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Abstract
We propose a novel framework for supervised learning of discrete concepts. Since the 1970’s,
the standard computational primitive has been to find the most consistent hypothesis in a given
complexity class. In contrast, in this paper we propose a newbasic operation: for each pair of input
instances, count how many concepts of bounded complexity contain both of them.

Our approach maps instances to a Hilbert space, whose metricis induced by a universal kernel
coinciding with our computational primitive, and identifies concepts with half-spaces. We prove
that all concepts are linearly separable under this mapping. Hence, given a labeled sample and
an oracle for evaluating the universal kernel, we can efficiently compute a linear classifier (via
SVM, for example) and use margin bounds to control its generalization error. Even though exact
evaluation of the universal kernel may be infeasible, in various natural situations it is efficiently
approximable.

Though our approach is general, our main application is to regular languages. Our approach
presents a substantial departure from current learning paradigms and in particular yields a novel
method for learning this fundamental concept class. Unlikeexisting techniques, we make no struc-
tural assumptions on the corresponding unknown automata, the string distribution or the complete-
ness of the training set. Instead, given a labeled sample ouralgorithm outputs a classifier with
guaranteed distribution-free generalization bounds; to our knowledge, the proposed framework is
the only one capable of achieving the latter. Along the way, we touch upon several fundamental
questions in complexity, automata, and machine learning.
Keywords: grammar induction, regular language, finite state automaton, maximum margin hyper-
plane, kernel approximation

1. Introduction

We begin by describing the basic problem setting and outlining our approach.

1.1 Background

Perhaps the most fundamental problem in learning from labeled data is to construct a classifier with
guaranteed small generalization error. Typically, given labeled data there exists a nested sequence

c©2009 Aryeh Kontorovich and Boaz Nadler.



KONTOROVICH AND NADLER

of candidate concept classes with increasing complexity. Of course, a classifier from a rich concept
class can easily achieve a low or even zero training error, but is likely to overfit the data and have a
poor generalization performance. Hence, a major challenge is to choose the hypothesis class with
appropriate complexity. This issue also arises in classical statistics, where itis known as themodel
selectionproblem (Rissanen, 1989). In Vapnik (1982), the structural risk minimization (SRM)
principle was proposed to solve this problem, by quantifying the bias-variance tradeoff between fit
to the data and model complexity, as captured by the VC-dimension.

The basic computational primitive in the SRM framework is finding the most consistent hypoth-
esis in a given concept class. Although SRM resolves the information theoretic problem of model
selection, it offers no method for finding such a hypothesis. Moreover,for discrete concept classes,
finding this hypothesis may be infeasible, as this computational primitive typically requires solving
a hard combinatorial optimization problem.

An important instance of this scenario is the problem of learning a regular language from labeled
examples. Supervised language learning from examples is one of the most fundamental problems
in learning theory, and as such has fascinated philosophers, linguists, computer scientists and math-
ematicians as a quintessential problem of induction. Insofar as the PAC model (Valiant, 1984) is a
natural formalization of learning and the regular languages are the simplestnontrivial class of for-
mal languages, the vast amount of literature devoted to learning regular languages is well justified
(see Rivest and Schapire 1987 and de la Higuera 2005 and the references therein).

Applying the standard SRM principle to learning a regular language requires finding the smallest
automaton consistent with the given labeled sample. However, it was realizedearly on that this task
is computationally very difficult. Finding the smallest automaton consistent with a set of accepted
and rejected strings was shown to be NP-complete by Angluin (1978) and Gold (1978); this was
further strengthened in the hardness of approximation result of Pitt and Warmuth (1993), where it
was proven that even finding a DFA with a number of states polynomial in the number of states of
the minimum solution is NP-complete.

To make matters worse, it turns out that under cryptographic assumptions the class of regular
languages is inherently hard to learn, regardless of representation. Thus, assuming the average-case
difficulty of the Discrete Cube Root problem, Theorem 7.6 of Kearns and Vazirani (1997) shows
how to construct small automata over{0,1} and distributions over{0,1}n for which it is intractable
to discover a hypothesis with error less than 1/2−1/p(n), for any fixed polynomialp. A similar
construction shows that this task is also at least as hard as factoring.

Nevertheless, a number of positive learnability results were obtained under various restricted
settings. Trakhtenbrot and Barzdin (1973) showed that the smallest finiteautomaton consistent with
the input data can be learned exactly from a complete sample of all strings up toa given length.
The worst case complexity of their algorithm is exponential in automaton size, but a better average-
case complexity can be obtained assuming that the topology and the labeling areselected randomly
or even that the topology is selected adversarially (Freund et al., 1993).In a different model of
learnability—“identification in the limit” (Gold, 1967)—positive results were obtained for thek-
reversible languages (Angluin, 1982) and subsequential transducers (Oncina et al., 1993). Some
restricted classes of probabilistic automata such as acyclic probabilistic automata were also shown
to be efficiently learnable by Ron et al. (1998). In a modified model of PAC,and with additional
language complexity constraints, Clark and Thollard (2004) showed a class of probabilistic finite
state automata to be learnable; see also literature review therein.
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In light of the strong negative results mentioned above, the prevailing paradigm in formal lan-
guage learning has been to make structural regularity assumptions about the family of languages
and/or the sampling distribution in question and to employ a state-merging heuristic.Indeed, over
the years a number of clever and sophisticated combinatorial approacheshave been proposed for
learning DFAs. Typically, an initial automaton or prefix tree consistent with thesample is first
created. Then, starting with the trivial partition with one state per equivalence class, classes are
merged while preserving an invariant congruence property. The automaton learned is obtained by
merging states according to the resulting classes. Thus, the choice of the congruence determines the
algorithm and generalization bounds are obtained from the structural regularity assumptions. This
rough summary broadly characterizes the techniques of Angluin (1982);Oncina and Garcia (1992);
Ron et al. (1998); Clark and Thollard (2004) and until recently, this appears to have been the only
general-purpose technique available for learning finite automata.

Finally, despite the fact that the problems of inducing a regular language, and specifically find-
ing the smallest automaton consistent with a given sample were proven to be theoretically compu-
tationally hard, in recent years various heuristic search methods have been developed with reported
considerable success in solving these problems for moderately sized DFAs, see for example Lang
(1992), and Oliveira and Silva (2001) and Bugalho and Oliveira (2005). Of course, these heuris-
tic methods find some automaton consistent with the given sample, but provide nogeneralization
bounds on its expected performance on new samples.

1.2 Learning Languages Via Hyperplanes

In this paper we propose a novel framework for learning a regular language from a finite sample
of positive and negative labeled strings. Rather than attempting to find asinglesmall consistent
automaton, we embed the strings in a Hilbert space and compute a maximum margin hyperplane,
which becomes our classifier for new strings. Hence, we effectively convert a difficult combinatorial
problem into a (high dimensional) geometric one, amenable to efficient techniques using linear
algebra and convex optimization. In particular, our resulting classifier is a linear combination of
potentially smaller automata, each of which is typically not consistent with the training data.

Since the advent of Support Vector Machines (SVMs), maximum margin classifiers have flour-
ished in the machine learning community (Schölkopf and Smola, 2002). Within the context of gram-
matical inference, the first work to apply this methodology was Kontorovich et al. (2006), where a
kernel was used to learn a specific family of regular languages (the piecewise-testable ones). The
authors embed the set of all strings onto a high-dimensional space and achieve language induction
by constructing a maximum-margin hyperplane. This hinges on every language in a family of inter-
est beinglinearly separableunder the embedding, and on the efficient computability of the kernel.
This line of research is continued in Cortes et al. (2007), where linear separability properties of
rational kernels are investigated.

In this paper, we build upon the approach suggested in Kontorovich (2007), where auniversal
kernel is given that rendersall regular languages linearly separable. We prove that any linearly sep-
arable language necessarily has a positive margin, so standard margin-based generalization guar-
antees apply. A by-product of this result is a novel characterization ofthe regular languages as
precisely those that are linearly separable under our kernel. A drawback of this kernel is that a
brute-force computation is infeasible, while an efficient one is currently unknown (and conjectured
not to exist unless P= #P). However, we propose a simple randomized scheme for efficiently obtain-
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ing anε-approximation to our universal kernel. We show that the approximate kernel preserves the
distances with low distortion, and therefore may be used as a surrogate forthe original one. Random
sampling of embedding features to evaluate otherwise intractable kernels seems to first have been
employed in Kontorovich (2007); Rahimi and Recht (2007) used a similar idea in a somewhat dif-
ferent setting. Also related are the approaches of Garg et al. (2002) and Balcan et al. (2006), where
classifiers and their generalization performance are computed based on low-dimensional random
projections. Note the marked difference between our method and theirs: wetake a random subset
of the embedding features as opposed to projecting the embedding space onto a random subspace;
in fact, the setting we consider does not seem to allow the use of random projections. Also, note
that in general, projecting the sample onto a low-dimensional subspace doesnot guarantee linear
separability; a somewhat delicate margin analysis is needed, as described inSection 5.

From a practical standpoint, our resulting classifier is the sign of a weightedlinear combination
of possibly many random DFAs. The fact that a complicated DFA with many states may be written
as a weighted sum of much simpler DFAs is illustrated below and provides additional motivation for
our approach. Our methodology is intimately connected to boosting (see, forexample, Bartlett et al.
1998), since our resulting classifier can also be viewed as a weighted sumof weak classifiers—
each being one of the random DFAs. Furthermore, our approach has anatural interpretation in
the structural risk minimization (SRM) framework, where we trade the computational problem of
finding a small consistent hypothesis for the problem of counting the numberof small concepts
accepting a given instance. The advantage of the latter is that it admits an efficient approximation
in many cases of interest, including the case of DFAs.

In summary, our proposed algorithm is efficient, simple to implement, comes with strong the-
oretical guarantees, and readily generalizes to many other learning settings, such as context-free
languages. We also present preliminary empirical results as a proof of concept. To our knowl-
edge, the framework we propose is the only one capable of inducing unrestricted regular languages
from labeled samples, without imposing additional structural assumptions—modulo standard cryp-
tographic limitations. Some of the results in this paper first appeared in the conference version
(Kontorovich, 2007).

1.3 Outline of Paper

This paper is organized as follows. In Section 2 we set down the notation and definitions used
throughout the paper. The notion of linearly separable concept classes is defined in Section 3, and
a general theorem regarding their existence via a canonical embedding isproved in Section 4. In
Section 5, the universal kernel oracle is used to obtain an efficient generic learning algorithm, and
in Section 6 an efficient approximation scheme is given for computing the universal kernel, with a
corresponding learning algorithm. In Section 7, these results are applied tothe case of the regular
languages, with some experimental results presented in Section 8. Some inherent limitations of such
kernel-based techniques are discussed in Section 9, and concluding remarks are made in Section 10.

2. Preliminaries

We refer the reader to Kearns and Vazirani (1997) for standard learning-theoretic definitions such as
instance spaceandconcept class. We likewise use standard set-theoretic terminology, with|·| de-
noting set cardinalities and1{·} representing the 0-1 truth value of the predicate inside the brackets.
We blur the distinctions between subsetsc⊂ X and binary functionsc : X →{0,1}; when we wish
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to make the distinction explicit, we will use a{±1}-valued characteristic function:

χc(x) := 21{x∈c}−1.

Recall that ifA andB are two sets,BA represents the collection of all functions fromA to B. For
countable setsA, we will consider the vector spaceRA and often indexx∈ R

A by elements ofA as
opposed to by the naturals. For example, forx,y∈ R

A, we define theirinner productas

〈x,y〉 = ∑
a∈A

[x]a[y]a,

whenever the latter sum is well-defined. Square brackets may be omitted fromthe indexing notation
for readability.

For anyx∈ R
N, we define itssupportto be the set of its nonzero coordinates:

supp(x) = {i ∈ N : xi 6= 0}.

We define the quasinorm‖·‖0 to be the number of the nonzero coordinates:

‖x‖0 = |supp(x)| ,

and the standardℓ2 norm by‖x‖2
2 = 〈x,x〉.

If V1 andV2 are two inner product spaces overR, we define theirdirect product V1⊗V2 to be the
vector space

V1⊗V2 = {(x,y) : x∈V1,y∈V2}

which naturally inherits vector addition and scalar multiplication fromV1 andV2, and whose inner
product is defined by

〈

(x,y),(x′,y′)
〉

=
〈

x,x′
〉

+
〈

y,y′
〉

.

We will also write(x,y) ∈V1⊗V2 asx⊗y. Note that‖x⊗y‖0 = ‖x‖0 +‖y‖0.

3. Linearly Separable Concept Classes

Our main results are actually quite general and most of them make no use of theproperties of regular
languages and automata. The only property we use is thecountabilityof the instance spaceX and
of the concept classC . Henceforth,X andC are always assumed to be (at most) countable, unless
noted otherwise. LetC be a concept class defined over an instance spaceX ; thus,C ⊆ 2X . Any
c∈ C is thus a classifier or a function that induces a{0,1} labeling on the instance spaceX . Note
that a conceptc⊂ X may contain infinitely many instances, and an instancex∈ X may belong to
an infinite number of concepts.

We will say that a conceptc∈ C is finitely linearly separableif there exists a mappingφ : X →
{0,1}N and a weight vectorw∈ R

N, both withfinite support, that is,‖w‖0 < ∞ and‖φ(x)‖0 < ∞
for all x∈ X , such that

c = {x∈ X : 〈w,φ(x)〉 > 0}.

1099



KONTOROVICH AND NADLER

The concept classC is said to befinitely linearly separableif all c∈ C are finitely linearly separable
under thesamemappingφ.

Note that the condition‖φ(·)‖0 < ∞ is important; otherwise, we could define theembedding by
conceptφ : X →{0,1}C

[φ(x)]c = 1{x∈c}, c∈ C

and for any target ˆc∈ C ,

[w]c = 1{c=ĉ}.

This construction trivially ensures that

〈w,φ(x)〉 = 1{x∈ĉ}, x∈ X ,

but may not satisfy‖φ(·)‖0 < ∞ since certainx∈ X may belong to an infinite number of concepts.
Similarly, we disallow‖w‖0 = ∞ due to the algorithmic impossibility of storing infinitely many

numbers and also because it leads to the trivial construction, viaembedding by instanceφ : X →
{0,1}X

[φ(x)]u = 1{x=u}, u∈ X ,

whereby for any target ˆc∈ C , the corresponding vector

[w]u = 1{u∈ĉ}

ensures〈w,φ(x)〉 = 1{x∈ĉ} without doing anything interesting or useful.
An additional important reason to insist on finite linear separability is that it ensures that for each

c∈ C there is a “separability dimension”D(c) < ∞ such thatc is linearly separable in{0,1}D(c) un-
derφ (in particular, ifw defines a separating hyperplane forc thenD(c) ≤ ‖w‖0). Now any linearly
separable partition of{0,1}D must necessarily be separable with a strictly positive margin; this is
true on any discrete finite space (but false in{0,1}∞). The latter in turn provides generalization
guarantees, as spelled out in Section 5. Finally, any embeddingφ induces a kernelK via

K(x,y) = 〈φ(x),φ(y)〉 (1)

for x,y ∈ X . The finite support ofφ automatically guarantees thatK is everywhere well-defined;
otherwise, additional assumptions are needed.

In light of the discussion above, from now on the only kind of linear separability we shall
consider is in the strong sense defined above, where both the embeddingφ(·) and the hyperplane
vectorw have finite support. The modifiers “countable” (for instance spaces andconcept classes),
“finitely” (for linear separability) and “finite support” (for embeddings and hyperplanes) will be
implicitly assumed throughout. Since an embeddingφ : X → {0,1}N induces a kernelK as in (1),
and any positive definite1 kernelK : X 2 → R induces an embeddingφ : X →{0,1}X via

φ(x) = K(x, ·)
(see Scḧolkopf and Smola 2002), we shall speak of linear separability byφ or byK interchangeably,
as dictated by convenience.

An immediate question is whether, under our conventions, every concept class is linearly sep-
arable. A construction of the requisiteφ given anyX andC would provide a positive answer; an
example ofX andC for which no such embedding exists would resolve the question negatively.

1. In the sense that for any finite set{xi ∈ X : 1≤ i ≤ m}, them×mmatrixG = (gi j ) given bygi j = K(xi ,x j ) is always
positive definite.
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4. Every Concept Class is Linearly Separable

The question raised in Section 3 turns out to have an affirmative answer, as we prove in the following
theorem.

Theorem 1 Every countable concept classC over a countable instance spaceX is finitely linearly
separable.

Proof We present a constructive proof, by describing an explicit mappingφ : X → {0,1}N under
which all conceptsc ∈ C are finitely linearly separable. Recall that both the embedding by con-
cept and embedding by instance, described in the previous section, rendered all concepts linearly
separable, but were possibly not finitely supported. Hence, the “trick”in our construction is the
introduction ofsize functionsthat measure thecomplexityof both individual instances and individ-
ual concepts, thus providing a notion of capacity control and adaptive regularization, and leading to
finite separability.

We thus begin by defining the notion of asize function f: A → N, mapping any countable set
A to the naturals. We require a size function to have finite level sets:

∣

∣ f−1(n)
∣

∣ < ∞, ∀n∈ N.

In words, f assigns at most finitely many elements ofA to any fixed size. Any countableA has
such a size function (in fact, there are infinitely many size functions onA). We denote by|·| and
‖·‖ some fixed choices of size functions onX andC , respectively.

Recall that our goal is to construct an embeddingφ :X →{0,1}N with ‖φ(x)‖0 < ∞ for all x∈X

such that for allc∈ C there is aw = w(c) ∈ R
N with ‖w‖0 < ∞ such that

c = {x∈ X : 〈w,φ(x)〉 > 0}.

We will construct the requisitecanonical embeddingφ as the direct product of two auxiliary
embeddings,α andβ,

φ(x) = α(x)⊗β(x). (2)

First, we define theembedding by instanceα : X →{0,1}X by

[α(x)]u = 1{u=x}, u∈ X ;

obviously,‖α(x)‖0 = 1 for all x ∈ X (recall our vector-indexing conventions, set down in Section
2). Second, using the size function as notion of complexity, we define aregularized embedding by
conceptβ : X →{0,1}C by

[β(x)]c = 1{x∈c}1{‖c‖≤|x|}, c∈ C ; (3)

since size functions have finite level sets, in contrast to the standard embedding by concept, we have
‖β(x)‖0 < ∞ for anyx∈ X .

We now show that the embedding (2) renders all conceptsc∈ C finitely linearly separable, by
explicitly constructing hyperplane vectorswα ∈ R

X andwβ ∈ R
C corresponding to the mappingsα

andβ, respectively. To this end, it is helpful to keep in mind the dual roles ofX andC .
Pick anyĉ∈C. Since the embeddingα involved no regularization, we introduce a complexity

restriction in the corresponding hyperplane vectorwα ∈ R
X as follows

[wα]u = 1{u∈ĉ}1{|u|<‖ĉ‖}, u∈ X ;

1101



KONTOROVICH AND NADLER

since size functions have finite level sets, we have‖wα‖0 < ∞. Thus,

〈wα,α(x)〉 = ∑
u∈X

[wα]u[α(x)]u

= ∑
u∈X

1{u∈ĉ}1{|u|<‖ĉ‖}1{x=u}

= 1{x∈ĉ}1{|x|<‖ĉ‖}. (4)

For the second embeddingβ, no further regularization is needed, and we define its corresponding
hyperplane vectorwβ ∈ R

C by

[wβ]c = 1{c=ĉ}, c∈ C ;

note that
∥

∥wβ
∥

∥

0 = 1. Now

〈

wβ,β(x)
〉

= ∑
c∈C

[wβ]c[β(x)]c

= ∑
c∈C

1{c=ĉ}1{x∈c}1{‖c‖≤|x|}

= 1{x∈ĉ}1{|x|≥‖ĉ‖}. (5)

Sinceφ is the direct product of the two embeddingsα andβ, the corresponding hyperplane is
the direct product of the two hyperplanes:

w = wα ⊗wβ.

Note that by construction, bothφ andw are finite:

‖φ(x)‖0 = ‖α(x)‖0 +‖β(x)‖0 < ∞ and ‖w‖0 = ‖wα‖0 +‖wβ‖0 < ∞.

Combining (4) and (5), we get

〈w,φ(x)〉 = 〈wα,α(x)〉+
〈

wβ,β(x)
〉

= 1{x∈ĉ}1{|x|<‖ĉ‖} +1{x∈ĉ}1{|x|≥‖ĉ‖}
= 1{x∈ĉ}

which shows thatw is indeed a linear separator (with finite support) for ˆc.

Next, we observe that linearly separable concepts may be described by finitely many instances,
via the following “representer theorem”. Note that this result holds foranyseparating embedding—
not just the canonical one constructed in Theorem 1.

Theorem 2 If a concept classC over an instance spaceX is linearly separable underφ (equiva-
lently, under the induced kernel K(x,y) = 〈φ(x),φ(y)〉), there are si ∈ X andαi ∈ R, i = 1, . . . ,m,
such that

c =

{

x∈ X :
m

∑
i=1

αiK(si ,x) > 0

}

.
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Proof Suppose a conceptc∈ C is linearly separable with vectorw, that is,c = {x∈ X : 〈w,φ(x)〉>
0}. It follows that c is also separable under the finite dimensional embeddingφD : X → {0,1}D

whereD = max{i : wi 6= 0} andφD is the truncation ofφ by D:

[φD(x)]i = [φ(x)]i, i = 1, . . . ,D.

Define the equivalence relation≡D onX via

x≡D y ⇔ φD(x) = φD(y)

and notice that≡D partitionsX into finitely many equivalence classes. Letx1,x2, . . . ,xm be chosen
arbitrarily, one from each equivalence class, and defineyi := χc(xi). Letw′ be the maximum-margin
hyperplane for the labeled sample(xi ,yi)

m
i=1 (see (9) for the definition of margin). This construction

ensures thatw′ is a linear separator forc. By the representer theorem of Kimeldorf and Wahba
(1971), it follows thatw′ admits a representation of the form

w′ =
m

∑
i=1

αiφ(xi),

and the claim follows.

A few remarks regarding Theorem 1 are in order. First, note that the construction of the canon-
ical embedding depends on the choice of the size functions|·| and‖·‖ on X andC . These size
functions induce a natural notion of complexity for instancesx∈ X and conceptsc∈ C . Hence, our
construction has analogies to various settings where classifier complexity can adaptively grow with
the sample, such as structural risk minimization (SRM) in machine learning (Vapnik, 1982), and
minimum description length (MDL) and other information theoretic criteria in statistics(Rissanen,
1989). We shall have more to say about SRM in particular, below.

Observe that any nondecreasing transformationf : N→N of a size function|·| produces another
valid size function|x|′ := f (|x|). These affect the embedding in the following way. Consider a
canonical embeddingφ induced by(|·| ,‖·‖), and consider a transformed embeddingφ′ induced by
( f (|·|),‖·‖). If f is a very rapidly growing function then the truncation in (3) becomes ineffective,
and in the limit of f (·) ≡ ∞, φ′ essentially becomes a pure embedding by concept. In the other
extreme of a very slowly increasingf , the truncation in (3) becomes too restrictive. In the limit of
f (·) ≡ const,φ′ effectively becomes an embedding by instance.

A final note is that the separability result does not preclude the trivial scenario where the only
coordinate separating a concept is the concept itself. To parse the last statement, recall that Theorem
1 states that under the canonical embedding, for each conceptc∈ C there is a finiteN = N(c) such
thatc is separable in{0,1}N. However, it may be the case that the separatorw is trivial, in the sense
thatwi ≡ 1{i=c}. In other words, the separability result implies that for eachc∈ C there is a finite
collection of{ci ∈ C : ‖ci‖ ≤ ‖c‖ ,1≤ i ≤ m} with coefficientsαi ∈ R such that

c =
m

∑
i=1

αici , (6)

where the relation above is symbolic shorthand for the statement that

c = {x∈ X :
m

∑
i=1

αi1{x∈ci} > 0}.
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When a relation of type (6) holds, we say thatc is linearly decomposableinto the concepts{ci}.
No claims of uniqueness are made, and certainly any conceptc is trivially decomposable into the
singleton{c}. However, in many situations, concepts indeed decompose. As a simple example,
define the conceptc10 to be the set of all binary numbers, written as strings in{0,1}∗, divisible by
ten, and definec1, c2 andc5 analogously. Then it is straightforward to verify that

c10 = c2 +c5−c1,

in the sense of (6), since a number is divisible by 10 iff it is divisible by both 2and 5.
As far as implications for learnability, Theorem 1 is most relevant when the target concept is

linearly decomposable into asmallcollection ofsimplerconcepts, as illustrated in the last example.
In such cases, our approach can offer a substantial advantage over existing methods.

We may formalize the latter observation as a “universal learnability” theorem:

Theorem 3 LetC be a concept class overX , both countable, with size functions‖·‖ and|·|, respec-
tively. Define the family of kernels:

Kn(x,y) = ∑
c:‖c‖≤n

1{x∈c}1{y∈c} (7)

for n∈N. Then, given an oracle for computing Kn, we can efficiently learnC from labeled examples.
More explicitly, let c∈C be a fixed concept, and let S be a sequence of m instances independently

sampled from an arbitrary distribution P, and labeled according to c.
There is an efficient algorithmUnivLearn, which inputs a labeled sample and outputs a classi-

fier f̂ : X →{−1,1} which, with probability at least1−δ, achieves a small generalization error:

P{ f̂ (x) 6= χc(x)} ≤ 2
m

(R(c) log(8em) log(32m)+ log(8m/δ)) , for m≥ θ−1(‖c‖),
(8)

where R(c) does not depend on the distribution P andθ,θ−1 : N→N are fixed monotone increasing
functions with polynomial growth.

We defer the proof of Theorem 3 to Section 5, as it requires some preliminary definitions and
results. The regularization functionθ is chosen by the learner and represents his desired tradeoff
between computational complexity and generalization error; this is further elucidated in Remark 7.
We stress that the size of the target concept,‖c‖, is unknown to the learner—otherwise regularization
would not be necessary. Finally, Remarks 4 and 5 below point out the non-trivial nature of Theorem
3; we are not aware of any way to obtain it as an immediate corollary of knownresults.

Remark 4 We emphasize that the bound in Theorem 3 is distribution-free and recall thata
distribution-dependent “learning” bound is trivial to obtain. Definêf to be the rote memorizer:
f̂ (x) = y(x) if the example x appears in the sample S with label y andf̂ (x) = −1 otherwise. In this
case, we have

P{ f̂ (x) 6= χc(x)} ≤ P(x /∈ S) = P(X \S),

and the latter quantity clearly tends to0 as m→ ∞. All this bound says is that when we have
observed a large enough portion of the world, we can be sure that mosttest examples will simply
be recycled training examples. However, for any concept containing infinitely many instances, one
can find an adversarial distribution P so that P(X \S) will tend to zero arbitrarily slowly.
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Remark 5 The dependence of the required number of samples on the unknown concept c in the
generalization bound (8) is inevitable wheneverC has infinite VC-dimension. As a simple example,
note that to learn an n-state DFA, one needs to observe at least n strings (at least one string ending
at each state).

5. Margin Bounds

In this section, we recall some classic margin bounds and their implications for learnability. LetC
be a concept class over the instance spaceX . Suppose there is some family of embeddingsφd : X →
{0,1}Nd ; at this point, we assume nothing about the relationship between{φd} andC . Let S⊂ X be
a finite sample with labelsY∈{−1,1}S consistent with somec∈C , that is,Yx = χc(x) = 21{x∈c}−1
for all x∈ S.

We define thesample marginof (S,Y) underφd as follows:

γ̂d(S,Y) := sup
w∈B(Nd)

min
x∈S

Yx 〈w,φd(x)〉 (9)

whereB(k) := {x∈ R
k : ‖x‖2 ≤ 1}. Thesample radiusof Sunderφd is defined to be

ρ̂d(S) := max
x∈S

‖φd(x)‖2 .

Analogously, define theintrinsic marginof c underφd to be

γd(c) = sup
w∈B(Nd)

inf
x∈X

χc(x)〈w,φd(x)〉

and theradiusof φd to be

ρd = sup
x∈X

‖φd(x)‖2 .

The case whereγd or γ̂d is negative is not excluded; it arises whenφd fails to separate the given
concept or sample. Note that since forA ⊂ B, we have infA f ≥ infB f and supA f ≤ supB f , the
relationS⊂ X implies that

γ̂d(S,Y) ≥ γd(c) and ρ̂d(S) ≤ ρd. (10)

The following theorem is a slight rewording of Shawe-Taylor et al. (1998, Theorem 4.5):

Theorem 6 (Shawe-Taylor et al. 1998) Suppose m instances are drawn independently from a dis-
tribution whose support is contained in a ball inRn centered at the origin, of radiusρ. If we
succeed in correctly classifying all of them by a hyperplane through the origin with marginγ, then
with confidence1−δ the generalization error will be bounded from above by

2
m

(Rlog(8em/R) log(32m)+ log(8m/δ)) , (11)

where R= R(ρ,γ) =
⌊

577ρ2/γ2
⌋

.
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We are now in a position to prove the “universal learnability” theorem:
Proof [of Theorem 3] Recall that(S,Y) is our finite labeled sample consistent with some unknown
target conceptc. For eachn∈N, letφn : X →{0,1}Nn be the embedding associated withKn, defined
in (7), where

Nn = |Cn| = |{c∈ C : ‖c‖ ≤ n}|.
Let the marginsγn(c), γ̂n(S,Y) and radiiρn, ρ̂n(S) be as defined above. Define thenormalized

margins

∆n(c) :=
γn(c)

ρn
, and ∆̂n(S,Y) :=

γ̂n(S,Y)

ρ̂n(S)
.

Additionally, definen0 = n0(c) to be the smallestn for whichKn linearly separatesc:

n0(c) := min{n∈ N : γn(c) > 0} (12)

and define

∆0(c) := ∆n0(c)(c).

The algorithmUnivLearn requires some fixed monotone increasing functionθ : N → N, as
mentioned in the statement of the theorem (for a concrete choice, one may takeθ(m) =

⌈

m1/2
⌉

).
Recall the theorem’s condition thatm≥ θ−1(‖c‖) which (by Theorem 1) implies thatKθ(m) indeed
separates the unknown conceptc. The algorithm proceeds by computing the normalized sample
margins∆̂n(S,Y) for n = 1, . . . ,θ(m) and sets

∆̂∗(S,Y) := max{∆̂n(S,Y) : 1≤ n≤ θ(m), γ̂n(S,Y) > 0}

with correspondingn∗ ∈ {1, . . . ,θ(m)}. The conditionm≥ θ−1(‖c‖) ensures that the latter is well
defined.

By (10) we have that̂∆n(S,Y) ≥ ∆n(c) for all {n ∈ N : γn(c) > 0}. In addition, the condition
m≥ θ−1(‖c‖) combined with Theorem 1 ensure that

n0(c) ≤ ‖c‖ ≤ θ(m).

Therefore, we have

∆̂∗(S,Y) ≥ ∆0(c). (13)

The classifierf̂ : X → {−1,1} which UnivLearn outputs is the maximum-margin hyperplane
under the embeddingφn∗ . It follows from Theorem 6 that the bound in (8) holds withR(c) =
⌊

577/∆0(c)2
⌋

. Note that in (8) we have opted for a slightly coarser but simpler bounds.

Remark 7 To explain the role of the functionθ(m), let us attempt to simplify the algorithmUnivLearn.
Recall the definition of n0 in (12), and definên0 to be the first n for which we perfectly classify the
training set, that is,̂n0 = minn{γ̂n(S,Y) > 0} and let∆̂0(S,Y) := ∆̂n̂0(S,Y). If it were the case that

∆̂0(S,Y) ≥ ∆0(c), (14)
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then the maximum-margin classifierf̂ corresponding toφn̂0 would satisfy the desired bound in (8).
Unfortunately, the assertion in (14) is generally false, since it is possible for asmall sample to be
separable under Kn with n < n0 and marginγ̂n(S,Y) ≪ γn0(c). Because of this potentially very
small margin, stopping prematurely at this n would render our theorem false. There seems to be no
way around requiring the learner to try every n∈ N. To make the algorithm terminate in finite time
for each given sample, we cut off the search at n= θ(m). Note that the theorem is only claimed
to hold for sufficiently large sample sizes (namely, m≥ θ−1(‖c‖))—but this is a feature of many
bounds, especially where the complexity of the target concept is unknown (cf. Theorem 8). Since
θ is a monotonically increasing function, we are guaranteed that eventually thesample size m will
attain θ−1(‖c‖), which is what the claim in (13) hinges upon. Ifθ grows too quickly (say,θ(·) =
Ω(exp(·))), the algorithm will take too long to run. Ifθ grows too slowly (say,θ(·) = O(log(·))), the
generalization bound will only hold for huge sample sizes. The suggested rate ofθ(m) =

⌈

m1/2
⌉

)
seems a reasonable compromise.

Theorem 3 has a natural interpretation in the structural risk minimization (SRM)framework
(Vapnik, 1982). Let us quote a well-known result, as it appears in Shawe-Taylor et al. (1996); for
a detailed discussion of VC-dimension, see Vapnik’s books (Vapnik, 1982, 1998) or any standard
reference on learning theory such as Kearns and Vazirani (1997).

Theorem 8 (Shawe-Taylor et al. 1996) Let Hi , i = 1,2, . . . be a sequence of hypothesis classes
mappingX to {0,1} such thatVCdim(Hi) = i and let P be a probability distribution onX . Let pd

be any set of positive numbers satisfying∑∞
d=1 pd = 1. With probability1− δ over m independent

examples drawn according to P, for any d for which the learner finds a consistent hypothesis h in
Hd, the generalization error of h is bounded above by

ε(m,d,δ) =
4
m

(

d log

(

2em
d

)

+ log

(

1
pd

)

+ log

(

4
δ

))

,

provided m≥ d.

As a concrete choice ofpd, one may always takepd = 2−d. Viewing Theorems 3 and 8 through
a computational lens, the two approaches may be contrasted by their “computational primitives”.
The SRM approach requires one to find a consistent hypothesis in a given complexity class (if one
exists). Whenever the latter problem is efficiently solvable, SRM is quite satisfactory as a learning
paradigm. In many interesting cases, however, the latter problem is intractable—as is the case
for DFAs, for example (see Introduction). Our approach in Theorem 3is to consider a different
computational primitive—namely, the generic kernel

Kn(x,y) = |{c∈ C : ‖c‖ ≤ n,x∈ c,y∈ c}| .

The margin-based bound may be significantly sharper than the generic SRMbound since it is sen-
sitive to the target concept and its intrinsic margin. Additionally, the SRM boundis not directly
applicable to our setting since the VC-dimension of linear combinations of functions may grow lin-
early with the number of terms (Anthony and Bartlett, 1999). The roles ofθ in Theorem 3 and{pd}
in Theorem 8 are analogous in that both encode a prior belief regarding hypothesis complexity.

The performance ofUnivLearn is readily quantified:
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Corollary 9 If a labeled sample of size m is consistent with some concept c∈ C , and there is an
oracle for computing Kn(x,y) in time O(1), then there is an algorithm with running time O(m2θ(m))
that achieves, with probability1−δ, a generalization error of at most

2
m

(R(c) log(8em) log(32m)+ log(8m/δ)) ,

for m≥ θ−1(‖c‖).

Proof Using the oracle, thenth Gram matrix, defined by(Gn)i j = Kn(xi ,x j), for xi ,x j ∈ S, is com-
putable in timeO(m2). For a given Gram matrix, the margin may be computed in timeO(m) by a
primal algorithm such as Pegasos (Shalev-Shwartz et al., 2007). The different Gram matrices and
margins are computedθ(m) times.

Of course, at this point we have simply traded the generally intractable problem of finding a
consistenth∈ Hd for the problem of evaluatingKn(x,y). The latter is unlikely to have an efficient
solution in general, and may well be intractable in many cases of interest. However, as we shall see
below, under natural assumptionsKn admits an efficient stochastic approximationK̃n and Corollary
9 has a suitable extension in terms ofK̃n.

6. Approximating Kn

In the previous section we showed that the generic kernel familyKn renders all conceptsc ∈ C

linearly separable. However, exact evaluation of this kernel involves the summation in (7), which
may contain a super-exponential number of terms. For example, a natural size function on DFAs
is the number of states. Since the VC-dimension ofn-state DFAs isΘ(nlogn) (Ishigami and Tani,
1997), there are 2Θ(nlogn) such concepts. Hence, a direct brute-force evaluation of the corresponding
Kn is out of the question. Though we consider the complexity of computingKn for DFAs to be a
likely candidate for #P-complete, we have no proof of this; there is also the possibility that some
symmetry in the problem will enable a clever efficient computation.

Instead, we propose an efficient randomized approximation to the genericKn. All we require
are oracles for computing|Cn| and for uniform sampling fromCn, where

Cn := {c∈ C : ‖c‖ ≤ n} : (15)

Assumption 10

(i) There is a sampling algorithm with running time TSAM(C ,n) = O(poly(n)) that outputs ran-
dom concepts c∈ Cn, each with probability|Cn|−1. Additionally, k distinct concepts may be
drawn (i.e., without replacement) in expected time O(kTSAM(C ,n)).

(ii) There is an algorithm that computes|Cn|, in time O(1).

We make an additional assumption regarding the time complexity of instance/concept membership
queries:

Assumption 11 For each x∈ X and c∈ C , the characteristic functionχc(x) = 21{x∈c}−1 is com-
putable in time O(|x|).
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Note that sampling without replacement is a mild condition. Collisions are likely to occur when
sampling from small sets, in which case one could simply enumerate the elements ofCn. When
the latter is large, however, uniform sampling is rather unlikely to generate collisions, and various
hashing schemes can be employed to ensure this in practice.

For the purpose of approximating the kernel, it is convenient to normalize it as follows:

K̄n(x,y) := |Cn|−1Kn(x,y), (16)

Note that the margin bounds of Section 5 are invariant under rescaling of the kernel by any constant.
Having stated our basic assumptions, we are ready to prove some results. The first one deals

with efficient approximation of the generic kernel:

Theorem 12 Let S⊂ X be a sample of size m and the normalized generic kernelK̄n be defined as
in (16). Then, for any0 < ε,δ < 1, there is a randomized algorithm with deterministic running time

T = O

(

1
ε2TSAM(C ,n) log

(m
δ

)

)

,

that produces a (random) kernelK̃n with the following properties

(a) K̃n is a positive semidefinite function onX 2

(b)

E[K̃n(x,y)] = K̄n(x,y)

for all x,y∈ X

(c) with probability at least1−δ,

∣

∣K̄n(x,y)− K̃n(x,y)
∣

∣ ≤ ε,

for all x,y∈ S,

(d) for all x,y∈ X , K̃n(x,y) is computable in deterministic time

O

(

1
ε2 log

(m
δ

)

(|x|+ |y|)
)

.

Proof The approximation algorithm amounts to samplingT concepts,{ci : 1≤ i ≤ T} uniformly
at random (without replacement) fromCn, where Assumption 10 ensures that the latter sampling
scheme is computationally feasible.

The random concepts{ci : 1≤ i ≤ T} are used to define the random kernelK̃n:

K̃n(x,y) =
1
T

T

∑
i=1

1{x∈ci}1{y∈ci}, x,y∈ X . (17)

SinceK̃n is constructed as a (semi) inner product, it is non-negative but still not strictly positive
definite, as it may fail to separate distinct points. Hence, (a) is proved.
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To prove (b), fixx,y∈ X and defineDxy ⊂ Cn by

Dxy = {c∈ Cn : x,y∈ c};

this is the set of thosec∈ C with ‖c‖ ≤ n which contain bothx andy. Since anyc drawn uniformly
from Cn contains bothx andy with probability|Dxy|/ |Cn| it follows that the approximate kernel

K̃n(x,y) =
1
T

T

∑
i=1

1{ci∈Dxy} (18)

is an unbiased estimator for

K̄n(x,y) = |Cn|−1 ∑
c∈Cn

1{c∈Dxy} =
|Dxy|
|Cn|

;

this proves (b).
Our arguments show that the random variable1{ci∈Dxy} has a Bernoulli distribution with mean

K̄n(x,y). Hence, applying Hoeffding’s bound (Hoeffding, 1963), which alsoholds for variables
sampled without replacement, to (18) yields

P
{∣

∣K̃n(x,y)− K̄n(x,y)
∣

∣> ε
}

≤ 2exp(−2Tε2). (19)

The latter can be inverted to make the claim in (c) hold for a givenx,ywheneverT > (2ε2)−1 log(2/δ).
Applying the union bound to (19), we have established (c), with

T =
1

2ε2 log

(

m2 +m
δ

)

.

Finally, (d) holds by Assumptions 10 and 11.

Our next observation is that perturbing a kernel pointwise by a small additive error preserves
linear separability:

Theorem 13 Let K : X 2 → R be a kernel, and S⊂ X be a finite sample with labels Y∈ {−1,1}S.
Assume that(S,Y) is separable under the kernel K with marginγ, that is,

sup
w∈RN

min
s∈S

Ys〈w,φ(s)〉
‖w‖2

≥ γ > 0,

whereφ is the embedding associated with K. Let K′ be another kernel, which is uniformly close to
K on S:

∣

∣K(s, t)−K′(s, t)
∣

∣≤ ε ∀s, t ∈ S. (20)

Then, forε < γ2, the sample(S,Y) is also separable under K′, with a positive margin.
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Proof Let f (x) be the maximum-margin hyperplane classifier corresponding to the training setS,
under the kernelK. By the representer theorem, it can written as

f (x) = 〈φ(x),w〉 = ∑
s∈S

αsK(x,s).

Since(S,Y) is linearly separable,f (x) satisfies the constraint

Ys f (s) ≥ 1 ∀s∈ S.

By the KKT conditions (Scḧolkopf and Smola, 2002), its margin is given by

γ−2 = ∑
s
|αs|.

We now consider the following linear classifier, obtained by replacingK by K′:

f ′(x) = ∑
s∈S

αsK
′(x,s).

By (20), for eachx,s∈ S,

K′(x,s) = K(x,s)+ εηx,s

where|ηx,s| ≤ 1. Hence, for allx∈ S,

f ′(x) = f (x)+ ε ∑
s∈S

ηx,sαs.

Therefore,

Ys f ′(s) ≥ 1− ε∑
s
|αs| = 1− ε

γ2 ,

which shows thatf ′ is a linear separator for(S,Y) as long asε < γ2.

The next result quantifies the amount by which the margin may shrink when anapproximate
kernel is constructed using a random subset of the features:

Theorem 14 Let a labeled sample(S,Y) be given, with S⊂ X . Let the kernel K be induced by the
embeddingφ : X →{0,1}F , where F is a finite feature set, as follows:

K(s, t) :=
1
|F| 〈φ(s),φ(t)〉 .

Consider a feature subset F′ ⊂ F. Defineφ′ : X →{0,1}F ′
to be the restriction ofφ to {0,1}F ′

and
K′ to be corresponding kernel:

K′(s, t) :=
1
|F ′|

〈

φ′(s),φ′(t)
〉

.

Suppose that(S,Y) is linearly separable under K with marginγ > 0. If K ′ is ε-close to K on S in
the sense of (20) withε < γ2, then(S,Y) is linearly separable under the kernel K′, with marginγ′
bounded from below by

γ′ ≥ |F ′|
|F|

(

γ− ε
γ

)

.
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Proof Let f : X → R be the maximum-margin separator underK:

f (x) = ∑
s∈S

αsK(x,s) =
1
|F| ∑s∈S

αs〈φ(x),φ(s)〉 = 〈w,φ(x)〉 .

Let us definef ′ as f with K replaced byK′:

f ′(x) = ∑
s∈S

αsK
′(x,s) =

1
|F ′| ∑s∈S

αs
〈

φ′(x),φ′(s)
〉

.

By Theorem 13 we have thatf ′ is a linear separator for(S,Y), satisfying

Ys f ′(s) ≥ 1− ε∑
s

αs = 1− ε
γ2 , s∈ S.

Observe that

f ′(x) =
|F|
|F ′|

〈

w|F ′ ,φ′(x)
〉

wherew|F ′ is the restriction ofw to R
F ′

. Thus, letting

w′ :=
|F|
|F ′|

(

1− ε
γ2

)−1

w|F ′ ,

we have that

f ′′(x) :=
〈

w′,φ′(x)
〉

linearly separatesSand satisfies andYs f ′′(s) ≥ 1 for s∈ S. Since the margin attained by the hyper-
planew is given by 1/‖w‖ (Scḧolkopf and Smola, 2002), the claim follows.

Our final result for this section—and perhaps the highlight of the paper—is the following “ap-
proximate” version of Corollary 9:

Theorem 15 Let C be a concept class overX . Let S⊂ X be a sequence of m instances sampled
independently from an arbitrary distribution P, and labeled according to some unknown c∈ C . For
anyδ > 0, there is a randomized algorithmApproxUnivLearn, which outputs a classifier̂f : X →
{−1,1} such that with probability at least1−δ it achieves a small generalization error,

P{ f̂ (x) 6= χc(x)} ≤ 2
m

(4R(c) log(8em) log(32m)+ log(16m/δ)) (21)

for

m≥ max{θ−1(‖c‖),D(c)/2,R(c)2/8.4×104}, (22)

where0< D(c),R(c) < ∞ are constants that depend only on c, andθ : N→N is discussed in Remark
7.

Furthermore,ApproxUnivLearn has deterministic polynomial complexity, with running time

O
(

mθ(m) log(m/δ)(ℓmaxm
2 +TSAM(C ,θ(m)))

)

,

whereℓmax := max{|s| : s∈ S}).
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Proof Let (S,Y) denote a training set consisting ofm samples, labeled consistently with the target
conceptc∈ C . We define

n0 := min{n∈ N : γn(c) > 0},
γ0(c) := γn0(c),

and

R(c) :=
⌊

577/γ0(c)
2⌋ ,

D(c) := |Cn0| ,

whereCn is defined in (15) as the set of concepts with complexity at mostn.
Given the training set(S,Y), our algorithm constructsθ(m) different classifiers. According to

Theorem 12, each of these classifiers is constructed as follows: For 1≤ n ≤ θ(m), we randomly
sampleT features, construct the respective approximate kernel, and calculate itsresulting max-
margin hyperplane, with sample marginγ̃n(S,Y). Finally, our algorithm chooses the kernel with the
largest empirical margin

γ̃∗ := max{γ̃n(S,Y) : 1≤ n≤ θ(m), γ̃n(S,Y) > 0}. (23)

If the latter set is empty, we leaveγ̃∗ undefined (however, our analysis below will show that under
the conditions of the theorem, this is a highly unlikely event).

To prove the theorem, we need to show that with high probability,

γ̃∗ ≥ Const× γ0(c). (24)

If this equation holds (whp), then the standard margin bound (11) provesthe theorem. There are
two ways in which the theorem’s generalization bound (21) may fail to hold. The first is due to a
particularly unlucky sample whereas the second is due to a bad kernel approximation so that (24)
does not hold. Hence, we split the confidence parameterδ so that each of these kinds of failure
occurs with probability at mostδ/2.

The first step is to note that by definitionγ̃∗ ≥ γ̃n0. The next step is to lower bound the approx-
imate sample margin, constructed with a random approximate kernel, in terms of thetrue sample
margin corresponding to the exact kernel. Such a bound is provided by Theorem 14:

γ̃n0(S,Y) ≥ min{T,D(c)}
D(c)

(

γ̂n0(S,Y)− ε
γ̂n0(S,Y)

)

.

Note that by condition (22) we have

m ≥ 4/γ0(c)
4 ≥ 4/γ̂n0(S,Y)4, (25)

sinceγ̂n0(S,Y) ≥ γ0(c), as in (10).
Furthermore, in constructing the approximate kernels, we set the precisionto beε = 1/

√
m.

This condition, combined with (25) gives

γ̃∗ ≥
1
2

min{T,D(c)}
D(c)

γ̂n0(S,Y) ≥ 1
2

min{T,D(c)}
D(c)

γ0(c).
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The last step is to bound the factor multiplyingγ0(c) in the last equation. To this end, recall that
according to Theorem 12, under the conditionε = 1/

√
m, the number of random conceptsT drawn

from Cn is

T =
1

2ε2 log

(

m2 +m
δ/2

)

=
m
2

log

(

m2 +m
δ/2

)

> m.

Combining this with (22), we have

T > m≥ D(c)/2.

Hence,̃γ∗ ≥ γ0(c)/4, and applying (11) proves the generalization bound.
It remains to analyze the complexity ofApproxUnivLearn. The main loop is executedθ(m)

times. To compute each approximate kernel we sampleO(ε−2 log(m/δ)) concepts fromCn, and
evaluate the summation in (17) for eachx,y ∈ S. Sinceε = m−1/2, thenth Gram matrix is com-
putable in timeO

(

mlog(m/δ)(ℓmaxm2 +TSAM(C ,n))
)

. For a given Gram matrix, the margin may be
computed in timeO(m) by a primal algorithm such as Pegasos (Shalev-Shwartz et al., 2007), which
gets absorbed into the precedingO(m3θ(m) log(m)) bound.

Remark 16 For θ(m) =
⌈

m1/2
⌉

, ApproxUnivLearn has a running time of O(m3.5 logm). This may
be brought down to m2+α for anyα > 0, at the expense of increased sample complexity in (21), by
choosingε = m−β with β ≪ 1 . The role ofθ(m) in the tradeoff between running time and sample
complexity is discussed in Remark 7;ε(m), taken to be m−1/2 in the proof above, has an analogous
role.

7. Universal Regular Kernel, New Characterization of Regular Languages

Having developed some general tools for learning countable concept classes, we now apply these to
regular languages. For the remainder of the paper, we follow standard formal-language terminology.
Thus,Σ will denote a fixed finite alphabet andΣ∗ is the free monoid overΣ. Its elements are called
strings (or words) and the length ofx ∈ Σ∗ is denoted by|x|. The latter will be our default size
function onΣ∗.

Our definition of a Deterministic Finite-state Automaton (DFA) is a slight modification of the
standard one. We define the latter to be a tupleA = (Σ,Q,F,δ) where

• Σ is a finite alphabet

• Q = {1,2, . . . ,n} is a finite set of states

• F ⊂ Q is the set of the accepting states

• δ : Q×Σ → Q is the deterministic transition function.

The only difference between our definition and the common one is that we takethe initial stateq0

to be fixed atq0 = 1, while most authors allow it to be an arbitraryq0 ∈ Q. We writeL(A) for the
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language accepted by the automatonA, and denote the number of states inA by size(A) or ‖A‖,
interchangeably.

Recall that a languageL ⊆ Σ∗ is regular if and only if it is recognized by some DFA. Lewis and
Papadimitriou (1981) and Sipser (2005) are among the standard introductory texts on automata and
formal languages.

In order to apply our results to regular languages, we begin by defining the instance space
X = Σ∗ and concept classC = ∪n≥1DFA(n), where DFA(n) is the set of all DFAs onn states; both
are countable. Once the size functions onX andC have been specified, Theorem 1 furnishes an
embeddingφ : X → {0,1}N that renders all regular languages linearly separable. It is instructiveto
verify that the construction of the canonical embedding yields the following kernel, which we call
auniversal regular kernel:

KREG(x,y) = 〈φ(x),φ(y)〉

= 1{x=y} +
min{|x|,|y|}

∑
n=1

∑
A∈DFA(n)

1{x∈L(A)}1{y∈L(A)}.

In fact, we obtain a novel characterization of the regular languages:

Theorem 17 A language L⊆ Σ∗ is regular if and only if there exists a finite set of strings, si ∈ Σ∗

with corresponding weightsαi ∈ R, i = 1, . . . ,m such that

L =

{

x∈ Σ∗ :
m

∑
i=1

αiKREG(si ,x) > 0

}

. (26)

Proof Theorem 1 provides an embeddingφ : Σ∗ → {0,1}N such that for any regular languageL
there is aD ∈ N so that the setsφD(L) andφD(Σ∗ \ L) are separable by a hyperplane in{0,1}D,
whereφD is the restriction ofφ to {0,1}D. Thus, by Theorem 2, (26) holds for some finite collection
of stringssi and weightsαi . Conversely, suppose thatL ⊆ Σ∗ is expressible as in (26). Writing
w = ∑m

i=1 αiφD(xi) ∈ R
D, consider the functionf : Σ∗ → R defined by

f (x) =
D

∑
j=1

w j [φD(x)] j

and note thatL = {x : f (x) > 0}. Observe thatf can only take on finitely many real values{rk : k =
1, . . . ,kf }. Let Lrk ⊆ Σ∗ be defined by

Lrk = f−1(rk).

A subsetI ⊆ {1,2, . . . ,N} is said to berk-acceptableif ∑i∈I wi = rk. Any suchrk-acceptable set
corresponds to a set of stringsLI ⊆ Σ∗ such that

LI =

(

\

i∈I

[φD]−1
i (1)

)

\





[

i∈{1,...,N}\I

[φD]−1
i (1)



 .

It remains to show that each[φD]−1
i (1) ⊆ Σ∗ is a regular language, but this follows immediately

from Theorem 1 and our choice of size functions|·| and‖·‖. Now eachLrk is the union of finitely
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many rk-acceptableLI ’s, andL is the union of theLrk for rk > 0. This means thatL is a finite
Boolean combination of regular languages and is therefore itself regular.

The result above is mainly of theoretical interest. In order to obtain an efficient learning algo-
rithm with generalization bounds, we must stratifyKREG into a regularized kernel family{Kn} and
show that these are efficiently computable (or approximable).

For our purposes,A∈ DFA(n) is a directed multigraph onn labeled vertices (states), with edges
labeled by elements inΣ, and some of the vertices designated as accepting. Note that a given regular
language has infinitely many representations as various DFAs; we make no attempt to minimize
automata or identify isomorphic ones, nor do we exclude degenerate or disconnected ones.

The first order of business is to verify that Assumptions 10 and 11 hold for the present choice
of X andC , with the specified size functions:

Lemma 18 Let

Cn =
n

[

k=1

DFA(k).

Then

(i) There is a sampling algorithm with running time TSAM(C ,n) = O(|Σ|n) that outputs random
automata A∈ Cn, each with probability|Cn|−1

(ii) |Cn| is computable in time O(1)

(iii) for each x∈ X and A∈ DFA(k), the characteristic functionχA(x) = 21{x∈L(A)}−1 is com-
putable in time O(|x|).

Proof Under our definition of DFA(k), each member is specified by a vertex-labeled directed graph.
Equivalently,A∈ DFA(k) is described by the matrixδ ∈ QQ×Σ, whereQ = {1,2, . . . ,k}, and by the
set of accepting statesF ⊆ Q. This immediately implies that

|DFA(k)| = 2kk|Σ|k

and|Cn| = ∑n
k=1 |DFA(k)|; thus (ii) is proved. To sample aδ uniformly from QQ×Σ, we may inde-

pendently draw eachδ(q,σ) uniformly at random fromQ. Since the latter is achievable in constant
time, we have thatδ may be sampled in timeO(|Σ|k). Additionally, for eachq∈ Q we may flip a
fair coin to determine whetherq∈ F ; this amounts to a uniform sampling ofF . We’ve established
thatA∈ DFA(k) may be uniformly sampled in timeO(|Σ|k).

To sample uniformly fromCn, define first the distributionπ on{1, . . . ,n} by

πk =
|DFA(k)|

|Cn|
=

2kk|Σ|k

∑n
i=12i i|Σ|i

.

Sampling ak ∈ {1, . . . ,n} according toπ can be done in timeO(n) and thenA is drawn uniformly
from DFA(k) as described above. The resulting automaton is a uniform draw fromCn, which took
O(|Σ|n) steps to perform; this proves (i).

To prove (iii) we simply recall that an automaton evaluates a string by reading itfrom beginning
to end, each time evolving from state to state as prescribed byδ.
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We now state our main learnability result for regular languages. The theorem below is a direct
consequence of Theorem 15, whereθ(m) :=

⌈

m1/2
⌉

andTSAM(C ,n) = O(n), as per Lemma 18:

Theorem 19 Let L⊆Σ∗ be a regular language and suppose that S⊂Σ∗ is a sequence of m instances
sampled independently from an arbitrary distribution P, and labeled according to L. For anyδ > 0,
there is a randomized algorithmRegLearn, which outputs a classifier̂f : Σ∗ → {−1,1} such that
with probability at least1−δ it achieves a small generalization error,

P{ f̂ (x) 6= χL(x)} ≤ 2
m

(4R(L) log(8em) log(32m)+ log(16m/δ))

for m> max{size(L)2,D(L)/2,R(L)2/8.3×104},

wheresize(L) is the number of states in the smallest automaton recognizing L and D(L), R(L) are
constants depending only on L.

Furthermore,RegLearn has deterministic polynomial complexity, with running time

O
(

ℓmaxm
5/2 log(m/δ)

)

,

whereℓmax := max{|s| : s∈ S}).

8. Empirical Results

In this section we present some preliminary empirical results that provide a proof of concept for our
approach. We performed several types of experiments.

8.1 Proof of Concept, Comparisons

In this basic setup, we draw a sampleSof m= 300 strings in{0,1}∗ uniformly with mean Poisson
length 15 (that is, the string lengthℓ is a Poisson random variable with mean 15 and the stringx is
drawn uniformly from{0,1}ℓ). The target DFAA is uniformly drawn at random from DFA(n) as
described in Lemma 18, where its size is chosen uniformly in the interval 3≤ n≤ 50. This DFA is
then minimized, so that its number of states represents its “true” complexity. The automatonA is
run on the sampleS to produce the label vectorY ∈ {−1,1}S.

For the learning process, we randomly sample a fixed numberT = 1000 of “feature” automata
Ai , from the set DFA(1 : 18) = ∪18

n=1DFA(n), where we choseθ(m) =
√

m (note that 18≈
√

300).
For eachs∈ S, we compute the embedding vectorφ(s) ∈ {0,1}T by

[φ(s)]i = 1{s∈L(Ai)}

and arrange the{φ(s)}s∈S into the columns of theT ×m matrix Φ. Now that(Φ,Y) corresponds to
m labeled points inRT , we can apply some standard classification algorithms:

• SVM finds the maximum-margin hyperplane separating the positive and negative examples

• AdaBoost (Freund and Schapire, 1996) uses the feature automata{Ai : 1 ≤ i ≤ T} as weak
classifiers and combines them into a weighted sum
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Figure 1: Performance plots of different linear threshold classifiers (sample size = 300, number of
features = 1000)

• Regress labels a new stringx∈ {0,1}∗ as follows:

y = sgn(φ(x)(ΦΦ⊺)−1ΦY)

where·⊺ denotes the matrix transpose

as well as two “baseline” classifiers:

• Majority labels every unseen stringx ∈ {0,1}∗ by the majority vote of the training labels,
disregarding the actual training strings:

y = sgn

(

∑
s∈S

Ys

)

• BestFeature picks the single feature automatonAi with the best empirical performance.

A test set of 100 strings is drawn from the same distribution asS, and the performance of each
classifier is compared against the true labels given byA. The results are summarized in Figure 1,
averaged over several hundred trials.

1118



UNIVERSAL REGULAR KERNEL

As expected, since in this experiment the sample size is kept fixed, the performance degrades
with increasing automaton complexity. Furthermore,SVM, AdaBoost andRegress have a similar
performance. While the first two methods are margin driven with guaranteedperformance bounds,
the success ofRegress is somewhat surprising. We currently have no explanation for why such a
seemingly naive approach should work so well. Unsurprisingly,BestFeature andMajority trail
behind the other methods significantly. However, even the latter simplistic approaches perform quite
better than chance on moderately sized automata.

Despite the rather pessimistic impossibility results for learning general automata,our results
seem to indicate that random automata are efficiently learnable. This is in line withthe empirical
observations of Lang (1992) and others that random automata are “easy” to learn in practice.

8.2 Role of Adaptive Feature Set

In the second experiment, we demonstrate the importance of having an adaptive feature set. Here,
we chose a single fixed target DFA on 20 states, and study the generalization performance of two
schemes, one with a fixed number of featuresT, and one whereT is chosen adaptively as a function
of sample size. The training and test strings are sampled according to the samescheme as described
above. The sample sizem varies from 10 to 400; the test set is fixed at 100. In the fixedT scheme
we setT ≡ 500 while in the adaptive oneT = mlogm. As expected, the adaptive scheme eventually
outperforms the fixed one (see Figure 2).

8.3 Case Study: Parity Languages

For I = {i1 < i2 . . . < ik} ⊂ N, define the languageL[I ] ⊂ {0,1}∗ by

L[I ] = {x∈ {0,1}∗ : |x| ≥ ik,xi1 ⊕xi2 ⊕ . . .⊕xik = 1}

where⊕ is addition modulo 2. ThenL[I ] is called aparity language. The following facts are easily
verified

Claim 20 For I ⊂ N and L[I ], we have

(a) the language L[I ] is regular

(b) the minimal DFA accepting L[I ] has sizeΩ(2|I |)

(c) the minimal DFA accepting L[{1,k}] has size2k+1.

The minimal DFA for the language

L[{1,2}] = {x∈ {0,1}∗ : x1⊕x2 = 1}

is shown in Figure 3. We describe the results of some empirical investigations with parity languages.

8.3.1 EXACT RECOVERY

Recall that the learner is presented with a labeled sample(S,Y), which is consistent with some target
languageL0 ⊂ {0,1}∗. PAC learning entails producing a hypothesisL̂ whose predictions on new
strings will be statistically similar to those ofL0. Exact recoveryis a more stringent demand: we
are required to produce a hypothesis that is identical to the target language.
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Figure 2: Performance in the fixed and adaptive settings

Figure 3: The minimal DFA for the parity languageL[{1,2}]
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Note that the output of our algorithm is not an explicit automaton. Instead, weoutput a collection
of DFAs{A1,A2, . . . ,AT} with corresponding weightsαt ∈ R, with the hypothesis languageL̂ given
by

L̂ =

{

x∈ {0,1}∗ :
T

∑
t=1

αt1{x∈L(At)} > 0

}

. (27)

An interesting question is the relation betweenL̂ and the true unknown languageL0. In principle,
the DFA for L̂ can be recovered exactly, using the algorithmic construction given in the proof of
Theorem 17. However, this procedure has exponential complexity inT and is certainly infeasible for
T ∼ 100. Thus, rather than recovering theexactDFA corresponding to({At},{αt}), we implement
Angluin’s algorithm for learning DFAs from membership and equivalence queries (Angluin, 1982).
Testing whether a stringx belongs toL̂ is achievable in timeO(T|x|), so membership queries pose
no problem. As discussed above, testing whether Angluin’s hypothesis languageLANGL is equivalent
to L̂ is infeasible (at least using the brute-force construction; we do not exclude the possibility of
some clever efficient approach). Instead, we only compareLANGL andL̂ on the labeled sample(S,Y).
If χLANGL (x) = Yx for all x∈ S, we declare the two equal; otherwise, the first string on which the two
disagree is fed as a counterexample into Angluin’s algorithm.

We drew a sample of 300 strings in{0,1}∗ uniformly with mean Poisson length 10, as described
in Section 8.1. These strings were labeled consistently withL[{1,2}]. On this labeled sample we ran
the algorithmRegLearn, as defined in Theorems 15, and 19, which outputs the languageL̂, as given
in (27). The hypothesiŝL attained an accuracy of 91% on unseen strings and our adaptation of An-
gluin’s algorithm recoveredL[{1,2}] exactly88% of the time. When this experiment was repeated
on L[{1,3}], whose minimal DFA has 7 states, prediction accuracy ofRegLearn dropped to 86%
while the target automaton was recovered exactly only 1% of the time. It seems that relatively large
sample sizes are needed for exact recovery, though we are not able toquantify (or even conjecture)
a rate at this point.

8.3.2 EMPIRICAL MARGIN

We took the “complete” sampleS= {0,1}≤7 (i.e., |S| = 255) and labeled it withL[{1,k}], for
k = 2,3,4,5. The algorithmRegLearn (as a special case ofUnivLearn) finds the optimal empirical
margin γ̃∗ as defined in (23). We repeated this experiment a few dozen times—since thekernel is
random, the margins obtained are also random. The results are presented inFigure 4, but should
be interpreted with caution. As expected, the margin is decreasing with automaton size (the latter
given by 2k+1, as per Claim 20(c)). It is difficult to discern a trend (polynomial/exponential decay)
from four points, and extending the experiment for moderate-sizedk is computationally expensive.

8.3.3 LONG INPUT STRINGS

One of the claimed advantages of our method is that long training strings do notsignificantly affect
hypothesis complexity. To test this claim empirically, we fixed the target language atL[{1,2}] and
let the mean string lengthλ vary from 10 to 100 in increments of 10. For each value ofλ, we
drew a sampleS of 300 strings in{0,1}∗ uniformly with mean Poisson lengthλ (as described in
Section 8.1) and labeledSconsistently withL[{1,2}]. On this labeled sample we ran the algorithm
RegLearn, and tested its prediction accuracy on 100 new strings. The results are displayed in
Figure 5 and show a graceful degradation of performance. In particular, for strings of mean length
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Figure 4: Empirical margins ofL[{1,k}], for k = 2,3,4,5

100, the learner performs significantly better than chance—even though learning parity languages
from long strings entails high-dimensional feature selection. This example illustrates the tradeoff
between information and computational complexity. If we had unbounded resources, exhaustive
enumeration over all automata would most likely find the correct automaton. It isnot clear how
standard methods, such as the RPNI algorithm (Oncina and Garcia, 1992)would process input
strings of such length.

9. Inherent Limitations

An immediate question is, How does the “margin learning rate”R(·) appearing in Theorems 3 and
15 relate to the target concept complexity (say, as measured by‖·‖)? One might hope for a bound
of the type

R(c) = O(poly(‖c‖)).

Unfortunately, under standard cryptographic assumptions this cannot hold in general, as we
demonstrate for the case of DFAs. For reference, let us state the Discrete Cube Root (DCR) as-
sumption as it appears in Kearns and Vazirani (1997). In what follows,N = pq is ann-bit number
and p,q are randomly chosen primes so that 3 does not divide(p−1)(q−1). The multiplicative
group moduloN is denoted byZ∗

N andx is chosen uniformly random inZ∗
N. DCR states that for

every polynomialr, there is no algorithm with running timer(n) that on inputN andy = x3 modN
outputsx with probability exceeding 1/r(n) (the probability is taken overp, q, x, and the algorithm’s
internal randomization).

The following theorem is implicit in chapters 6 and 7 of Kearns and Vazirani (1997), and is a
combination of results in Pitt and Warmuth (1990) and Kearns and Valiant (1994):
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Figure 5: Prediction accuracy when training on long strings

Theorem 21 For every polynomial p, there is a sequence of distributions Pn on {0,1}n and finite
state automata An, with size(An) = poly(n) such that assuming DCR, there is no algorithm with
running time p(n) that produces a hypothesis that agrees with An on more than1/2+1/p(n) of Pn.

We will refer to the concept-dependent quantityR(c) appearing in theorems 3, 15, and 19 as
the margin-based rateand the parameterD(c) appearing in Theorems 15, and 19 as theintrinsic
dimension. Under the DCR assumption, these quantities cannot both grow polynomially in the
target automaton size forall automata:

Corollary 22 If DCR is true, there is no efficiently computable (or approximable) universal regular
kernel K and polynomial p such that for every finite state automaton A, we havemax{R(A),D(A)}≤
p(size(A)) under K.

Proof We argue by contradiction. SupposeK is an efficiently computable universal regular kernel,
and that for some polynomialp we have the margin-based rateR(A) ≤ p(size(A)) underK, for
every DFAA. Then by Theorem 3, a sample of sizep(size(A))2 suffices to guarantee (with high
probability) the existence of a classifier with polynomially small generalization error, and there is
an efficient algorithm (e.g., SVM) to discover such a classifier. This contradicts Theorem 21. A
similar contradiction is obtained via Theorem 15 ifK is efficiently approximable.

Still focusing on the special case of DFAs, another natural line of inquiryis the relationship
between the true target languageL and the hypothesis languageL̂ induced by our learning algorithm
(note thatL̂ is necessarily regular, by Theorem 17). In particular, it would be desirable to have a
handle on the complexity of the minimal DFA acceptingL̂ in terms of the corresponding minimal
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DFA for L. To be more concrete, suppose we have observed a finite sampleS⊂ Σ∗ with labels
Y ∈ {−1,1}S. We compute a maximum-margin hyperplane (i.e., a set of weightsα ∈ R

S) for this
sample, and consider the resulting language

L(S,α) = {x∈ X : ∑
s∈S

αsK̃(s,x) > 0}

whereK̃ is the approximate kernel constructed by the algorithm of Theorem 15; notethatL(S,α) is
regular. LetA0(S,Y) be the smallest DFA consistent with the labeled sample(S,Y) and letA0(S,α)
denote the smallest DFA recognizingL(S,α). Now approximately recoveringA0(S,α) is feasible
via active learning (see Chapter 8 of Kearns and Vazirani 1997). Given a hyperplane representation
for a regular language one may efficiently query the resulting classifier onany string inx∈ Σ∗ to see
if x ∈ L(S,α). Using membership and equivalence queries, Angluin’s algorithm (Angluin, 1987)
recoversA0(S,α) exactly. If only membership queries are allowed, we can draw enough strings
x ∈ Σ∗ according to a distributionP to simulate an equivalence query efficiently, to arbitraryP-
accuracy. Note thatL(A) andL(A′) can differ by only one (very long) word, while the two automata
may be of exponentially different size. We do not currently have either (a) an efficient method of
exactly recoveringA0(S,α) nor can we claim that (b)

size(A0(S,α)) ≤ poly(size(A0(S,Y)));

note that if both (a) and (b) were true, that would imply P=NP via the Pitt and Warmuth (1993)
hardness of approximation result.

Another limitation of our approach is the possibility of a “Boolean-independent”concept class
C , in which noc∈ C may be expressed as a finite Boolean combination of other concepts. One way
to construct such a concept class is by takingX = N andC = {cp : p is prime}, where

x∈ cp ⇔ x≡ 0 (mod p).

ThatC is Boolean-independent is seen by takingk distinct primes{pi : 1≤ i ≤ k} and an arbitrary
b∈ {0,1}k. Then the number

Nb :=
k

∏
i=1

(pi +bi)

is divisible bypi iff bi = 0; thus the divisibility ofN by p1, p2, . . . , pk−1 gives no information regard-
ing its divisibility by pk. In a Boolean-independent class, no concept may be expressed as afinite
linear combination of other concepts (the contrapositive of this claim is established while proving
the “if” direction of Theorem 17). Alas, Boolean independence is an inevitable feature of nontrivial
concept classes:

Theorem 23 Any infinite concept classC contains an infinite Boolean-independent subset.

Proof SupposeC contains no infinite Boolean-independent subsets. This means that everyc∈ C

may be expressed as a finite Boolean combination of elements{ei} from some finiteE ⊂ C . But
the Boolean closure of a finite collection of sets is finite, soC must be finite.
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The moral of this section is that our approach is certainly vulnerable to the same classical com-
putational hardness reductions as other discrete concept-learning methodologies. One must keep
in mind, however, that the hardness reductions are pessimistic, based on carefully contrived target
concepts and distributions. As noted in Section 8, “typical” or “random” concepts are often much
easier to learn than their worst-case cousins (which is unsurprising given the numerous NP-hard but
easy-on-average problems; see, for example Chvátal and Szemerédi 1988 or Flaxman 2003).

10. Discussion

We have presented a new generic technique for learning general countable concept classes and ap-
plied it to regular languages. Aside from its generality and ease of implementation, our approach
offers certain advantages over existing techniques. Observe that the complexity of the classifier con-
structed in Theorem 15 does not directly depend on the input string lengths.For the case of learning
regular languages, it means that the training string lengths do not affect hypothesis complexity. This
is not the case for the methods surveyed in the Introduction, which build a prefix tree acceptor in
the initial phase. As already mentioned, we make no structural assumptions onthe target automaton
(such as acyclic or nearly so), or on the sampling distribution (such as the sample being “structurally
complete”).

In practice, givenm samples, our approach attempts to fit the labeled data by a linear combi-
nation of concepts with bounded complexity,‖c‖ ≤ θ(m). This method may fail for two possible
reasons: Either we don’t have sufficient number of samples to learn the unknown target concept,
or we got unlucky - this specific concept has a very small margin. Note thatthese sample size
restrictions are inherent also in the SRM framework, for example in Theorem 8.

The experiments presented in Section 8 provide support for our approach. Our basic method
could be easily adapted to learning context-free and other grammars. There are obvious computabil-
ity limitations—thus, if our concept class is all Turing-recognizable languages, the corresponding
universal kernel is provably uncomputable (Blocki, 2007). Modulo these limitations, any concept
class satisfying the efficient sampling and membership evaluation assumptions (Assumptions 10
and 11) is amenable to our approach.

Our work naturally raises some interesting questions—in particular, regarding learning regular
languages. We conclude the paper with a few of them.

1. CanKREG be efficiently computed? Is it a #P-complete problem? Is thereany efficiently
computable universal regular kernel?

2. CanA0(S,α) be efficiently recovered from its hyperplane representation? Can size(A0(S,α))
be nontrivially bounded in terms of size(A0(S,Y))? (The notation is from the previous sec-
tion.)

3. Corollary 22 seems to thwart attempts to bound the margin-based rate for a regular language
in terms of the size of its minimal DFA. Is there a different natural complexity measure for
regular languages which does allow a polynomial bound on the margin-based rate?

4. The intractability results in Theorem 21 are highly pessimistic, in that both the automaton and
the training/testing distribution are contrived to be pathological. What about the complexity
of learning “typical” automata—say, those drawn uniformly from DFA(n)? What can be said
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about the margin distribution of such automata? Similarly, what about their samplemargin,
under some natural class of distributions on the stringsΣ∗?
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