reduction of a set of n observations (samples), each with p variables. In this
paper, using a matrix perturbation approach, we study the nonasymptotic re-
lation between the eigenvalues and eigenvectors of PCA computed on a finite
sample of size n, and those of the limiting population PCA as n → ∞. As in
machine learning, we present a finite sample theorem which holds with high
probability for the closeness between the leading eigenvalue and eigenvec-
tor of sample PCA and population PCA under a spiked covariance model. In
addition, we also consider the relation between finite sample PCA and the
asymptotic results in the joint limit p,n → ∞, with p/n = c. We present a
matrix perturbation view of the “phase transition phenomenon,” and a simple
linear-algebra based derivation of the eigenvalue and eigenvector overlap in
this asymptotic limit. Moreover, our analysis also applies for finite p,n where
we show that although there is no sharp phase transition as in the infinite case,
either as a function of noise level or as a function of sample size n, the eigen-
vector of sample PCA may exhibit a sharp “loss of tracking,” suddenly losing
its relation to the (true) eigenvector of the population PCA matrix. This occurs
due to a crossover between the eigenvalue due to the signal and the largest
eigenvalue due to noise, whose eigenvector points in a random direction.

1. Introduction. Principal component analysis (PCA) is a standard tool for
dimensionality reduction, applied in regression, classification and many other data
analysis tasks in a variety of scientific fields [17, 20]. PCA finds orthonormal di-
rections with maximal variance of the data and allows its low-dimensional repre-
sentation by linear projections onto these directions. This dimensionality reduction
is a typical preprocessing step in many classification and regression problems.

Assuming the given data is a finite and random sample from a (generally un-
known) distribution, an interesting theoretical and practical question is the relation
between the sample PCA results computed from finite data and those of the un-
derlying population model. In this paper we consider a spiked covariance model
for which the underlying data is low-dimensional but each sample is corrupted by
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additive Gaussian noise, and analyze the following question: how close are the di-
rections and eigenvalues computed by sample PCA to the limiting (and generally
unknown) directions and eigenvalues of the population model and how do these
quantities depend on the number of samples n, the dimensionality p and the noise
level σ .

Many works have studied the convergence of eigenvalues and eigenvectors of
sample PCA to those of population PCA under various settings. In general, the
different results regarding convergence can be divided into two main types: (i) as-
ymptotic results of classical statistics, where p is fixed and n → ∞, starting with
the classical works of Girshick [12], Lawley [23] and Anderson [1], who assumed
multivariate Gaussian distributions, up to more recent work which relaxed some
of these assumptions; see [2, 17] and references therein; (ii) modern “large p,
large n” statistical results, where the joint limit p,n → ∞ is considered while the
ratio p/n = c is kept fixed. In the statistical physics literature we mention Hoyle
and Rattray [14], Reimann, Van den Broeck and Bex [32], Watkin and Nadal [37],
Biehl and Mietzner [5] and references therein, whereas in the statistics community
see the recent works by Johnstone [18], Baik and Silverstein [4], Debashis [31],
Onatski [29] and many references therein for older works. However, it seems that
the most relevant case, that of explicit approximation bounds between the eigen-
values and eigenvectors computed in a finite setting (p,n finite) and those of the
infinite setting (p fixed, n = ∞), as well as estimates of the distributions of these
quantities (again for finite and fixed p,n), are not covered by these approaches.

In the present work we address this problem using a combination of matrix
perturbation theory and concentration of measure bounds on the norm of noisy
Wishart matrices. This paper contains two main contributions. First we present
probabilistic approximation results regarding the difference between the leading
eigenvalue and eigenvector of sample PCA and population PCA for fixed p and n,
under a spiked covariance model with a single component. The second contribution
of this paper is a matrix perturbation view of the phase transition for the leading
eigenvalue and eigenvector, when both p,n are large. We present a simple linear-
algebra based proof of the asymptotics of the leading eigenvalue and eigenvector
in the limit p,n → ∞. Second, we present an interesting connection between this
asymptotic value and a classical result by Lawley. This observation leads to two
additional propositions, one regarding the limiting eigenvalues for a more general
spiked covariance model, and one regarding the spectral norm of a noisy Wishart
matrix with nonidentity diagonal covariance matrix. These results may be useful
for inference on the number of significant components under more general settings
of heteroscedastic correlated noise. Finally, for finite p,n we show that while there
is no deterministic phase transition at a specific fixed value of p/n, either as a
function of noise level or as a function of sample size, the eigenvector of sample
PCA may exhibit a sharp “loss of tracking,” suddenly losing its relation to the
(true) eigenvector of the population PCA matrix. This occurs due to a crossover
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between the eigenvalue due to the signal and the largest eigenvalue due to noise,
whose eigenvector points in a random direction.

Matrix perturbation theory, including eigenvalue and eigenvector perturbation
bounds, as well as the structure of eigenvalues and eigenvectors of arrowhead ma-
trices, play a key role in the analysis of both finite sample PCA and the asymptotic
limit p,n → ∞. Perturbation theory and concentration of measure results on the
norm of noisy Wishart matrices are key ingredients in the analysis of the finite
sample case, and also provide novel insight into the origins of the phase transition
in the joint limit p,n → ∞. In the statistics literature, matrix perturbation theory
is typically used to bound remainder terms in asymptotic limits. In the context of
PCA, for example, in [10] Eaton and Tyler used a perturbation bound by Wielandt
to present a simple derivation of asymptotic results as n → ∞ for eigenvalues of
random symmetric matrices, but did not consider the nonasymptotic case. In [35],
Stewart introduced a general framework of stochastic perturbation theory to an-
alyze the effects of random perturbations on the eigenvalues of finite matrices,
whereas perturbation bounds for the singular value decomposition were consid-
ered in [36]. Within the context of the spiked covariance model, matrix pertur-
bation theory was used in [4, 19, 31], though these works considered mainly the
asymptotic limit p,n → ∞.

From a practical point of view, our results show that when p,n are large, and
specifically when p � n, the true signal directions may be drowned by noise since
for finite p � n, eigenvector reconstruction errors behave as σ

√
p/n, as also pre-

dicted by the asymptotic analysis of Johnstone and Lu [19]. A similar phenomenon
also occurs in linear discriminant analysis [6], and for various multivariate regres-
sion algorithms such as partial least squares and classical least squares [26]. All
these works emphasize the importance of regularization, feature selection or low-
dimensional representation prior to learning, and hint that global methods may not
be optimal for dimensional reduction or as a preprocessing step prior to regression
and classification of high-dimensional noisy data, specifically if there is a priori
knowledge regarding its sparsity or smoothness. The results and approach pre-
sented in this paper can also be used to develop methods to determine the number
of components in a linear mixture (spiked covariance) model [22].

The paper is organized as follows. In Section 2 we present the spiked covari-
ance model and our main results. The results for finite p,n are proven in Sections
3 and 4. A matrix perturbation view of the phase transition phenomenon in the joint
limit as p,n → ∞, as well an analysis of the spiked covariance model under more
general models of noise and some finite sample examples appear in Section 5.

2. Model, assumptions and main results.

2.1. Notation. Univariate random variables are denoted by lowercase letters,
as in u, their realizations are denoted by uν and their expectation by E{u}. Column
vectors are denoted by boldface lowercase letters, as in x, their transpose is xT ,
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their j th component is xj the dot product between two vectors is 〈x, z〉, and the
Euclidean (L2) norm of x is ‖x‖. Matrices are denoted by uppercase letters, as
in A. The identity matrix of order p is Ip , and the spectral norm of a matrix A

is ‖A‖.

2.2. The spiked covariance model. We consider a spiked covariance model
where each data sample x has the form

x =
k∑

i=1

uivi + σξ,(2.1)

where {ui}ki=1 are random variables, typically called components or latent vari-
ables, {vi}ki=1 ⊂ R

p are the corresponding fixed (and typically unknown) response
vectors, ξ is a multivariate Gaussian noise vector with identity covariance matrix
and σ is the level of noise. Equation (2.1) is an error-in-variables linear mixture
model, commonly assumed in many different problems and applications, including
independent component analysis (ICA) [15], signal processing, and in the analysis
of spectroscopic data, where it is known as Beer’s law [25, 27].

We denote by � the p × p population covariance matrix corresponding to the
observations x,

� = E{xxT },(2.2)

and by Sn the sample covariance matrix corresponding to the n i.i.d. observations
{xν}nν=1,

Sn = 1

n

n∑
ν=1

xν(xν)T .(2.3)

Assuming that all k vectors vj are orthogonal and that all k random variables
in (2.1) are uncorrelated with zero mean, unit variance and finite fourth mo-
ment, it follows that the largest k eigenvalue/eigenvector pairs of � are given by
{(‖vj‖2 + σ 2,vj )}kj=1. PCA approximates the eigenvalues and eigenvectors of the
unknown � by those of Sn. In particular, the top eigenvectors of Sn correspond to
orthogonal directions of maximal variance of the observed data. The question at
hand, then, is how close are the largest eigenvalues and corresponding eigenvectors
of Sn to those of �.

In this paper we present a matrix perturbation view of this problem. For sim-
plicity we consider the case of a single component (k = 1). A similar though more
complicated analysis can be carried out for the case of k components. We thus
consider n samples from the model

x = uv + σξ,(2.4)

where we assume that the random variable u has zero mean, unit variance and finite
fourth moment. Without loss of generality, we further assume that the vector v is
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in the direction of e1 = (1,0, . . . ,0), for example, v = ‖v‖e1. Finally, since u has
zero mean, we neglect in our analysis the initial mean centering step typically done
in PCA.

The population covariance matrix corresponding to this one-component model
is given by

� =

⎛
⎜⎜⎝

‖v‖2 0 · · · 0
0 0 · · · 0
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎠+ σ 2Ip.(2.5)

Its largest eigenvalue is ‖v‖2 +σ 2 with corresponding eigenvector e1, and all other
eigenvalues equal σ 2.

2.3. Results for finite p,n. To study the relationship between the sample co-
variance matrix and the population matrix we introduce the following quantities.
Let {uν}nν=1 and {ξν}nν=1 denote the realizations of the r.v. u and of the noise vec-
tor ξ in the given dataset {xν}nν=1. Let vPCA denote the eigenvector of the sam-
ple covariance matrix Sn with largest eigenvalue λPCA. Our goal is to find the
relation between the finite sample values (λPCA,vPCA) and the limiting values
(‖v‖2 + σ 2, e1). Since with an exponentially small but nonzero probability λPCA
may be arbitrarily small and 〈vPCA, e1〉 may be arbitrarily close to zero, we con-
struct highly probable bounds on these quantities, for example, bounds that hold
with probability at least 1 − ε, where hopefully ε 
 1. This is common practice
both in machine learning and in concentration of measure results.

As we shall see below, the following quantities come into play in the analysis:

s2
u = 1

n

n∑
ν=1

(uν)2, κ = ‖v‖su,(2.6)

ρj = 1

nsu

n∑
ν=1

uνξν
j , βij = 1

n

n∑
ν=1

ξν
i ξ ν

j .(2.7)

Loosely speaking, su is the second moment of the variable u, which is close to
unity for large n, κ is the “signal strength” for the given dataset, the random vari-
ables ρj capture the signal–noise interactions, and βij are pure noise terms.

Instead of considering asymptotic results as n → ∞ or as p,n → ∞, in our
analysis we keep p,n fixed but view the noise level σ as a small parameter. Fur-
ther, for some of our analysis, we even keep the realizations {uν} of the random
variable u fixed. The following theorem provides probabilistic approximation re-
sults in terms of these quantities.

THEOREM 2.1. Let s1, s2, s3 > 0 and define

ε = exp
(
− p

2(
√

5 + 2)2

)
, ε1 = Pr{|N(0,1)| > s1},(2.8)
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ε2 = Pr
{∣∣∣∣ χ

2
p−1

p − 1
− 1
∣∣∣∣> s2√

p − 1

}
, ε3 = Pr{χ2

1 > s3}.(2.9)

Assume that n ≤ p and that

κ2 − 2σs1κ√
n

> σ 2[(1 +
√

(p − 1)/n
)2 + (p − 1)/n

];(2.10)

then with probability at least 1 − ε1 − ε2 − ε3 − ε,

λPCA ≥ κ2
[
1 − 2σs1

κ
√

n
+ σ 2

κ2

p − 1

n

1 − s2/
√

p − 1

1 + 2σs1/κ
√

n
(2.11)

− σ 4

κ4

(
p − 1

n

)2 (1 + s2/
√

p − 1)2

(1 − 2σs1/κ
√

n)3

]

and

λPCA ≤ κ2
(

1 + 2σs1

κ
√

n
+ σ 2s3

κ2

)
(2.12)

+ σκ

√
p − 1

n

√
1 + 2σs1

κ
√

n
+ σ 2s3

κ2

(
1 + s2/

√
p − 1

)
.

As for the leading eigenvector, with at least the same probability

sin θPCA ≤ σ

κ

√
p − 1

n

(
1 + 2

σs1

κ
√

n

)(
1 + s2√

p − 1

)
(2.13)

+ 4
√

2
σ 2

κ2

p

n

1

1 − (2σs1/(κ
√

n)) − σ 2/κ2 ,

where sin θPCA =
√

1 − 〈vPCA, e1〉2.

REMARKS. Equation (2.10) can be interpreted as a condition that the signal
strength is larger than the noise, since the right-hand side is a probabilistic upper
bound on the norm of a noisy Wishart matrix which holds with probability at least
1 − ε; see (3.3) below. The bounds (2.11), (2.12) and (2.13) seem complicated
as they involve large deviation bounds on various random variables appearing in
approximations for λPCA and vPCA. When both p,n are large, su is close to unity,
so κ ≈ ‖v‖. Assuming condition (2.10) holds, and neglecting terms O(1/

√
n) and

O(1/
√

p), gives that

‖v‖2 + σ 2 p − 1

n
− σ 4

‖v‖2

(
p − 1

n

)2

� λPCA � ‖v‖2 + σ‖v‖
√

p − 1

n

and sin θPCA � (σ/‖v‖)√p/n + O(σ 2). Corollary 1 below shows that the upper
bound on sin θPCA is “sharp,” in the sense that (σ/‖v‖)√p/n is the value expected



FINITE SAMPLE APPROXIMATION RESULTS 2797

on average. Similarly, the first two terms in the lower bound for λPCA are sharp as
well.

THEOREM 2.2. For fixed p,n and fixed realizations {uν}nν=1 and {ξν}nν=1,
the largest eigenvalue and eigenvector of sample PCA are analytic functions of σ

inside a small interval near the origin. Inside this interval, the Taylor expansion of
λPCA is given by

λPCA = κ2

(
1 + 2

σ

κ
ρ1 + σ 2

κ2

(∑
j

ρ2
j + β11

)
+ O(σ 3)

)
(2.14)

whereas the Taylor expansion of the corresponding eigenvector vPCA is, up to a
normalization constant,

vPCA = e1 + σ

κ
(0, ρ2, . . . , ρp) + O(σ 2).(2.15)

Equation (2.14) shows that when p � n, even for relatively small σ , the O(σ 2)

term may be larger than the O(σ) term, since ρ1/κ = OP (1/(
√

n‖v‖)) whereas
1/κ2∑ρ2

j = OP (p/(n‖v‖2)).

COROLLARY 1. For fixed p,n, the mean and variance of the top eigenvalue
as σ → 0 are given by

E{λPCA} = ‖v‖2 + σ 2
(

1 + p − 1

n

)
+ O(σ 4) + t.s.t.(2.16)

and

Var{λPCA} = ‖v‖4 E{u4}
n

+ 4σ 2‖v‖2
E{u2}

n
+ O(σ 4) + t.s.t.(2.17)

Here t.s.t. denotes transcendentally small terms in σ . These terms arise from the
small probability of a crossover between the eigenvalue due to the signal and the
largest eigenvalue due to the noise, and are of the form A(n,p,σ 2)e−C(n,p,‖v‖)/σ 2

,
where A(n,p,σ 2) is analytic in σ .

Note that if u ∼ N(0,1), then we obtain Var{λPCA} = 2/n[‖v‖4 + 2σ 2‖v‖2] +
O(σ 4), which recovers the asymptotic in n result of Girshick for the variance of
the largest eigenvalue [12].

COROLLARY 2. For fixed p,n and fixed realizations {uν}nν=1, the mean of
sin θPCA, as σ → 0, is given by

E{sin θPCA} = σ

κ
√

n

√
2
((p − 1)/2 + 1/2)


((p − 1)/2)
+ O(σ 2) + t.s.t.(2.18)
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The 
 functions arise from the average of the square root of a chi-squared vari-
able. If p � 1, then

E{sin θPCA} ≈ σ

κ
√

n

√
p

(
1 − 1

4(p − 1)
+ O

(
1

p2

))
+ O(σ 2) + t.s.t.

and

Var{sin θPCA} ≈ σ 2

2κ2n

(
1 + O(1/p)

)+ O(σ 3) + t.s.t.

2.4. Results for the joint limit p,n → ∞. A second approach to studying PCA
is to consider the joint limit p,n → ∞ with p/n = c; see [3, 4, 9, 14, 29] and
references therein. A matrix perturbation approach can also be used to prove results
regarding the largest eigenvalue and corresponding eigenvector in the joint limit
p,n → ∞. Specifically, we obtain the following theorem.

THEOREM 2.3. Consider the spiked covariance model (2.4) with a single
component, and assume that the random variable u has finite fourth moment. Then,
in the joint limit p,n → ∞,

λPCA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
(

1 +
√

p

n

)2
, if n/p < σ 4/‖v‖4,

(‖v‖2 + σ 2)

[
1 + p

n

σ 2

‖v‖2

]
, if n/p ≥ σ 4/‖v‖4.

(2.19)

Similarly, the dot product between the population eigenvector and the eigenvec-
tor computed by PCA also undergoes a phase transition,

R2(p/n) = |〈vPCA,v〉|2
(2.20)

=
⎧⎪⎨
⎪⎩

0, if n/p < σ 4/‖v‖4,
(n‖v‖4)/(pσ 4) − 1

(n‖v‖4)/(pσ 4) + (‖v‖2)/σ 2 , if n/p ≥ σ 4/‖v‖4.

Equation (2.20) shows that to “learn” the direction of true largest variance,
even approximately, the ratio n/p must be larger than a critical threshold. This
is named in the literature as retarded learning, or as the phase transition phe-
nomenon. In the statistical physics community these results were derived using
the replica method [5, 37]. In the statistics literature (2.19) was proven by Baik
and Silverstein, using the Stieltjes transform [4], for the more general case of a
spiked covariance model with an arbitrary finite number of independent and not
necessarily Gaussian components. They showed that (with σ = 1) all eigenvalues
αj > 1 + √

p/n are shifted to αj + cαj/(αj − 1), and stated that “it would be
interesting to have a simple heuristic argument” which shows how to obtain these
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pulled up values. In this section we present a matrix perturbation view of this prob-
lem, including a simple derivation of the pulled up values and some discussion as
to the phenomenon for finite p,n. A similar approach was recently independently
derived by Paul [31].

Equation (2.19) shows that for a spiked covariance model with a single com-
ponent and with σ = 1, in the joint limit p,n → ∞, a large enough signal eigen-
value α is shifted to

α + p

n

α

α − 1
.(2.21)

We now present an interesting connection between this formula and a classic result
by Lawley from 1956. In [23], Lawley considered the eigenvalues of PCA for
multivariate Gaussian observations whose limiting covariance matrix is diagonal
with eigenvalues α1, . . . , αp . Denote by �1, . . . , �p the noisy eigenvalues of PCA
corresponding to a sample covariance matrix with a finite number of samples n.
Then, as n → ∞, with p fixed

E{�k} = αk + αk

n

p∑
i=1,i �=k

αi

αk − αi

+ O

(
1

n2

)
.(2.22)

Applying Lawley’s result to the spiked covariance model with a single significant
component (α1 = α,α2 = · · · = αp = 1) gives

λPCA = α + p − 1

n

α

α − 1
+ O

(
1

n2

)

whose first two terms recover the asymptotic result (2.21) of the joint limit p,
n → ∞. The remarkable point in using (2.22) is that it does not use explicit knowl-
edge of the Marčhenko–Pastur distribution, regarding the limiting density of eigen-
values of infinitely large random matrices. We remark that although the first two
terms in Lawley’s expansion provide the asymptotic result as p,n → ∞, this is not
due to the higher-order terms all vanishing individually. Rather, in the joint limit
p,n → ∞ they all miraculously cancel each other. Yet, based on this observation,
we propose the following two theorems.

THEOREM 2.4. Consider a more general Gaussian spiked covariance model
with k large components with fixed variances α1, . . . , αk and with the p − k re-
maining components each having a random variance sampled independently from
a density h(α) with compact support in the interval [0, αc] (h(α) = 0 for α > αc).
Then, in the joint limit p,n → ∞ and for large enough values αj , the first k largest
limiting eigenvalues of PCA converge to

λj = T (αj ) = αj + p

n
αj

∫ αc

0

ρ

αj − ρ
h(ρ)dρ.(2.23)
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THEOREM 2.5. Let {αj } denote an infinite sequence of i.i.d. random vari-
ables from a density h(α) with compact support. Let x = (x1, . . . , xp) be a
p-dimensional vector composed of p independent Gaussian random variables,
where each xj has variance αj . Let C(n,p) denote the p × p empirical covari-
ance matrix computed from n independent samples {xi}ni=1 from this model. Then,
in the joint limit p,n → ∞, p/n = c, the spectral norm of C is equal to

lim
p,n→∞‖C‖ = α∗ + cα∗

∫
ρ

α∗ − ρ
h(ρ)dρ(2.24)

where α∗ is the maximal point at which

dT (α)

dα

∣∣∣
α∗ = 0.(2.25)

A motivation for the model considered in these theorems is a setting where high-
dimensional observations are of the type “signal plus noise,” but where the noise
is heteroscedastic and possibly correlated. Thus, in a suitable basis, different noise
components have different variances, and we only know some statistical proper-
ties about the noise, such as the distribution of these variances. Theorem 2.4 is a
generalization of (2.21) that holds for the standard spiked covariance model. Theo-
rem 2.5 follows immediately from Theorem 2.4 according to the following reason-
ing: In this modified model there is also a similar phase transition phenomenon. If
the original variance of the signal, α, is larger than a critical value α∗(h,p,n), then
it will be pulled up from the noise in the limit p,n → ∞. Further, for all α > α∗,
this pulled up value is monotonic in α. From Theorem 2.4, the critical value α∗
satisfies (2.25), and at that point according to our matrix perturbation analysis, the
value T (α∗) is equal to the spectral norm C—the covariance matrix of the noise.
We remark that a formula similar to (2.24) was recently derived by El Karoui [11],
who also studied the finite p,n fluctuations around this mean.

COROLLARY 3. Consider the general spiked covariance model as in Theo-
rem 2.4, and assume c = p/n � 1. Let

μ1 =
∫

ρh(ρ)dρ, μ2
2 =
∫

(ρ − μ1)
2h(ρ)dρ.

Then, in the joint limit p,n → ∞, the norm of a pure noise matrix is approximately

λ(α∗) = μ1

(
c + 2

√
c

√√√√1 + μ2
2

μ2
1

+ O(1)

)
.(2.26)

Further, the phase transition phenomenon for the pulled up eigenvalues occurs at

α∗ = μ1

(√
c

√√√√1 + μ2
2

μ2
1

+ 1 + 4
μ2

2/μ
2
1

1 + 2μ2
2/μ

2
1

+ O
(
1/

√
c
))

.(2.27)
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Equation (2.26) may be useful for inference on the number of components in a
general spiked covariance model, given that the first two moments μ1,μ2 of the
density h(ρ) of the noise are either known a priori or estimated from the data.

3. Proof of Theorem 2.1. To prove Theorem 2.1 we shall use the following
three lemmas:

LEMMA 1. Let A,B be p × p Hermitian matrices. Let {λi}pi=1 denote the
eigenvalues of A sorted in decreasing order with corresponding eigenvectors vi .
Let Pi denote the projection into the orthogonal subspace of vi , Piv = v −
〈v,vi〉vi . If λ1 has multiplicity 1 and ‖B‖ < λ1 + 〈v1,Bv1〉 − λ2, then the largest
eigenvalue of A + B satisfies the bounds

〈v1,Bv1〉 ≤ λ1(A + B) − λ1 ≤ 〈v1,Bv1〉 + ‖P1Bv1‖.(3.1)

LEMMA 2. Let X denote an n × p matrix with entries Xij all i.i.d. N(0,1)

Gaussian variables, and let W = XT X/n be the corresponding scaled Wishart
matrix. Define

ε = exp
(
− p

2(
√

5 + 2)2

)
,(3.2)

then for n ≤ p with probability at least 1 − ε,

‖W‖ ≤ (1 +√p/n
)2 + p/n(3.3)

and

‖W − Ip‖ ≤ 4
p

n
.(3.4)

LEMMA 3. Let A be a p × p Hermitian matrix and let B be a Hermitian
perturbation. Let (λ,v) be the eigenvalue/vector pair of A + B corresponding to
(λi,vi ) of A, and let δ = minj �=i |λ − λj |, where {λj }pj=1 are all the eigenvalues
of A; then

sin θ(v,vi ) ≤ ‖B‖
δ

.(3.5)

Lemma 1 follows from classical results in matrix or operator perturbation the-
ory. According to [30], Theorem 4.5.1 (see also [13], Theorem 6.3.14), for each
scalar μ, vector x and Hermitian matrix A, there exists an eigenvalue λ of A such
that

|λ − μ| ≤ ‖Ax − μx‖/‖x‖.
Applying this theorem to the matrix A + B , with x = vi a normalized eigenvector
of A and with μ = λi + 〈vi ,Bvi〉, gives that

|λ(A + B) − λi(A) − 〈vi ,Bvi〉| ≤ ‖PiBvi‖.
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The condition of Lemma 1 ensures that the largest eigenvalue of A is the one
closest to the largest eigenvalue of A+B , for example, i = 1. For the analysis of a
spiked covariance model with more than one component, similar statements can be
made for interior eigenvalues as well [16]. Lemma 2 follows from Theorem II.13
of Szarek and Davidson [7] and is proved in the Appendix. Lemma 3 is known as
the sin θ theorem of Davis and Kahan [8]; see also [30], Theorem 11.7.1.

PROOF OF THEOREM 2.1. Let {xν}nν=1 be n i.i.d. observations from the one-
component model (2.4). We decompose the corresponding sample covariance ma-
trix as follows:

Sn =

⎛
⎜⎜⎝

κ2 0 · · · 0
0 0 0
...

...

0 0 · · · 0

⎞
⎟⎟⎠+ σκ

⎛
⎜⎜⎜⎝

2ρ1 ρ2 · · · ρp

ρ2 0 0
... 0

...

ρp 0 0

⎞
⎟⎟⎟⎠

+ σ 2

⎛
⎜⎜⎜⎜⎝

β1,1 β1,2 · · · β1,p

β2,1 β2,2
...

...
. . .

βp,1 · · · βp,p

⎞
⎟⎟⎟⎟⎠(3.6)

= L0 + σL1 + σ 2L2,

where κ,ρj and βij are defined above in (2.6) and (2.7). Note that conditional on
the realizations {uν}nν=1 of the random variable u kept fixed, ρi = 1√

n
ηi , where ηi

are all i.i.d. N(0,1), βii = χ2
n/n and that L2 is a Wishart noise matrix. The ma-

trix L0 can be thought of as the “signal,” the matrix L1 as the signal–noise inter-
actions, whereas L2 contains pure noise.

To derive the lower bound (2.11), we view the matrix σ 2L2 as a perturbation
of the matrix L0 +σL1. Since the matrix L2 is nonnegative (it is a scaled Wishart
matrix), it follows that

λPCA ≥ ‖L0 + σL1‖.
The matrix L0 + σL1 has rank 2 with the following two nonzero eigenvalues:

λ± =
(κ2 + 2σκρ1) ±

√
(κ2 + 2σκρ1)2 + 4(σκ)2∑

j≥2 ρ2
j

2
,(3.7)

where λ+ is positive and λ− is negative. Since conditional on the realizations uν

fixed, the random variables ρj are independent Gaussians, we define

∑
j≥2

ρ2
j = T1

n
,(3.8)

where T1 ∼ χ2
p−1.
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Using the inequality
√

1 + x ≥ (1 + x/2 − x2/8) in (3.7) gives

λ+ ≥ (κ2 + 2σκρ1)

[
1 + σ 2κ2

(κ2 + 2σκρ1)2

T1

n
− (σκ)4

(κ2 + 2σκρ1)4

T 2
1

n2

]
.

Therefore, with probability at least 1 − ε1 − ε2

λPCA ≥ λ+ ≥ κ2
(

1 − 2σs1

κ
√

n

)[
1 + σ 2

κ2

p − 1

n

1 − s2/
√

p − 1

1 + (2σs1)/(κ
√

n)

− σ 4

κ4

(p − 1)2

n2

(1 + s2/
√

p − 1)2

(1 − (2σs1)/(κ
√

n))3

]
,

which proves the lower bound (2.11).
To prove the upper bound on λPCA, we use Lemma 1 with the matrix σL1 +

σ 2L2 as a perturbation of L0. Choosing e1 as an eigenvector of L0 and applying
the lemma gives that

λPCA ≤ κ2 + 2σκρ1 + σ 2β11 + σ

√∑
j≥2

(κρj + σβ1j )2.

Conditional on fixed realizations uν and on fixed noise realizations ξν
1 in the first

component of the data, we have that

κρj + σβ1j = 1√
n

√
κ2 + 2σκρ1 + σ 2β11ηj ,

where the ηj are independent standard Gaussian variables. Therefore,

λPCA ≤ (κ2 + 2σκρ1 + σ 2β11) + σ

√
κ2 + 2σκρ1 + σ 2β11

√
T

n
,

where the random variable T ∼ χ2
p−1, and is independent of ρ1 and β11. Therefore,

with probability at least 1 − ε − ε1 − ε2 − ε3 the bound of (2.12) follows.
To prove a bound on the eigenvector vPCA, we start from the eigenvector v+

corresponding to λ+, and given by

v+ = 1

Z

[
e1 + σκ

λ+
(0, ρ2, . . . , ρp)T

]
,(3.9)

where Z =
√

1 + σ 2κ2T1/nλ2+ is a normalization constant such that ‖v+‖ = 1.
Simple algebraic manipulations and the triangle inequality give

sin θPCA =
√

1 − 〈vPCA, e1〉2 =√1 + |〈vPCA, e1〉|
√

1 − |〈vPCA, e1〉|

=√1 + |〈vPCA, e1〉|‖vPCA − e1‖√
2

(3.10)

≤ ‖vPCA − e1‖ ≤ ‖vPCA − v+‖ + ‖v+ − e1‖.
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From (3.9), a bound on the second term in (3.10) is

‖v+ − e1‖ = √
2

√
1 − 1

Z
≤ σκ

λ+

√
T1

n
.(3.11)

For the first term in (3.10), applying the sin θ theorem (Lemma 3 above) with the
matrix σ 2(W − Ip) = σ 2(L2 − Ip) as the perturbation of L0 + σL1 + σ 2Ip gives

‖vPCA − v+‖ = √
2
√

1 − |〈vPCA,v+〉| ≤ √
2 sin θ(vPCA,v+)

(3.12)

≤ √
2σ 2 ‖W − Ip‖

δ
,

where δ = minj �=1 |λPCA − λj (L0 + σL1 + σ 2Ip)|. Therefore, combining (3.11)
and (3.12),

sin θPCA ≤ σκ

λ+

√
T1

n
+ σ 2

√
2
‖W − Ip‖

δ
.(3.13)

To conclude the proof we apply almost sure bounds for ‖W − Ip‖ and T1 from
above and δ and λ+ from below. Bounds on T1 and λ+ are identical to those
described in the proof of (2.11) of the theorem. To bound ‖W − Ip‖ from above,
we use (3.4) of Lemma 2, which states that with probability at least 1 − ε

‖W − Ip‖ ≤ 4
p

n
.(3.14)

As for a bound on δ, from the first part of the proof, if κ2 + 2σκρ1 > σ 2[(1 +√
p/n)2 + p/n],

λPCA ≥ λ+ ≥ κ2 + 2σκρ1.

Furthermore, the eigenvalues of the matrix L0 + L1 + σ 2I are (λ+) + σ 2, σ 2 or
(λ−) + σ 2, with λ± given by (3.7). Therefore,

δ = min
j �=1

|λPCA − λj (L0 + L1 + σ 2I )| = λPCA − σ 2 ≥ κ2 + 2σκρ1 − σ 2

and with probability at least 1 − ε1,

δ ≥ κ2 − 2s1
σκ√

n
− σ 2.(3.15)

Combining (3.13), (3.14) and (3.15) concludes the proof. �

4. Proof of Theorem 2.2. We now explore the leading order terms in σ of
the explicit dependence of λPCA and vPCA on p,n, and on the specific signal and
noise realizations {uν}nν=1 and {ξν}nν=1. To this end, we view σ as a small para-
meter and consider the Taylor expansion of λPCA and vPCA as σ → 0. By defini-
tion, the largest eigenvalue λPCA is the largest root of the characteristic polynomial
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of sample covariance matrix Sn. For σ = 0 this eigenvalue is a simple root with
multiplicity 1. Therefore, given a finite dataset {xν}nν=1 with su > 0, the largest
eigenvalue λ(σ), when viewed as a function of noise level, is an analytic func-
tion of σ in the complex plane for small enough σ . This statement follows from
the representation of the empirical covariance matrix as Sn = L0 + σL1 + σ 2L2,
(3.6), with all matrices being symmetric, together with standard results regarding
perturbation theory for linear operators; see, for example, Kato [21], Chapter 2,
Theorem 6.1. Moreover, the radius of convergence of a Taylor series of λ(σ) is the
largest complex σ for which λPCA(σ ) > λ2(σ ) where λ2(σ ) is the second largest
eigenvalue of the noisy covariance matrix. Note that the location of the crossover
depends on the specific signal and noise realizations. Finally, since the matrix Sn

is symmetric λ(σ) is real when σ is real.
Therefore, for small enough σ we can expand both the top eigenvalue and its

corresponding eigenvector as a regular power series in σ :

vPCA = v0 + σv1 + σ 2v2 + · · · ,
λPCA = λ0 + σλ1 + σ 2λ2 + · · · .

We insert these expansions into (3.6) and equate terms with equal powers of σ .
The first few equations read

L0v0 = λ0v0,

L0v1 + L1v0 = λ0v1 + λ1v0,

L0v2 + L1v1 + L2v0 = λ0v2 + λ1v1 + λ2v0.

Iteratively solving these equations gives

λ = κ2 + 2σκρ1 + σ 2

(∑
j≥2

ρ2
j + β11

)
+ O(σ 3)(4.1)

and

v = e1 + σ

κ
(0, ρ2, . . . , ρp)

(4.2)

+ σ 2

κ2 [(0, β12, . . . , β1p) − 2ρ1(0, ρ2, . . . , ρp)] + O

(
σ 3

κ3

)
.

Note that up to order O(σ 2), the eigenvalue λPCA and the corresponding eigen-
vector depend only on the first row of the noisy matrix, for example, only on the
interaction between signal and noise.

Equations (2.16), (2.17) and (2.18) follow by taking expectations on expressions
(4.1) and (4.2) for λPCA and vPCA, respectively, and retaining only the leading
terms in σ . However, an important remark is that (4.1) and (4.2) are the Taylor ex-
pansions of the eigenvalue and eigenvector that are analytic in σ and correspond to
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κ2 and e1 when σ = 0. As such, these are not necessarily expansions of λPCA and
vPCA—the actual largest eigenvalue and corresponding eigenvector of the sample
covariance matrix. This is because for finite σ > 0 there is a nonzero probability
that the largest eigenvalue is one due to noise and not the one described by (4.1).
From Lemma 2, the probability of such a crossover, between the eigenvalue due
to noise and the eigenvalue due to the signal, can be bounded by an expression of
the form A(n,p) exp(−C(n,p)/σ 2). Therefore, by taking expectations of (4.1),
we introduce transcendentally small error terms in σ .

5. Proof of Theorem 2.3: the phase transition phenomenon.

5.1. A simple heuristic for the location of the phase transition. First, we
present a simple heuristic explanation for the phase transition phenomenon, but
for fixed p,n, as a function of noise level σ . Obviously, for fixed p,n there is
no deterministic phase transition at a fixed constant c = p/n, only an increasing
probability for losing the relation between the direction of maximal variance and
the limiting vector e1. From the analysis of Section 3, this occurs when the largest
eigenvalue of the sample covariance matrix is of the same order of magnitude as
that of the noise matrix E, λPCA ∼ ‖E‖. From (3.4), this occurs roughly when

κ2 + σ 2 + σ 2 p

n
= σ 2(1 +√p/n

)2
.

This gives

p

n
= 1

4

κ4

σ 4 ,

which up to a multiplicative constant has the same functional dependence on the
parameters p,n,σ as the true location for the phase transition in (2.19) and (2.20).

5.2. An exact analysis of the phase transition. We now present a simple linear-
algebra based derivation of the exact pulled up value for a spiked population model
with a single component. A similar though more complicated analysis applies for
the general k-component model. For simplicity, we perform our analysis for p/n =
c = 1, and without loss of generality assume σ = 1.

To this end, we decompose the p × p sample covariance matrix computed
from n samples as follows:

Sn =

⎛
⎜⎜⎜⎝

κ2 + 2κρ11 + β11 b2 · · · bp

b2 0 · · · 0
...

...
. . .

...

bp 0 · · · 0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0 0 · · · 0
0 β22 · · · β2p

... β32
. . . β3p

0 βp2 · · · βpp

⎞
⎟⎟⎟⎠ ,

where bj = κρj + β1j . Note that the second matrix, which is the minor of the
covariance matrix obtained by deleting the first row and column, is just a (p −



FINITE SAMPLE APPROXIMATION RESULTS 2807

1) × (p − 1) scaled Wishart matrix. Let λ2, . . . , λp denote its eigenvalues and let
Vp×p be the matrix of its eigenvectors padded with zeros in the first coordinate.
We perform a change of basis whereby this matrix becomes diagonal. Then the
full covariance matrix takes the following form:

V SnV
T =

⎛
⎜⎜⎜⎝

κ2 + 2κρ1 + β11 b̃2 · · · b̃p

b̃2 λ2 · · · 0
...

...
. . .

...

b̃p 0 · · · λp

⎞
⎟⎟⎟⎠ ,(5.1)

where b̃1j are the entries of the first row and column in the new basis. The specific
form (5.1) is known as an arrowhead matrix [28]. Assuming that b̃j �= 0 for all j

(an event with probability 1), the eigenvalues of this matrix satisfy the following
secular equation:

f (λ) = (λ − κ2 − 2κρ1 − β11) −
p∑

j=2

b̃2
j

λ − λj

= 0.(5.2)

Recall that b̃j = ρ̃j + β̃1j are the entries of the first row and column in the new
basis. They are given explicitly as

ρ̃j = 1

nsy

n∑
ν=1

uν
j ξ̃

ν
j , β̃1j = 1

n

n∑
ν=1

ξ̃ ν
1 ξ̃ ν

j ,

where ξ̃ ν are the noise vectors in the rotated basis in which the (p − 1) × (p − 1)

submatrix of noise covariances is diagonal with eigenvalues λj . Therefore, condi-
tional on ξ̃j having variance λj , the quantity b̃j is N(0, λj (κ

2 + 2κρ1 + β11)/n).
Therefore,

p∑
j=2

b̃2
j

λ − λj

= p − 1

n
(κ2 + 2κρ + β11)

1

p − 1

p∑
j=2

λjη
2
j

λ − λj

,

where ηj are all i.i.d. N(0,1) and independent of λj . Furthermore, in the limit
p,n → ∞,p/n = c, the distribution of eigenvalues λj of the submatrix converges
to the Marčenko–Pastur distribution [24],

fMP(x) = 1

2πxc

√
(b − x)(x − a), x ∈ [a, b],

where a = (1 −√
c)2, b = (1 +√

c)2. In addition, as n,p → ∞, κ2 → ‖v‖2, ρ1 =
OP (1/

√
n) → 0 and β11 = χ2

n/n → 1, all with probability 1. Therefore, as p,n →
∞, the sum in (5.2) converges with probability 1 to the following integral:

lim
p,n→∞

p∑
j=2

b̃2
j

λ − λj

= (‖v‖2 + 1)
p − 1

n

∫ b

a
fMP(x)

x

λ − x
dx.(5.3)
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This integral is a linear functional of the Marčenko–Pastur distribution, with
some similarity to its Stieltjes transform. We remark that the Stieltjes transform
was used extensively in deriving results regarding the eigenvalues of random ma-
trices [24, 33].

This integral can be evaluated explicitly. For example, for c = 1,∫ 4

0

1

2π

√
(4 − x)x

1

λ − x
dx = 1

2

[
λ − 2 −√λ(λ − 4)

]
.(5.4)

Thus, the largest eigenvalue satisfies a quadratic equation in λ, whose solution is

λ(α) = α + c
α

α − 1

with α = ‖v‖2 + 1. However, this solution is indeed the largest eigenvalue only if
λ(α) > (1 + √

c)2. This recovers the pulled up value and the exact location of the
phase transition, (2.19).

To prove (2.20) for the eigenvector overlap, we note that eigenvectors of arrow-
head matrices have also a closed form expression [28]. Let λ be an eigenvalue of
the arrowhead matrix (5.1); then up to normalization, the corresponding eigenvec-
tor is given by

v =
(

1,
b̃2

λ − λ2
, . . . ,

b̃p

λ − λp

)
.(5.5)

Therefore,

R2 = 〈v, e1〉2

‖v‖2 = 1

1 +∑j≥2 b̃2
j /(λ − λj )2

.

In the joint limit p,n → ∞, similar to the analysis above, the sum in the denomi-
nator converges with probability 1 to an analogous integral

lim
p,n→∞,p/n=c

R2 = 1

1 + p/n
∫

αμ/(λ − μ)2fMP(μ)dμ
.(5.6)

Evaluation of the integral gives the asymptotic overlap, (2.20).

5.3. A classical result of Lawley and two theorems. While Theorems 2.4 and
2.5 are motivated by the classical result of Lawley, (2.22), their proof relies on re-
sults from random matrix theory regarding the limiting empirical density of eigen-
values of sample covariance matrices in the joint limit p,n → ∞. Before proving
these theorems, we first briefly review the results required for our proofs.

The key required quantity is the Stieltjes transform of a probability density h(t)

defined as

mh(z) =
∫

h(t)

t − z
dt ∀z ∈ C

+.(5.7)
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Let Sn = 1/nZT Z be the p × p sample covariance matrix of n observations
zi ∈ R

p from the model described in Theorem 2.5, and denote by Fn the empirical
distribution function of the eigenvalues of Sn,

Fn(t) = {#μj < t}
p

.(5.8)

As proven in [33], in the limit p,n → ∞, Fn converges with probability 1 to
a limiting distribution F with no eigenvalues of Sn outside the support of this
limiting distribution. Although the explicit form of F can be computed only in a
handful of simple cases, its Stieltjes transform satisfies the equation

m(z) =
∫

h(t)

t (1 − c − m(z)z) − z
dt.(5.9)

One can also consider a different matrix, S̄n = 1/nZZT of size n × n. Since the
matrices Sn and S̄n have the same nonzero eigenvalues and differ by |p − n| zero
eigenvalues, their respective empirical distribution functions F and F̄ are related
as follows:

F̄ = (1 − c)I[0,∞) + cF.

Due to linearity of the Stieltjes transform,

m̄(z) = −1 − c

z
+ cm(z).(5.10)

Obviously, when c = 1, m̄(z) = m(z).
The last result of interest is an inverse equation for m̄(z), which reads

z(m̄) = − 1

m̄
+ c

∫
t

1 + tm̄
h(t) dt.(5.11)

PROOF OF THEOREM 2.4. For simplicity, we consider a spiked covariance
model with a single spike, assumed in the direction e1. Let α1 be fixed and suffi-
ciently large, and let {αj }j≥2 denote a sequence of i.i.d. realizations sampled from
a density h(α). Consider n i.i.d. random vectors {xν}nν=1 from a model

x = √
α1y1e1 +

p∑
j=2

√
αjyj ej ,

where yj are all i.i.d. Gaussian N(0,1) random variables. We view the direction e1
as the signal direction with all other directions as noise, and write the correspond-
ing sample covariance matrix as follows:

Sn =

⎛
⎜⎜⎜⎝

κ2 b1 · · · bp

b1
... Cn

bp

⎞
⎟⎟⎟⎠ ,
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where

κ2 = 1

n

n∑
ν=1

(xν
1 )2, bj = 1

n

n∑
ν=1

xν
1xν

j

and Cn is the (p − 1) × (p − 1) sample covariance matrix of the pure noise com-
ponents.

Let V0 be a (p −1)× (p −1) matrix that diagonalizes the pure noise matrix Cn,
and consider the p × p unitary matrix

V =
(

1

V0

)
.

In the basis defined by V , the sample covariance matrix takes the form

V SnV
−1 =

⎛
⎜⎜⎜⎜⎜⎝

κ2 b̃1 b̃2 · · · b̃p

b̃1 μ1
b̃2 μ2
...

. . .

b̃p μp

⎞
⎟⎟⎟⎟⎟⎠ ,(5.12)

where b̃j is the projection of the vector b on the j th basis vector of the matrix V ,

b̃j = bT Vj = 1

n

n∑
ν=1

xν
1 x̃ν

j .

As in (5.1), the matrix (5.12) has the form of a symmetric arrowhead matrix, and
assuming all b̃j �= 0, its eigenvalues are solutions of

λ − κ2 =
p∑

j=1

b̃2
j

λ − μj

.(5.13)

We now consider the joint limit p,n → ∞,p/n = c. Similarly to the analysis of
Section 5.2, the sum in (5.13) converges with probability 1 to

cα1

∫
μ

λ − μ
dF(μ),(5.14)

where F(μ) is the limiting probability distribution of a pure noise random matrix
corresponding to the density h(α). Therefore, the pulled up value is the solution of

λ − α1 = cα1

∫
μ

λ − μ
dF(μ).(5.15)

To finish the proof, we use Lemma 4 below, which shows that for any value of
c and density h, m̄(λ(α)) = −1/α, and then insert this relation into the inverse
equation (5.11). �
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LEMMA 4. Let λ(α) denote the pulled up value corresponding to an original
eigenvalue α. For α large enough, regardless of the constant c and of the underly-
ing density h(t),

m̄(λ(α)) = − 1

α
.(5.16)

PROOF. We rewrite (5.15) as follows:

λ(α) = α(1 − c) + λαc

∫ 1

λ − μ
dF(μ).(5.17)

By extending the definition of the Stieltjes transform m(z) of F , originally defined
only for z ∈ C

+, also to z ∈ R with z > support(F ), the last equation reads

λ(α) = α(1 − c) − λαcm(λ(α))(5.18)

or stated otherwise

cm(λ(α)) − 1 − c

λ(α)
= − 1

α
,(5.19)

but according to (5.10), the left-hand side is simply m̄(λ(α)), also extended to the
case of inputs z ∈ R with z > support(F ). �

PROOF OF THEOREM 2.5. We consider the relation α(λ). That is, for each
λ > support(F ) we look for the corresponding α such that (2.23) is satisfied. We
show that there exists a unique solution α(λ), which is monotonic in λ, and as
λ → support(F ), satisfies that α(λ) → α∗ < ∞, but dα/dλ → ∞.

To this end, we rewrite (5.17) as follows:

α = 1

(1 − c)/λ + c
∫

1/(λ − μ)dF(μ)
.(5.20)

Since for λ > support(F ) the functions 1/λ and
∫

1/(λ − μ)dF(μ) are both
strictly monotonically decreasing in λ, it follows that

dα

dλ
> 0 for λ > support(F ).(5.21)

We now analyze the behavior of both α(λ) and its derivative as λ approaches the
support of F . According to [9, 34] near the boundary b = support(F ), the den-
sity F exhibits a behavior closely resembling

√|b − x|. Therefore,

lim
λ→support(F )

∫ 1

λ − μ
dF(μ) = Const,(5.22)

whereas

lim
λ→support(F )

d

dλ

∫ 1

λ − μ
dF(μ) = ∞.(5.23)
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This proves Theorem 2.5. �

PROOF OF COROLLARY 3. We start our analysis from the equation

λ(α) = α(1 − c) + α2c

∫
h(t)

α − t
dt.(5.24)

First we make a change of variables t = μ1 + s, where

μ1 =
∫

th(t) dt(5.25)

and denote h0(s) = h(t), with the subscript zero denoting the fact that this density
has zero mean. Then,

λ(α) = α(1 − c) + α2c

α − μ1

∫
h0(s)

1 − s/(α − μ1)
ds.(5.26)

As c → ∞, both α → ∞ and λ → ∞. Specifically, α − μ1 > support(F ). In this
case we can expand

1

1 − s/(α − μ1)
=

∞∑
k=0

(
s

α − μ1

)k

,

where the sum is convergent for |s| < support(F ). Inserting this expansion
into (5.24) gives

λ(α) = α(1 − c) + α2c

α − μ1

[
1 +
∫

s2h0(s)

(α − μ1)2 ds + O

(
1

α − μ1

)3]
.(5.27)

Taking only the first two terms in the expansion gives the approximate solution

α∗ = μ1
(
1 + √

c
)
.

To obtain the correction due to the variance of the distribution, we expand

α∗ = μ

(
β1

√
c + β0 + β−1√

c
+ · · ·

)
(5.28)

and insert the expansion into (5.27). This gives

α∗ = μ

(√
c

√√√√1 + μ2
2

μ2
1

+ 1 + 4
μ2

2/μ
2
1

1 + 2μ2
2/μ

2
1

+ O

(
1√
c

))
(5.29)

for the location of the phase transition, and

λ(α∗) = μ

[
c + 2

√
c

√√√√1 + μ2
2

μ2
1

+ O(1)

]
.(5.30)

�
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5.4. The phase transition phenomenon for finite p,n. We conclude by pre-
senting two examples of the phase transition phenomenon for the standard spiked
covariance model with finite p,n. In Figure 1 we present an example of this phe-
nomenon with n = 50,p = 200, κ = 2.8. For small noise level σ , the largest eigen-
value is roughly κ2 = 7.87, and 〈vPCA, e1〉 ≈ 1. As the noise level σ increases the
dot product decreases smoothly. However, at a noise level of roughly σ = 1.85 the
largest eigenvalue and the second largest eigenvalue “cross” each other, leading to
a sharp decrease in the overlap between the first eigenvector of PCA and the cor-
rect direction e1. The reason is that at this level of noise the spectral norm of the
noise matrix overcomes the eigenvalue corresponding to the original signal. Thus,
after the crossing the corresponding leading eigenvector is due to noise and points
to a random direction.

As a second example, we present a possible behavior of R = |〈vPCA, e1〉| as a
function of the number of samples n. In Figure 2 we present a simulation result
with p = 600, σ = 1, ‖v‖ = 2 and a variable number of samples n. When n is
very small the signal information is too weak, and as expected the overlap R is
very small. Then, as n increases the largest eigenvalue of the noisy covariance
matrix corresponds to the correct one and there is an increase in R. However, in
this example at n = 77 there is a short crossover between the dominant eigenvalue
and one due to noise (e.g., λ2 ≈ λ1), leading first to a sharp decrease in R and then
to a sharp increase in R back to around 0.5. The formulas derived in this paper can
be used to estimate the probability of such a loss of locking to occur. This analysis
also shows that care should be taken when applying bootstrap procedures for the
eigenvectors, since in the case of weak signals in certain subsets of samples the
resulting leading eigenvector might be due to noise.

APPENDIX: PROBABILISTIC BOUNDS ON THE NORM OF
WISHART MATRICES

Let 
 denote an n × p matrix whose entries are all i.i.d. N(0,1) random vari-
ables. Consider the p × p scaled Wishart matrix W = (1/n)
T 
 and the matrix

FIG. 1. Loss of tracking of the correct direction as a function of noise level.
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FIG. 2. Loss of tracking of the correct direction as a function of sample size n. Bottom graphs are
zoomed-in versions of the top ones.

E = W − Ip . In this Appendix we provide a probabilistic bound on the spectral
norm of the matrices W and W − Ip .

As shown in [18], in the limit n,p → ∞, p/n = c < 1, the largest eigen-
value λW of the matrix W is distributed according to

λW = 1

n

[(√
n +
√

p − 1
)2 + (√n +

√
p − 1

)( 1√
n

+ 1√
p − 1

)1/3

W1

]
,

where W1 follows a Tracy–Widom distribution of order 1. Therefore, we seek a
bound on the norm of E of the form ‖E‖ ≤ (1 + √

c)2 + c − 1 + const, that will
hold with probability 1−ε. To prove such a bound (Lemma 2) we use the following
proposition by Davidson and Szarek [7], which holds for finite p,n, with n ≤ p.

PROPOSITION (Theorem II.13 in [7]). Let 
 be an n × p matrix with n ≤ p

whose entries are all i.i.d. N(0,1) Gaussian variables. Let s1(
) be the largest
singular value of 
; then

Pr
{
s1(
) >

√
n + √

p + √
pt
}
< exp(−pt2/2).(A.1)
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PROOF OF LEMMA 2. The largest eigenvalue of W = (1/n)
T 
 is given by
λW = [s1(
)]2/n. Therefore,

Pr
{
λW >

(
1 +√p/n

)2 + αp/n
}= Pr

{
s1(
) >

√
p

√(
1 +√n/p

)2 + α
}
.

We write

√
p

√(
1 +√n/p

)2 + α = √
n + √

p + √
pt

with

t =
√(

1 +√n/p
)2 + α − (1 +√n/p

)
and use (A.1) to obtain that

Pr
{
λW >

(
1 +√p/n

)2 + αp/n
}

≤ exp
[
−p

2

(√
α + (1 +√n/p

)2 − (1 +√n/p
))2](A.2)

≤ exp
[
−p

2

(
α√

α + (1 + √
n/p)2 + 1 + √

n/p

)2]
.

We specifically consider α = 1. Then, since n ≤ p,

1√
1 + (1 + √

n/p)2 + 1 + √
n/p

≥ 1√
5 + 2

(A.3)

and

Pr
{
λW >

(
1 +√p/n

)2 + p/n
}≤ exp

{
− p

2(
√

5 + 2)2

}
= ε.(A.4)

Similarly, for n/p ≤ 1, with probability at least 1 − ε,

‖E‖ = ‖W − I‖ ≤ (1 +√p/n
)2 + p

n
− 1 ≤ 4

p

n
.(A.5) �

REMARK. For n < p the matrix 
T 
 always has p−n eigenvalues equal to 0,
therefore E has p − n eigenvalues equal to −1. Thus, to bound ‖E‖ we need only
bounds on the largest positive eigenvalue as analyzed above.
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