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Abstract

We propose a novel framework for supervised learning ofrdtecconcepts. Since the 1970’s,
the standard computational primitive has been to find thet massistent hypothesis in a given
complexity class. In contrast, in this paper we propose alvasic operation: for each pair of input
instances, count how many concepts of bounded complexitiagoboth of them.

Our approach maps instances to a Hilbert space, whose nsatrituced by a universal kernel
coinciding with our computational primitive, and identffieoncepts with half-spaces. We prove
that all concepts are linearly separable under this mappktence, given a labeled sample and
an oracle for evaluating the universal kernel, we can effijecompute a linear classifier (via
SVM, for example) and use margin bounds to control its gdizatéon error. Even though exact
evaluation of the universal kernel may be infeasible, irioteg natural situations it is efficiently
approximable.

Though our approach is general, our main application is galeg languages. Our approach
presents a substantial departure from current learningdggms and in particular yields a novel
method for learning this fundamental concept class. Urdiisting techniques, we make no struc-
tural assumptions on the corresponding unknown autonfeatting distribution or the complete-
ness of the training set. Instead, given a labeled samplalgorithm outputs a classifier with
guaranteed distribution-free generalization bounds;utokmowledge, the proposed framework is
the only one capable of achieving the latter. Along the wag,teuch upon several fundamental
guestions in complexity, automata, and machine learning.

Keywords: grammar induction, regular language, finite state automat@aximum margin hyper-
plane, kernel approximation

1. Introduction

We begin by describing the basic problem setting and outlining our approach

1.1 Background

Perhaps the most fundamental problem in learning from labeled data isstriezira classifier with
guaranteed small generalization error. Typically, given labeled date #xésts a nested sequence
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of candidate concept classes with increasing complexity. Of coursessifidafrom a rich concept
class can easily achieve a low or even zero training error, but is likelyedibthe data and have a
poor generalization performance. Hence, a major challenge is to chaobgpbthesis class with
appropriate complexity. This issue also arises in classical statistics, wiekadwn as thenodel
selectionproblem (Rissanen, 1989). In Vapnik (1982), the structural risk minitiza SRM)
principle was proposed to solve this problem, by quantifying the bias-wimadeoff between fit
to the data and model complexity, as captured by the VC-dimension.

The basic computational primitive in the SRM framework is finding the most cemsikypoth-
esis in a given concept class. Although SRM resolves the informationeti@problem of model
selection, it offers no method for finding such a hypothesis. Moreéwediscrete concept classes,
finding this hypothesis may be infeasible, as this computational primitive typieailyires solving
a hard combinatorial optimization problem.

An important instance of this scenario is the problem of learning a regulgudaye from labeled
examples. Supervised language learning from examples is one of the mdatrfantal problems
in learning theory, and as such has fascinated philosophers, lingwistputer scientists and math-
ematicians as a quintessential problem of induction. Insofar as the PAQ (Watlant, 1984) is a
natural formalization of learning and the regular languages are the simplefsivial class of for-
mal languages, the vast amount of literature devoted to learning reguipralges is well justified
(see Rivest and Schapire 1987 and de la Higuera 2005 and thenadsitherein).

Applying the standard SRM principle to learning a regular language rexfiriding the smallest
automaton consistent with the given labeled sample. However, it was readizgdn that this task
is computationally very difficult. Finding the smallest automaton consistent with @ secepted
and rejected strings was shown to be NP-complete by Angluin (1978) alut(©3¥8); this was
further strengthened in the hardness of approximation result of Pitt amchMth (1993), where it
was proven that even finding a DFA with a number of states polynomial in thbeuof states of
the minimum solution is NP-complete.

To make matters worse, it turns out that under cryptographic assumpteictads of regular
languages is inherently hard to learn, regardless of representatios, d$suming the average-case
difficulty of the Discrete Cube Root problem, Theorem 7.6 of Kearns aamir&hi (1997) shows
how to construct small automata ove), 1} and distributions ovef0, 1}" for which it is intractable
to discover a hypothesis with error less that2 + 1/p(n), for any fixed polynomiabp. A similar
construction shows that this task is also at least as hard as factoring.

Nevertheless, a number of positive learnability results were obtained wadeus restricted
settings. Trakhtenbrot and Barzdin (1973) showed that the smallesindaaton consistent with
the input data can be learned exactly from a complete sample of all stringsaugiten length.
The worst case complexity of their algorithm is exponential in automaton site, liietter average-
case complexity can be obtained assuming that the topology and the labelsedeated randomly
or even that the topology is selected adversarially (Freund et al., 1993).different model of
learnability—"identification in the limit” (Gold, 1967)—positive results were obgairfor thek-
reversible languages (Angluin, 1982) and subsequential transd(@acina et al., 1993). Some
restricted classes of probabilistic automata such as acyclic probabilistic datae@ also shown
to be efficiently learnable by Ron et al. (1998). In a modified model of R&@, with additional
language complexity constraints, Clark and Thollard (2004) showed & cfgzrobabilistic finite
state automata to be learnable; see also literature review therein.
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In light of the strong negative results mentioned above, the prevailingliganan formal lan-
guage learning has been to make structural regularity assumptions abdairtity of languages
and/or the sampling distribution in question and to employ a state-merging heunstaed, over
the years a number of clever and sophisticated combinatorial approaabedeen proposed for
learning DFAs. Typically, an initial automaton or prefix tree consistent withstimaple is first
created. Then, starting with the trivial partition with one state per equivalelass, classes are
merged while preserving an invariant congruence property. The atdorfearned is obtained by
merging states according to the resulting classes. Thus, the choice ohtireence determines the
algorithm and generalization bounds are obtained from the structurdbriyg assumptions. This
rough summary broadly characterizes the techniques of Angluin (1982jna and Garcia (1992);
Ron et al. (1998); Clark and Thollard (2004) and until recently, thissappto have been the only
general-purpose technique available for learning finite automata.

Finally, despite the fact that the problems of inducing a regular languadespeecifically find-
ing the smallest automaton consistent with a given sample were proven to betitely compu-
tationally hard, in recent years various heuristic search methods hamalbeeloped with reported
considerable success in solving these problems for moderately sized Bdedfor example Lang
(1992), and Oliveira and Silva (2001) and Bugalho and Oliveira (2008 course, these heuris-
tic methods find some automaton consistent with the given sample, but provigEnecalization
bounds on its expected performance on new samples.

1.2 Learning Languages Via Hyperplanes

In this paper we propose a novel framework for learning a regulaukgeg from a finite sample
of positive and negative labeled strings. Rather than attempting to famdgée small consistent
automaton, we embed the strings in a Hilbert space and compute a maximum margiiplage,

which becomes our classifier for new strings. Hence, we effectivelyazda difficult combinatorial

problem into a (high dimensional) geometric one, amenable to efficient te@migging linear
algebra and convex optimization. In particular, our resulting classifier isearioombination of
potentially smaller automata, each of which is typically not consistent with the tepilsta.

Since the advent of Support Vector Machines (SVMs), maximum margisifiexs have flour-
ished in the machine learning community (8t{opf and Smola, 2002). Within the context of gram-
matical inference, the first work to apply this methodology was Kontorovieth. €2006), where a
kernel was used to learn a specific family of regular languages (thewpgeeéestable ones). The
authors embed the set of all strings onto a high-dimensional space ardealemguage induction
by constructing a maximum-margin hyperplane. This hinges on every laaguagamily of inter-
est beindinearly separablainder the embedding, and on the efficient computability of the kernel.
This line of research is continued in Cortes et al. (2007), where lingerakility properties of
rational kernels are investigated.

In this paper, we build upon the approach suggested in Kontorovicl7{2@Mere auniversal
kernel is given that rendesdl regular languages linearly separable. We prove that any linearly sep-
arable language necessarily has a positive margin, so standard masgih-gpeneralization guar-
antees apply. A by-product of this result is a novel characterizatidheofegular languages as
precisely those that are linearly separable under our kernel. A dchwdfathis kernel is that a
brute-force computation is infeasible, while an efficient one is currenttyponyn (and conjectured
not to exist unlessP #P). However, we propose a simple randomized scheme for efficientiynobta
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ing ane-approximation to our universal kernel. We show that the approximatekpreserves the
distances with low distortion, and therefore may be used as a surrogtte fmiginal one. Random
sampling of embedding features to evaluate otherwise intractable kerneis seéirst have been
employed in Kontorovich (2007); Rahimi and Recht (2007) used a similarida somewhat dif-

ferent setting. Also related are the approaches of Garg et al. (26@Balcan et al. (2006), where
classifiers and their generalization performance are computed based-ginmensional random

projections. Note the marked difference between our method and theitstkev@ random subset
of the embedding features as opposed to projecting the embedding spaeerandom subspace;
in fact, the setting we consider does not seem to allow the use of randgectmns. Also, note

that in general, projecting the sample onto a low-dimensional subspacedibggarantee linear
separability; a somewhat delicate margin analysis is needed, as descrietion 5.

From a practical standpoint, our resulting classifier is the sign of a weidjhssk combination
of possibly many random DFAs. The fact that a complicated DFA with manysstadg be written
as a weighted sum of much simpler DFAs is illustrated below and provides addlitiativation for
our approach. Our methodology is intimately connected to boosting (sexdople, Bartlett et al.
1998), since our resulting classifier can also be viewed as a weightedfswaak classifiers—
each being one of the random DFAs. Furthermore, our approach hasigl interpretation in
the structural risk minimization (SRM) framework, where we trade the computdtimroblem of
finding a small consistent hypothesis for the problem of counting the nuofbEmnall concepts
accepting a given instance. The advantage of the latter is that it admits @ergffipproximation
in many cases of interest, including the case of DFAs.

In summary, our proposed algorithm is efficient, simple to implement, comes withgstine-
oretical guarantees, and readily generalizes to many other learning se#ira as context-free
languages. We also present preliminary empirical results as a proofhoépb To our knowl-
edge, the framework we propose is the only one capable of inducingttioted regular languages
from labeled samples, without imposing additional structural assumptions-wtmsidndard cryp-
tographic limitations. Some of the results in this paper first appeared in thereaoné version
(Kontorovich, 2007).

1.3 Outline of Paper

This paper is organized as follows. In Section 2 we set down the notatsbmefinitions used
throughout the paper. The notion of linearly separable concept slasdefined in Section 3, and
a general theorem regarding their existence via a canonical embedgirayesd in Section 4. In
Section 5, the universal kernel oracle is used to obtain an efficiemetrigdearning algorithm, and
in Section 6 an efficient approximation scheme is given for computing thensavkernel, with a
corresponding learning algorithm. In Section 7, these results are applibd tase of the regular
languages, with some experimental results presented in Section 8. Sonemtrineitations of such
kernel-based techniques are discussed in Section 9, and conclutiakseare made in Section 10.

2. Preliminaries

We refer the reader to Kearns and Vazirani (1997) for standamlifeptheoretic definitions such as
instance spacandconcept classWe likewise use standard set-theoretic terminology, \vjtde-
noting set cardinalities antl;., representing the 0-1 truth value of the predicate inside the brackets.
We blur the distinctions between subsets X and binary functions : X — {0,1}; when we wish
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to make the distinction explicit, we will use{at1}-valued characteristic function:

Xe(X) i= 2L (xee) — 1.

Recall that ifA andB are two setsB” represents the collection of all functions frokto B. For
countable seté, we will consider the vector spa@® and often index € R” by elements oA\ as
opposed to by the naturals. For example Xgre R”, we define theiinner productas

xy) = Z\[X]a[y]a,

whenever the latter sum is well-defined. Square brackets may be omittethigandexing notation
for readability.
For anyx € RY, we define itssupportto be the set of its nonzero coordinates:

suppx) = {ieN:x #0}.

We define the quasinorifi|, to be the number of the nonzero coordinates:

IXlo = IsupEx)l,

and the standaré, norm by||x||5 = (x,X).
If V1 andV, are two inner product spaces owrwe define theidirect product Y ® V> to be the
vector space

VioVe = {(Xy):xeVy,yeVp}

which naturally inherits vector addition and scalar multiplication fdgpandV,, and whose inner
product is defined by

(69, (X.y)) = (X)+(ny).

We will also write(x,y) € V1 @V, asx®y. Note that|xy|lo = [IX|lo + [|V/lo-

3. Linearly Separable Concept Classes

Our main results are actually quite general and most of them make no useodpieeties of regular
languages and automata. The only property we use isdhetabilityof the instance spac¥ and
of the concept clas§. Henceforth, X and C are always assumed to be (at most) countable, unless
noted otherwise. Let” be a concept class defined over an instance sfadbus, C C 2*. Any
c € Cis thus a classifier or a function that induceflal} labeling on the instance spage Note
that a concept C X may contain infinitely many instances, and an instaneex may belong to
an infinite number of concepts.

We will say that a conceqt € C is finitely linearly separabléf there exists a mapping: X —
{0,1}" and a weight vectow € RY, both withfinite support that is, ||w]|, < e and ||(X)||, < o
for all x € X, such that

c={xe X :(w,@x)) > 0}.
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The concept clas§ is said to bdinitely linearly separabléf all ¢ € C are finitely linearly separable
under thesamemappinge.

Note that the conditiofj@(-)||, < e is important; otherwise, we could define timbedding by
conceptp: X — {0,1}¢

[@X)]c = Lixeq) cecC
and for any target & C,
We = Lic—c-
This construction trivially ensures that

Wo(X) = Lixeg, xe X,
but may not satisfy|¢(-)|lo < e since certairx € X may belong to an infinite number of concepts.
Similarly, we disallowj|w||, = % due to the algorithmic impossibility of storing infinitely many

numbers and also because it leads to the trivial constructiorematzedding by instanog: X —
{0, 1}*

[OX)]u = Lpeu, ue X,
whereby for any target € C, the corresponding vector

[W]u = ]l{ueé}

ensuregw, @(x)) = Ty Without doing anything interesting or useful.

An additional important reason to insist on finite linear separability is that itresshat for each
c € Cthere is a “separability dimensioily(c) <  such that is linearly separable i§i0, 1}P(© un-
der (in particular, ifw defines a separating hyperplane édghenD(c) < ||w]|,). Now any linearly
separable partition of0, 1}° must necessarily be separable with a strictly positive margin; this is
true on any discrete finite space (but false{1}*). The latter in turn provides generalization
guarantees, as spelled out in Section 5. Finally, any embegdirdpuces a kerneK via

KXy = (@X),®y)) 1)

for x,y € X. The finite support ofp automatically guarantees thidtis everywhere well-defined;
otherwise, additional assumptions are needed.

In light of the discussion above, from now on the only kind of linear sdpkirawe shall
consider is in the strong sense defined above, where both the embeddiagd the hyperplane
vectorw have finite support. The modifiers “countable” (for instance spacesamckpt classes),
“finitely” (for linear separability) and “finite support” (for embeddingsdahyperplanes) will be
implicitly assumed throughout. Since an embeddjngy — {0,1}" induces a kernek as in (1),
and any positive definitekernelK : X2 — R induces an embedding: X — {0,1}* via

ox) = K(x-)
(see Schilkopf and Smola 2002), we shall speak of linear separability byby K interchangeably,
as dictated by convenience.
An immediate question is whether, under our conventions, every conleegtis linearly sep-
arable. A construction of the requisigegiven anyx and ¢ would provide a positive answer; an
example ofx and ¢ for which no such embedding exists would resolve the question negatively.

1. Inthe sense that for any finite §e¢ € X : 1 <i < m}, themx mmatrixG = (g;jj) given bygij = K(x;,X;j) is always
positive definite
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4. Every Concept ClassisLinearly Separable

The question raised in Section 3 turns out to have an affirmative answee, prove in the following
theorem.

Theorem 1 Every countable concept clagsover a countable instance spadeis finitely linearly
separable.

Proof We present a constructive proof, by describing an explicit mapping — {0, 1} under
which all conceptg € C are finitely linearly separable. Recall that both the embedding by con-
cept and embedding by instance, described in the previous sectioeredrall concepts linearly
separable, but were possibly not finitely supported. Hence, the “tiickur construction is the
introduction ofsize functionshat measure theomplexityof both individual instances and individ-
ual concepts, thus providing a notion of capacity control and adagdarization, and leading to
finite separability.

We thus begin by defining the notion ofie function f 4 — N, mapping any countable set
A4 to the naturals. We require a size function to have finite level sets:

[f71(n)| < o,  VneN.

In words, f assigns at most finitely many elements®fo any fixed size. Any countabld has
such a size function (in fact, there are infinitely many size functionglpnWe denote by-| and
||I-|| some fixed choices of size functions @rand C, respectively.

Recall that our goal is to construct an embeddpgd — {0, 1} with ||@(x)||, < o for all x € X
such that for alt € € there is av = w(c) € RY with ||w||, <  such that

c={xe X :(w,@Xx)) > 0}.

We will construct the requisiteanonical embeddingp as the direct product of two auxiliary
embeddingsy andp,
@(x) = a(x) @B(x). )
First, we define thembedding by instanae: X — {0,1}* by

X))y = L=, ue.x,;

obviously, ||a(x)|lo = 1 for all x € X (recall our vector-indexing conventions, set down in Section
2). Second, using the size function as notion of complexity, we defiegudarized embedding by
concep: X — {0,1}€ by

BX¥]e = Tixeqylyjej<iys  CEC 3)

since size functions have finite level sets, in contrast to the standard dimipéyg concept, we have
IB(X)||lg < o for anyx € X.

We now show that the embedding (2) renders all concepgts” finitely linearly separable, by
explicitly constructing hyperplane vector§ € R* andw? € RC corresponding to the mappings
andp, respectively. To this end, it is helpful to keep in mind the dual role¥ ahdC.

Pick anyc’e C. Since the embedding involved no regularization, we introduce a complexity
restriction in the corresponding hyperplane veettre R* as follows

W = Lpeglqu<pey,  UEX
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since size functions have finite level sets, we hiavg(|, < o. Thus,

Wha(x)) = % Wa(y

uex

= Y LjeeyLqu<jen Lix=u}
uex
= IyxeeyLyxi<|ie)- 4)

For the second embeddifly no further regularization is needed, and we define its corresponding
hyperplane vecton® € RC by

W = 1g, CEC

note thad\vaHO =1. Now

(W.800) = 3 WPlBOe

ceC

= > LiegLixectLyje)<ix}
ceC

= DixeepLyx>(e))- 5)

Since@is the direct product of the two embeddingsind 3, the corresponding hyperplane is
the direct product of the two hyperplanes:

w=w"@wk.
Note that by construction, botpandw are finite:
90 [lo = [l (x)llo+ [IB(X)llo < e and [[wljo= [w[|o+[[WF[|o < eo.
Combining (4) and (5), we get

W) = W a(x)+(wh,Bx)
= LixeerLix<ent + Lixeer L{ix>|iel}
= ]l{xeé}
which shows thaiv is indeed a linear separator (with finite support)dor ~ |

Next, we observe that linearly separable concepts may be describetitély inany instances,
via the following “representer theorem”. Note that this result holdaifiyrseparating embedding—
not just the canonical one constructed in Theorem 1.

Theorem 2 If a concept clasg” over an instance spack is linearly separable undep (equiva-
lently, under the induced kernel(Ky) = (@(x),®(y))), there are s€ X anda; e R,i=1,...,m,
such that

cC = {xex:iaiK(s,x) > O}.
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Proof Suppose a concept C is linearly separable with vecte, thatis,c= {x € X : (w,¢(x)) >
0}. It follows thatc is also separable under the finite dimensional embedgingx — {0,1}°
whereD = max{i : w; # 0} andgp is the truncation ofp by D:

(] = [ex)]i, i=1...,D.
Define the equivalence relatiesap on X via
X=py < @(X) =a(y)

and notice thatsp partitionsX into finitely many equivalence classes. kgixo,...,Xn be chosen
arbitrarily, one from each equivalence class, and dsfine xc(X). Letw be the maximum-margin
hyperplane for the labeled sam(gle, yi)" ; (see (9) for the definition of margin). This construction
ensures thatv is a linear separator far. By the representer theorem of Kimeldorf and Wahba
(1971), it follows thatv admits a representation of the form

m
W= aie(x),
2,
and the claim follows. ]

A few remarks regarding Theorem 1 are in order. First, note that thetrmtion of the canon-
ical embedding depends on the choice of the size functi¢rand ||-|| on X and C. These size
functions induce a natural notion of complexity for instancesX and concepts € C. Hence, our
construction has analogies to various settings where classifier complexiadeatively grow with
the sample, such as structural risk minimization (SRM) in machine learning i/al®82), and
minimum description length (MDL) and other information theoretic criteria in stati§Rcssanen,
1989). We shall have more to say about SRM in particular, below.

Observe that any nondecreasing transformatioN — N of a size function-| produces another
valid size functionx|' := f(|x|). These affect the embedding in the following way. Consider a
canonical embeddinginduced by(||,]|-||), and consider a transformed embeddpgnduced by
(F(|I-]), I-ID- If fis a very rapidly growing function then the truncation in (3) becomes intffec
and in the limit of f(-) = o, ¢ essentially becomes a pure embedding by concept. In the other
extreme of a very slowly increasinig the truncation in (3) becomes too restrictive. In the limit of
f(-) = const,¢ effectively becomes an embedding by instance.

A final note is that the separability result does not preclude the trivisas@ewhere the only
coordinate separating a concept is the concept itself. To parse th@tastent, recall that Theorem
1 states that under the canonical embedding, for each cooeegtthere is a finiteN = N(c) such
thatc is separable if0, 1}N. However, it may be the case that the sepanatisrtrivial, in the sense
thatw; = 1(_,. In other words, the separability result implies that for eaeh( there is a finite
collection of{ci € C: ||ci|| < ||c||,1 < i < m} with coefficientso; € R such that

m

c = ‘;aici, (6)

where the relation above is symbolic shorthand for the statement that

m
c = {xex: Zlaijl{xeq} > 0}.
i=
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When a relation of type (6) holds, we say thais linearly decomposabl@to the conceptgc;}.

No claims of uniqueness are made, and certainly any comcisprivially decomposable into the
singleton{c}. However, in many situations, concepts indeed decompose. As a simplelexamp
define the concemt;o to be the set of all binary numbers, written as string§Qni}*, divisible by

ten, and define;, c; andcs analogously. Then it is straightforward to verify that

Ci0=C2+C5—Cy,

in the sense of (6), since a number is divisible by 10 iff it is divisible by bodim@ 5.

As far as implications for learnability, Theorem 1 is most relevant when tlgetaoncept is
linearly decomposable intosanallcollection ofsimplerconcepts, as illustrated in the last example.
In such cases, our approach can offer a substantial advantagex@ateng methods.

We may formalize the latter observation as a “universal learnability” theorem:

Theorem 3 Let C be a concept class ovef, both countable, with size functiofig| and|-|, respec-
tively. Define the family of kernels:
Ka(xy) = Z Lixecy Liyecy (7)

clc[<n

forne N. Then, given an oracle for computing Kve can efficiently learg from labeled examples.

More explicitly, let o= C be afixed concept, and let S be a sequence of m instances independently
sampled from an arbitrary distribution P, and labeled according to c.

There is an efficient algorithridni vLear n, which inputs a labeled sample and outputs a classi-
fier f : X — {—1,1} which, with probability at least — d, achieves a small generalization error:

PLF(X #X:() < 2 (Ric)log(Bemlog(3am) +log(8m/3)). form>6-(|c]).
(8)

where Rc) does not depend on the distribution P éh@* : N — N are fixed monotone increasing
functions with polynomial growth.

We defer the proof of Theorem 3 to Section 5, as it requires some prelymiedinitions and
results. The regularization functidhis chosen by the learner and represents his desired tradeoff
between computational complexity and generalization error; this is furtheidated in Remark 7.

We stress that the size of the target conclgt, is unknown to the learner—otherwise regularization
would not be necessary. Finally, Remarks 4 and 5 below point out thérivaal nature of Theorem
3; we are not aware of any way to obtain it as an immediate corollary of kmesuits.

Remark 4 We emphasize that the bound in Theorem 3 is distribution-free and recallathat
distribution-dependent “learning” bound is trivial to obtain. Defirfeto be the rote memorizer:
f(x) = y(x) if the example x appears in the sample S with label y &l = —1 otherwise. In this
case, we have

P{f(x) # Xc(X)} <P(x¢ S =P(X\9),

and the latter quantity clearly tends ®as m— o. All this bound says is that when we have
observed a large enough portion of the world, we can be sure that testsexamples will simply
be recycled training examples. However, for any concept containingtelfi many instances, one
can find an adversarial distribution P so thaf.R\ S) will tend to zero arbitrarily slowly.
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Remark 5 The dependence of the required number of samples on the unknowepta in the
generalization bound (8) is inevitable wheneyEhas infinite VC-dimension. As a simple example,
note that to learn an n-state DFA, one needs to observe at least n steahigaét one string ending
at each state).

5. Margin Bounds

In this section, we recall some classic margin bounds and their implicationsafoialality. LetC
be a concept class over the instance spacBuppose there is some family of embeddipgsx —
{0,1}Ns; at this point, we assume nothing about the relationship betygnandC. LetSc X be
a finite sample with labe € {—1,1}S consistent with somec ¢, thatis,Yy = X¢(X) = 2T fxeqy —1
forallxe S

We define thesample margirof (SY) undergy as follows:

Ya(SY) = sup minY(w,@u(x)) (9)

WeB(Ng) X€S

whereB(k) := {x € R¥: ||x||, < 1}. Thesample radiu®f Sundergy is defined to be

Pa(S) = max|qa(x)ll-
Analogously, define thmtrinsic marginof c undergy to be

ya(c) = sup inf Xc(X) (W, @u(x))

weB(Ng) XEX

and theradiusof ¢4 to be

Pd = sup|@X)ll,-

xXeXx

The case whergy or yq is negative is not excluded; it arises whayfails to separate the given
concept or sample. Note that since #®1C B, we have ink f > infg f and sup f < supg; f, the
relationSC X implies that

Ya(SY) >va(c) and pa(S) < pa. (10)
The following theorem is a slight rewording of Shawe-Taylor et al. (199%&orem 4.5):

Theorem 6 (Shawe-Taylor et al. 1998) Suppose m instances are drawn independently from a dis-
tribution whose support is contained in a ball & centered at the origin, of radiup. If we
succeed in correctly classifying all of them by a hyperplane through tiggnowvith marginy, then

with confidencéd — & the generalization error will be bounded from above by

2 (Riog(8enyR) log(32m) + log(8m/5)). (11)

where R=R(p,y) = [577%/y?|.
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We are now in a position to prove the “universal learnability” theorem:
Proof [of Theorem 3] Recall thatSY) is our finite labeled sample consistent with some unknown
target concept. For eactn € N, let@, : X — {0,1}" be the embedding associated wif defined
in (7), where
No=|Gil = [{ce C:[lc| <n}].

Let the marginsy(c), Yn(SY) and radiip,, pn(S) be as defined above. Define thermalized

margins
_ Yn(©) A _ h(SY)
An(C) = on and An(SY):= R

Additionally, defineng = np(c) to be the smallest for which K, linearly separates:

no(c) :==min{n e N:y,(c) > 0} (12)
and define
Do(c) = Ano(c)(c)'

The algorithmuUni vLear n requires some fixed monotone increasing funconN — N, as
mentioned in the statement of the theorem (for a concrete choice, one may(take: [ml/zb.
Recall the theorem’s condition that> 6*(||c||) which (by Theorem 1) implies th#ty ) indeed
separates the unknown conceptThe algorithm proceeds by computing the normalized sample
marginsAn(SY) forn=1,...,8(m) and sets

A.(SY):=max{A,(SY):1<n<8(m), §(SY) >0}

with corresponding, € {1,...,8(m)}. The conditionm > 6-1(||c||) ensures that the latter is well
defined.

By (10) we have thaf,(S,Y) > An(c) for all {n e N: yy(c) > 0}. In addition, the condition
m> 6-1(||c||) combined with Theorem 1 ensure that

no(c) < c]| < 8(m).
Therefore, we have
A.(SY) = Bo(0). (13)

The classifierf : X — {—1,1} which Uni vLear n outputs is the maximum-margin hyperplane
under the embedding,,. It follows from Theorem 6 that the bound in (8) holds wiic) =
|577/10(c)?]. Note that in (8) we have opted for a slightly coarser but simpler bounds.

[ |

Remark 7 To explain the role of the functidi{m), let us attempt to simplify the algorithni vLear n.
Recall the definition of giin (12), and definéy to be the first n for which we perfectly classify the
training set, that isfip = min,{yn(SY) > 0} and letAo(SY) := D, (SY). If it were the case that

Ao(SY) > Do(0), (14)
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then the maximum-margin classifiércorresponding taps, would satisfy the desired bound in (8).
Unfortunately, the assertion in (14) is generally false, since it is possible $onall sample to be
separable under Kwith n < ng and marginyn(S)Y) < yn,(c). Because of this potentially very
small margin, stopping prematurely at this n would render our theorene faleere seems to be no
way around requiring the learner to try everyaN. To make the algorithm terminate in finite time
for each given sample, we cut off the search at B(m). Note that the theorem is only claimed
to hold for sufficiently large sample sizes (namely>r@—(||c||))—but this is a feature of many
bounds, especially where the complexity of the target concept is unkfebwTheorem 8). Since
0 is a monotonically increasing function, we are guaranteed that eventuallyaimple size m will
attain 6~1(|/c||), which is what the claim in (13) hinges upon.8lgrows too quickly (sayd(-) =
Q(exp(+))), the algorithm will take too long to run. & grows too slowly (sa(-) = O(log(-))), the
generalization bound will only hold for huge sample sizes. The suggestedfio(m) = [m'/2])
seems a reasonable compromise.

Theorem 3 has a natural interpretation in the structural risk minimization (SRivijework
(Vapnik, 1982). Let us quote a well-known result, as it appears in 8hkaylor et al. (1996); for
a detailed discussion of VC-dimension, see Vapnik’'s books (Vapnik2,18898) or any standard
reference on learning theory such as Kearns and Vazirani (1997).

Theorem 8 (Shawe-Taylor et al. 1996) Let H, i = 1,2,... be a sequence of hypothesis classes
mappingX to {0,1} such thatvCdim(H;) =i and let P be a probability distribution oxx. Let py

be any set of positive numbers satisfyf# ; po = 1. With probabilityl — & over m independent
examples drawn according to P, for any d for which the learner finds aistant hypothesis h in
Hg, the generalization error of h is bounded above by

g(m,d,d) = % (dlog (sz> +log <pld) +log (g)) ,

As a concrete choice gdy, one may always takpq = 2-9. Viewing Theorems 3 and 8 through
a computational lens, the two approaches may be contrasted by their “coiomait@rimitives”.
The SRM approach requires one to find a consistent hypothesis inragweplexity class (if one
exists). Whenever the latter problem is efficiently solvable, SRM is quite setiis/ as a learning
paradigm. In many interesting cases, however, the latter problem is inteetab is the case
for DFAs, for example (see Introduction). Our approach in Theoremt8 consider a different
computational primitive—namely, the generic kernel

provided m> d.

Kn(x,y) = {ce C: el <nxecyecy.

The margin-based bound may be significantly sharper than the generidoB&M since it is sen-

sitive to the target concept and its intrinsic margin. Additionally, the SRM basimibt directly

applicable to our setting since the VC-dimension of linear combinations of furscti@y grow lin-

early with the number of terms (Anthony and Bartlett, 1999). The rol€ofTheorem 3 and pq }

in Theorem 8 are analogous in that both encode a prior belief regargpoghesis complexity.
The performance dini vLear n is readily quantified:
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Corollary 9 If a labeled sample of size m is consistent with some concepf,cand there is an
oracle for computing K(x,y) in time Q(1), then there is an algorithm with running time?8(m))
that achieves, with probability — 8, a generalization error of at most

% (R(c)log(8em) log(32m) + log(8m/3)) ,
form>6-1(||c|]).

Proof Using the oracle, thath Gram matrix, defined byGn)i; = Kn(X;,X;), for i, X € S, is com-
putable in timeO(n?). For a given Gram matrix, the margin may be computed in @) by a
primal algorithm such as Pegasos (Shalev-Shwartz et al., 2007). TaeedifGram matrices and
margins are compute@{m) times. [

Of course, at this point we have simply traded the generally intractabléepnofif finding a
consistenh € Hy for the problem of evaluating,(x,y). The latter is unlikely to have an efficient
solution in general, and may well be intractable in many cases of interest.vidows we shall see
below, under natural assumptioiis admits an efficient stochastic approximati§nand Corollary
9 has a suitable extension in terms<of

6. Approximating K,

In the previous section we showed that the generic kernel faigilyenders all concepts € C
linearly separable. However, exact evaluation of this kernel involvestimmation in (7), which
may contain a super-exponential number of terms. For example, a naagrdlisction on DFAs
is the number of states. Since the VC-dimension-sfate DFAs i®9(nlogn) (Ishigami and Tani,
1997), there are2"'°9" such concepts. Hence, a direct brute-force evaluation of the porrding
Kn is out of the question. Though we consider the complexity of compuintpr DFAs to be a
likely candidate for #P-complete, we have no proof of this; there is alsodksiljility that some
symmetry in the problem will enable a clever efficient computation.

Instead, we propose an efficient randomized approximation to the géqeritll we require
are oracles for computing;,| and for uniform sampling frona,, where

Gri={ceC:|c| <n}: (15)
Assumption 10

(i) There is a sampling algorithm with running timg,(C,n) = O(poly(n)) that outputs ran-
dom concepts € G, each with probability|G,|~. Additionally, k distinct concepts may be
drawn (i.e., without replacement) in expected tim&Qu(C,n)).

(i) There is an algorithm that computes;|, in time Q1).

We make an additional assumption regarding the time complexity of instanceftonembership
gueries:

Assumption 11 For each xc X and ce C, the characteristic functiofc(X) = 21 jycc; — 1is com-
putable in time @|x]).
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Note that sampling without replacement is a mild condition. Collisions are likely tarogben
sampling from small sets, in which case one could simply enumerate the elements \When
the latter is large, however, uniform sampling is rather unlikely to generdiisiaos, and various
hashing schemes can be employed to ensure this in practice.

For the purpose of approximating the kernel, it is convenient to normalizedilaws:

Kn(%Y) := |G| " Kn(%,Y), (16)

Note that the margin bounds of Section 5 are invariant under rescaling kéthel by any constant.
Having stated our basic assumptions, we are ready to prove some resdtéirst one deals
with efficient approximation of the generic kernel:

Theorem 12 Let SC X be a sample of size m and the normalized generic kétnoke defined as
in (16). Then, for anY < €,0 < 1, there is a randomized algorithm with deterministic running time

T = o Zruicnion(F)).

that produces a (random) kerni}, with the following properties
(a) Ky is a positive semidefinite function off
(b)
E[Ra(xy)] = Kn(xY)
forallx,ye X
(c) with probability at leastl — §,
|K_n(XaY) - Kn(xay)‘ < g
forallx,y e S,

(d) forall x,y € X, Kq(x,y) is computable in deterministic time

0( 10g () (K +1xD)

Proof The approximation algorithm amounts to samplihgonceptsjc; : 1 <i < T} uniformly
at random (without replacement) frogy, where Assumption 10 ensures that the latter sampling
scheme is computationally feasible.

The random concepfs;; : 1 <i < T} are used to define the random kerKel

N 17t
Kn(X, y) = ? Zl ]]‘{XECi} ]]'{VECi}7 XyeX. (17)
i=

SinceK, is constructed as a (semi) inner product, it is non-negative but still riothgtpositive
definite, as it may fail to separate distinct points. Hence, (a) is proved.
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To prove (b), fixx,y € X and defineDy, C G, by

this is the set of thosec C with ||c|| < nwhich contain bothx andy. Since anyc drawn uniformly
from G, contains bothx andy with probability |Dyy| / | Gn| it follows that the approximate kernel

5 17
Kn(X,y) = T -Zl]l{ciEny} (18)

is an unbiased estimator for

Dyl
|Gal’

Ka(xY) =[Gl Y Lyepyy =

celn

this proves (b).
Our arguments show that the random variab{gieDXy} has a Bernoulli distribution with mean

Kn(x,y). Hence, applying Hoeffding's bound (Hoeffding, 1963), which atsids for variables
sampled without replacement, to (18) yields

P{|Ka(x,y) —Kn(x,y)| > €} < 2exp—2T€?). (19)

The latter can be inverted to make the claimin (c) hold for a givgavheneve > (2e?)~tlog(2/9).
Applying the union bound to (19), we have established (c), with

T = lIog(mZer).

2¢2 0
Finally, (d) holds by Assumptions 10 and 11. |
Our next observation is that perturbing a kernel pointwise by a small eelditror preserves

linear separability:

Theorem 13 Let K: X2 — R be a kernel, and & X be a finite sample with labels & {—1,1}5.
Assume thafS)Y) is separable under the kernel K with margjirthat is,

sup min\(iS W, 9(s))

y>0
werl 5SS [|w|, ’

where@is the embedding associated with K. Létd€ another kernel, which is uniformly close to
KonS:

K(st)—K'(st)| <e VstesS (20)
Then, fore < y?, the sampléS Y) is also separable under’Kwith a positive margin.
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Proof Let f(x) be the maximum-margin hyperplane classifier corresponding to the trainigy set
under the kerndgK. By the representer theorem, it can written as

f(x) = (@(x),w) = Z“SK(X’ S).
SS
Since(S)Y) is linearly separablef (x) satisfies the constraint
Ysf(s) > 1 Vse S
By the KKT conditions (Scélkopf and Smola, 2002), its margin is given by
y? = > los|.
S
We now consider the following linear classifier, obtained by replakinmy K’:
f'(x) = $ ask’(x,s).
2
By (20), for eaclx,se€ S
K'(x,8) = K(X,S) +€Nxs
where|nys| < 1. Hence, foralk € S,
f'(x) = f(X) +€Y NxsOs.
Sgs ,

Therefore,
€
Ysf'(s) >1—eF |ag| =1— —,
sf'(s) > Z |ats] ¥
which shows thaf’ is a linear separator fqS,Y) as long ag < y°. |

The next result quantifies the amount by which the margin may shrink whapmoximate
kernel is constructed using a random subset of the features:

Theorem 14 Let a labeled sampléS,Y) be given, with $- X. Let the kernel K be induced by the
embeddingp: X — {0,1}F, where F is a finite feature set, as follows:

1
K(S7t) = ﬁ <(p(S)7(p(t)> :
Consider a feature subset E F. Defineq : X — {0,1}F' to be the restriction ofto {0,1}F and
K’ to be corresponding kernel:
1
K/(Svt) = ﬁ <(d(5),(d(t)> :

Suppose thatSY) is linearly separable under K with margin> 0. If K’ is e-close to K on S in
the sense of (20) with < y?, then(S,Y) is linearly separable under the kernel Kvith marginy

bounded from below by
F’I( 8)
>—(y—-).
VEE
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Proof Let f : X — R be the maximum-margin separator unéer
1
f(X) =Y asK(x,8) ==Y as(@(x),®(s)) = (W, @(X)) .
(x) S;s( ) |F‘sg$s<() (S)) = (W, @(X))

Let us definef’ as f with K replaced byK’:

00 = 3 ask(c) = = > a5(900.9(6)

By Theorem 13 we have thdt is a linear separator fqSY), satisfying
€
Ysf'(s) >1-eSas=1——, seS
S ( )_ Z S y2

Observe that

wherew|., is the restriction ofv to RF'. Thus, letting
F| e\ *
W= 1Pl ( — ) W|e,
Fite) Ve

f7(x) 1= (W,¢@(x))

linearly separateS and satisfies and;f”(s) > 1 forse S Since the margin attained by the hyper-
planew is given by ¥/ ||w|| (Schblkopf and Smola, 2002), the claim follows. |

we have that

Our final result for this section—and perhaps the highlight of the pajsethe following “ap-
proximate” version of Corollary 9:

Theorem 15 Let C be a concept class ovef. Let SC X be a sequence of m instances sampled
independently from an arbitrary distribution P, and labeled according toesanknown & C. For
anyo > 0, there is a randomized algorithAppr oxUni vLear n, which outputs a classifief : X —
{—1,1} such that with probability at least— & it achieves a small generalization error,

P{f(x) #Xc(X)} < %(4R(C) log(8em) log(32m) + log(16m/3)) (21)
for
m> max{81(||c||),D(c)/2,R(c)?/8.4 x 10*}, (22)

where0 < D(c), R(c) < o are constants that depend only on ¢, &dN — N is discussed in Remark
7.
Furthermore Appr oxUni vLear n has deterministic polynomial complexity, with running time

O (me(m) Iog(m/5) (gmaxmz + TSAM(C? 9(”‘)))) )

wherelmax = max{|s| : s€ S}).
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Proof Let(SY) denote a training set consistingmfsamples, labeled consistently with the target
conceptt € C. We define

no = min{ne N:yy(c) > 0},
yO(C) = ynO(C),
and
R(c) = [577/y0(c)?],
D(c) = [Gul

where(, is defined in (15) as the set of concepts with complexity at most

Given the training sefSY), our algorithm construct8(m) different classifiers. According to
Theorem 12, each of these classifiers is constructed as follows: £ar £ 6(m), we randomly
sampleT features, construct the respective approximate kernel, and calculaésui§ing max-
margin hyperplane, with sample mardi(S Y). Finally, our algorithm chooses the kernel with the
largest empirical margin

Vi :=max{yn(SY):1<n<68(m),¥(SY) > 0}. (23)

If the latter set is empty, we leaye undefined (however, our analysis below will show that under
the conditions of the theorem, this is a highly unlikely event).
To prove the theorem, we need to show that with high probability,

Y. = Constx yo(c). (24)

If this equation holds (whp), then the standard margin bound (11) ptbeetheorem. There are
two ways in which the theorem’s generalization bound (21) may fail to hole firkt is due to a
particularly unlucky sample whereas the second is due to a bad kermekapgtion so that (24)
does not hold. Hence, we split the confidence paranteter that each of these kinds of failure
occurs with probability at mos}/2.

The first step is to note that by definitign > {,,. The next step is to lower bound the approx-
imate sample margin, constructed with a random approximate kernel, in termstofie¢heample
margin corresponding to the exact kernel. Such a bound is providetdyrégm 14:

min{T,D(c)}
D(c)

Note that by condition (22) we have
m > 4/yo(0)* > 4/Fn(SY)%, (25)

sinceyn, (SY) > yo(c), as in (10).
Furthermore, in constructing the approximate kernels, we set the pretistoe = 1/,/m.
This condition, combined with (25) gives

Too(SY) > (wsw -

\“/no(SSY)> ’

7> 1min{T,D(c)}

N 1min{T,D(c)}
* 2 D(C) yl’lo(va)>7

= 2“‘1565“‘*WKC»
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The last step is to bound the factor multiplyigg(c) in the last equation. To this end, recall that
according to Theorem 12, under the condittoa 1/,/m, the number of random concegtsdrawn
from G, is

T 1I m+m _m m+m
- 252°g< 5/2 >_2°g< 5/2 >>m

Combining this with (22), we have
T>m>D(c)/2.

Hencey. > yo(c)/4, and applying (11) proves the generalization bound.

It remains to analyze the complexity Appr oxUni vLearn. The main loop is execute@(m)
times. To compute each approximate kernel we sar@gs?log(m/d)) concepts from¢,, and
evaluate the summation in (17) for eaxly € S. Sincee = m~1/2, the nth Gram matrix is com-
putable in timeO (mlog(m/3) (¢max¥ + Tsaw(C,N))). For a given Gram matrix, the margin may be
computed in timé(m) by a primal algorithm such as Pegasos (Shalev-Shwartz et al., 200@h wh
gets absorbed into the precedi@gn>8(m)log(m)) bound.

|

Remark 16 For 8(m) = [m!/2], Appr oxUni vLear n has a running time of @n*°logm). This may

be brought down to AT for anya > 0, at the expense of increased sample complexity in (21), by
choosinge = m P with B < 1. The role ofd(m) in the tradeoff between running time and sample
complexity is discussed in Remarkefm), taken to be m'/2 in the proof above, has an analogous
role.

7. Universal Regular Kernel, New Characterization of Regular Languages

Having developed some general tools for learning countable concepeslave now apply these to
regular languages. For the remainder of the paper, we follow starmfandiflanguage terminology.
Thus,Z will denote a fixed finite alphabet anxd is the free monoid oveX. Its elements are called
strings (or wordg and the length ok € X* is denoted bylx|. The latter will be our default size
function onZ*.

Our definition of a Deterministic Finite-state Automaton (DFA) is a slight modificatiothe
standard one. We define the latter to be a tépte (%, Q,F, ) where

e X is afinite alphabet

e Q=1{1,2,...,n} is afinite set of states

e F C Qis the set of the accepting states

e 0:Qx 2 — Qis the deterministic transition function.

The only difference between our definition and the common one is that weheakeitial stategg
to be fixed aigp = 1, while most authors allow it to be an arbitraqy € Q. We writeL(A) for the
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language accepted by the automafgrand denote the number of statesAirby sizeA) or ||A|,
interchangeably.

Recall that a languadeC Z* is regularif and only if it is recognized by some DFA. Lewis and
Papadimitriou (1981) and Sipser (2005) are among the standard introgtetts on automata and
formal languages.

In order to apply our results to regular languages, we begin by definegntance space
X = X* and concept class = Un>1 DFA(n), where DFAN) is the set of all DFAs om states; both
are countable. Once the size functionsJorand C have been specified, Theorem 1 furnishes an
embeddingp: X — {0, 1}" that renders all regular languages linearly separable. It is instruotive
verify that the construction of the canonical embedding yields the followarged, which we call
auniversal regular kernel

KREG(va) = <(p(x),(p(y)>
min{|x[,y[}
= Loyt Y > LpxermyLiyermy)-
n=1  AeDFA(n)
In fact, we obtain a novel characterization of the regular languages:

Theorem 17 A language LC >* is regular if and only if there exists a finite set of stringsc&*
with corresponding weights; € R, i = 1,...,m such that

L = {x ex*: iaiKREG(s,x) > 0} ) (26)

Proof Theorem 1 provides an embeddipg =* — {0,1}" such that for any regular language
there is aD € N so that the setgp(L) and@p(Z*\ L) are separable by a hyperplane{ia, 1}°,
whereqp is the restriction ofpto {0,1}°. Thus, by Theorem 2, (26) holds for some finite collection
of stringss and weightsa;. Conversely, suppose thatC >* is expressible as in (26). Writing
w= 5", aig(x) € RP, consider the functiorf : * — R defined by

D
(¥ = 3 wileo ()
2

and note that = {x: f(x) > 0}. Observe thaf can only take on finitely many real valués : k =
1,...,k¢}. LetL,, C Z* be defined by
er == f_l(rk)

A subsetl C {1,2,...,N} is said to berg-acceptableaf Y, wi = rx. Any suchry-acceptable set
corresponds to a set of stringsC Z* such that

L = (ﬂ[%].1(1)>\< U [%].1(1))-
icl {1, N}l

It remains to show that eadpp); (1) C =* is a regular language, but this follows immediately
from Theorem 1 and our choice of size functigisand||-||. Now eachL,, is the union of finitely
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many r-acceptabld.’s, andL is the union of the.;, for ry > 0. This means thakt is a finite
Boolean combination of regular languages and is therefore itself regular. |

The result above is mainly of theoretical interest. In order to obtain anegffitearning algo-
rithm with generalization bounds, we must stratfy:. into a regularized kernel familyK,} and
show that these are efficiently computable (or approximable).

For our purposes) € DFA(n) is a directed multigraph omlabeled vertices (states), with edges
labeled by elements B, and some of the vertices designated as accepting. Note that a givéar regu
language has infinitely many representations as various DFAs; we makigengpaito minimize
automata or identify isomorphic ones, nor do we exclude degenerate ondestted ones.

The first order of business is to verify that Assumptions 10 and 11 holthéopresent choice
of X andC, with the specified size functions:

Lemma 18 Let N
Gh=|J DFA(K).
k=1
Then

(i) There is a sampling algorithm with running timeg,J(C,n) = O(|Z|n) that outputs random
automata Ac (;,, each with probability G,| =1

(i) |G| is computable in time )

(i) for each xe X and Ac DFA(k), the characteristic functioga(x) = 21 (xc (a); — 1 is com-
putable in time Q|x|).

Proof Under our definition of DFAK), each member is specified by a vertex-labeled directed graph.
Equivalently,A € DFA(K) is described by the matrixc Q®*%, whereQ = {1,2,...,k}, and by the
set of accepting statésC Q. This immediately implies that

|DFA(K)| = 2kl

and|Gn| = SR, IDFA(K)|; thus (i) is proved. To sample&uniformly from Q9*%, we may inde-
pendently draw eacd(q, o) uniformly at random fron@Q. Since the latter is achievable in constant
time, we have thab may be sampled in tim®(|Z|k). Additionally, for eachgq € Q we may flip a
fair coin to determine whether e F; this amounts to a uniform sampling Bf We've established
thatA € DFA(k) may be uniformly sampled in tim&(|Z|k).

To sample uniformly fron,, define first the distributiomon {1,...,n} by

_ IDFA(K)| 2Kkl
Gl g2

Sampling & € {1,...,n} according tart can be done in tim@®(n) and thenA is drawn uniformly
from DFA(k) as described above. The resulting automaton is a uniform drawdremvhich took
O(|Z|n) steps to perform; this proves (i).

To prove (iii) we simply recall that an automaton evaluates a string by readiagritbeginning
to end, each time evolving from state to state as prescribéd by |
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We now state our main learnability result for regular languages. The tindoetow is a direct
consequence of Theorem 15, whéten) := [m%/2] andTsau(C,n) = O(n), as per Lemma 18:

Theorem 19 LetLC >* be a regular language and suppose that &* is a sequence of m instances
sampled independently from an arbitrary distribution P, and labeled adegr L. For anyd > O,
there is a randomized algorithiRegLear n, which outputs a classifief : &* — {—1,1} such that
with probability at leastl — & it achieves a small generalization error,

- 2
P{f()#Xx.(0} < = (4R(L)log(8emlog(32m) + log(16m/3))
for m > max{sizgL)?,D(L)/2,R(L)?/8.3 x 10},
wheresizgL) is the number of states in the smallest automaton recognizing L éby B(L) are

constants depending only on L.
Furthermore RegLear n has deterministic polynomial complexity, with running time

0 (emame/Z |og(m/e3)) ,

wherelmax:= max{|s| : s€ S}).

8. Empirical Results

In this section we present some preliminary empirical results that providmo& gfrconcept for our
approach. We performed several types of experiments.

8.1 Proof of Concept, Comparisons

In this basic setup, we draw a samflef m= 300 strings in{0,1}* uniformly with mean Poisson
length 15 (that is, the string lengthis a Poisson random variable with mean 15 and the siisg
drawn uniformly from{0,1}). The target DFAA is uniformly drawn at random from DFA) as
described in Lemma 18, where its size is chosen uniformly in the intergah 3 50. This DFA is
then minimized, so that its number of states represents its “true” complexity. uibmatonA is
run on the sampl&to produce the label vectat € {—1,1}5.

For the learning process, we randomly sample a fixed nufilbed 000 of “feature” automata
A, from the set DFAL : 18) = U8 DFA(n), where we chos8(m) = \/m (note that 18+ v/300).
For eacts € S, we compute the embedding vectgs) € {0,1}T by

[@(S)]i = LyseL(a)

and arrange thég(s) }scs into the columns of th& x m matrix ®. Now that(®,Y) corresponds to
mlabeled points iRT, we can apply some standard classification algorithms:

¢ SVMfinds the maximum-margin hyperplane separating the positive and negadivipkes

e AdaBoost (Freund and Schapire, 1996) uses the feature autofiatal <i < T} as weak
classifiers and combines them into a weighted sum
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Figure 1: Performance plots of different linear threshold classifiensée size = 300, number of
features = 1000)

e Regress labels a new string € {0,1}* as follows:
y = sgne(x) (®eT) 1Y)
where-T denotes the matrix transpose
as well as two “baseline” classifiers:

e Myjority labels every unseen stringe {0,1}* by the majority vote of the training labels,
disregarding the actual training strings:

y= Sgn<S;Ys>

e Best Feat ur e picks the single feature automaténwith the best empirical performance.

A test set of 100 strings is drawn from the same distributio§, and the performance of each
classifier is compared against the true labels giver\byhe results are summarized in Figure 1,
averaged over several hundred trials.
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As expected, since in this experiment the sample size is kept fixed, themparfce degrades
with increasing automaton complexity. Furthermd®é\ AdaBoost andRegr ess have a similar
performance. While the first two methods are margin driven with guarapeeformance bounds,
the success dRegr ess is somewhat surprising. We currently have no explanation for why such a
seemingly naive approach should work so well. Unsurprisirigys Feat ure andMaj ori ty trail
behind the other methods significantly. However, even the latter simplisticagps perform quite
better than chance on moderately sized automata.

Despite the rather pessimistic impossibility results for learning general autoouatagsults
seem to indicate that random automata are efficiently learnable. This is in lingh@itmpirical
observations of Lang (1992) and others that random automata ase tedsarn in practice.

8.2 Role of Adaptive Feature Set

In the second experiment, we demonstrate the importance of having arvadepture set. Here,
we chose a single fixed target DFA on 20 states, and study the generaligatformance of two
schemes, one with a fixed number of featureand one wher& is chosen adaptively as a function
of sample size. The training and test strings are sampled according to thedzenge as described
above. The sample sizevaries from 10 to 400; the test set is fixed at 100. In the fiketheme
we setT = 500 while in the adaptive orile = mlogm. As expected, the adaptive scheme eventually
outperforms the fixed one (see Figure 2).
8.3 Case Study: Parity Languages
Forl = {i1 <iy... <ix} CN, define the languaggl] C {0,1}* by

LI ={xe{0,1}" : |X| > ik, Xi, BXi, B ... B X, =1}

where® is addition modulo 2. Theh[l] is called gparity language The following facts are easily
verified

Claim 20 For | ¢ N and LI], we have
(a) the language [L] is regular
(b) the minimal DFA accepting[l] has sizeQ(2!')
(c) the minimal DFA accepting[£1, k}] has size2k+- 1.
The minimal DFA for the language
L{L,2}] ={xe{0,1}" i x1®x2 =1}

is shown in Figure 3. We describe the results of some empirical investigatitngavity languages.

8.3.1 EXACT RECOVERY

Recall that the learner is presented with a labeled sa($p¥e, which is consistent with some target
languaged.o C {0,1}*. PAC learning entails producing a hypothekis/hose predictions on new
strings will be statistically similar to those &b. Exact recoverys a more stringent demand: we
are required to produce a hypothesis that is identical to the target laeiguag
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Figure 2: Performance in the fixed and adaptive settings

Figure 3: The minimal DFA for the parity languabgég{1,2}]

1120



UNIVERSAL REGULAR KERNEL

Note that the output of our algorithm is not an explicit automaton. Insteadutpeit a cqllection
of DFAs {Ag, Ay, ..., At} with corresponding weights; € R, with the hypothesis languadegiven

by
R T
[ = {xe {0,1}* Z“tl{ﬂ(’*)} >o}. (27)
t=

An interesting question is the relation betwdeand the true unknown languagsg. In principle,
the DFA for L can be recovered exactly, using the algorithmic construction given in t pf
Theorem 17. However, this procedure has exponential complexityimd is certainly infeasible for
T ~100. Thus, rather than recovering #sactDFA corresponding t¢{A: },{a:}), we implement
Angluin’s algorithm for learning DFAs from membership and equivalenarigs (Angluin, 1982).
Testing whether a stringbelongs td_ is achievable in tim&(T |x|), so membership queries pose
no problem. As discussed above, testing whether Angluin’s hypothegisdgal_ .., iS equivalent
to L is infeasible (at least using the brute-force construction; we do ndti@gxthe possibility of
some clever efficient approach). Instead, we only compagg andL on the labeled sampl&,Y).

If XL (X) = Yy for all x e S, we declare the two equal; otherwise, the first string on which the two
disagree is fed as a counterexample into Angluin’s algorithm.

We drew a sample of 300 strings{0, 1}* uniformly with mean Poisson length 10, as described
in Section 8.1. These strings were labeled consistentlylwith, 2}]. On this labeled sample we ran
the algorithmRegLear n, as defined in Theorems 15, and 19, which outputs the landuagegiven
in (27). The hypothesik attained an accuracy of 91% on unseen strings and our adaptation of An-
gluin’s algorithm recoveret[{1,2}] exactly88% of the time. When this experiment was repeated
onL[{1,3}], whose minimal DFA has 7 states, prediction accuracRegiear n dropped to 86%
while the target automaton was recovered exactly only 1% of the time. It seatrglthtively large
sample sizes are needed for exact recovery, though we are not ajiarttify (or even conjecture)

a rate at this point.

8.3.2 BVYPIRICAL MARGIN

We took the “complete” sampl&= {0,1}=7 (i.e., |§ = 255) and labeled it witi.[{1,k}], for
k=2,3,4,5. The algorithnRegLear n (as a special case bhi vLear n) finds the optimal empirical
marginy, as defined in (23). We repeated this experiment a few dozen times—sinkertie is
random, the margins obtained are also random. The results are presehtgdran4, but should
be interpreted with caution. As expected, the margin is decreasing with autosiago(the latter
given by X+ 1, as per Claim 20(c)). Itis difficult to discern a trend (polynomial/expdiaédecay)
from four points, and extending the experiment for moderate-dizedomputationally expensive.

8.3.3 LONG INPUT STRINGS

One of the claimed advantages of our method is that long training strings dmndtcantly affect
hypothesis complexity. To test this claim empirically, we fixed the target laregatig{1,2}] and

let the mean string length vary from 10 to 100 in increments of 10. For each value\pfve
drew a samplé of 300 strings in{0,1}* uniformly with mean Poisson length (as described in
Section 8.1) and labeleSiconsistently withL[{1,2}]. On this labeled sample we ran the algorithm
RegLearn, and tested its prediction accuracy on 100 new strings. The results afayéid in
Figure 5 and show a graceful degradation of performance. In pknti¢ar strings of mean length
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100, the learner performs significantly better than chance—even thoagtinlg parity languages
from long strings entails high-dimensional feature selection. This exampléalies the tradeoff
between information and computational complexity. If we had unboundediness, exhaustive
enumeration over all automata would most likely find the correct automaton.nétislear how

standard methods, such as the RPNI algorithm (Oncina and Garcia, W88R) process input
strings of such length.

9. Inherent Limitations

An immediate question is, How does the “margin learning r&e} appearing in Theorems 3 and
15 relate to the target concept complexity (say, as measurdé|} One might hope for a bound
of the type

R(c) = O(poly(lcl]))-

Unfortunately, under standard cryptographic assumptions this cawoiebirhgeneral, as we
demonstrate for the case of DFAs. For reference, let us state the t@istube Root (DCR) as-
sumption as it appears in Kearns and Vazirani (1997). In what follbivs,pqis ann-bit number
and p,q are randomly chosen primes so that 3 does not diyle 1)(q— 1). The multiplicative
group moduloN is denoted byZy, andx is chosen uniformly random iiy. DCR states that for
every polynomiat, there is no algorithm with running tinrén) that on inputN andy = x> modN
outputsx with probability exceeding Ar (n) (the probability is taken oveg, g, X, and the algorithm’s
internal randomization).

The following theorem is implicit in chapters 6 and 7 of Kearns and VazirB®97), and is a
combination of results in Pitt and Warmuth (1990) and Kearns and Valia@4{19
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Theorem 21 For every polynomial p, there is a sequence of distributionsrP{0,1}" and finite
state automata £ with sizg A,) = poly(n) such that assuming DCR, there is no algorithm with
running time gn) that produces a hypothesis that agrees wigroA more tharl/2+1/p(n) of R.

We will refer to the concept-dependent quantic) appearing in theorems 3, 15, and 19 as
the margin-based rat@nd the parametdd(c) appearing in Theorems 15, and 19 as ititeinsic
dimension Under the DCR assumption, these quantities cannot both grow polynomiallg in th
target automaton size fatl automata:

Corallary 22 If DCR is true, there is no efficiently computable (or approximable) usaleegular
kernel K and polynomial p such that for every finite state automaton Aawenax{ R(A),D(A)} <
p(sizgA)) under K.

Proof We argue by contradiction. Suppadsas an efficiently computable universal regular kernel,
and that for some polynomigl we have the margin-based ra®eA) < p(sizgA)) underK, for
every DFAA. Then by Theorem 3, a sample of sipésize(A))? suffices to guarantee (with high
probability) the existence of a classifier with polynomially small generalizaticor,eand there is
an efficient algorithm (e.g., SVM) to discover such a classifier. This aditts Theorem 21. A
similar contradiction is obtained via Theorem 1Kiis efficiently approximable. |

Still focusing on the special case of DFAs, another natural line of ingaitie relationship
between the true target langudgeand the hypothesis languagénduced by our learning algorithm
(note thatl is necessarily regular, by Theorem 17). In particular, it would be defsirto have a
handle on the complexity of the minimal DFA acceptinin terms of the corresponding minimal
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DFA for L. To be more concrete, suppose we have observed a finite s&apkE* with labels
Y € {~1,1}S. We compute a maximum-margin hyperplane (i.e., a set of wemktRS) for this
sample, and consider the resulting language

L(Sa) = {xexX: Zgasﬁ(s,x) > 0}

sc

whereK is the approximate kernel constructed by the algorithm of Theorem 15tHmatte(S, a) is
regular. LetAo(S,Y) be the smallest DFA consistent with the labeled sar(@l¥) and letAo(S a)
denote the smallest DFA recognizihgS o). Now approximately recoveringo(S,a) is feasible
via active learning (see Chapter 8 of Kearns and Vazirani 1997¢rGivhyperplane representation
for a regular language one may efficiently query the resulting classifianpstring inx € Z* to see

if xe L(Sa). Using membership and equivalence queries, Angluin’s algorithm (Angl$87)
recoversAo(S a) exactly. If only membership queries are allowed, we can draw enouglystrin
x € 2* according to a distributiof® to simulate an equivalence query efficiently, to arbitrBry
accuracy. Note thdt(A) andL(A') can differ by only one (very long) word, while the two automata
may be of exponentially different size. We do not currently have eithear{gefficient method of
exactly recovering\o(S,a) nor can we claim that (b)

sizgAo(Sa)) < poly(sizgAo(SY)));

note that if both (a) and (b) were true, that would imply P=NP via the Pitt andriyth (1993)
hardness of approximation result.

Another limitation of our approach is the possibility of a “Boolean-independemttept class
C, inwhich noc € ¢ may be expressed as a finite Boolean combination of other concepts. @ne wa
to construct such a concept class is by takiheg: N andC = {c, : pis prime}, where

Xec, < x=0(modp).

That C is Boolean-independent is seen by takingjstinct primes{p; : 1 <i <k} and an arbitrary
b € {0,1}%. Then the number

k

Np = El(pi+bi)

is divisible byp; iff b; = 0; thus the divisibility ofN by p1, p2, ..., px_1 gives no information regard-
ing its divisibility by px. In a Boolean-independent class, no concept may be expressdohis a
linear combination of other concepts (the contrapositive of this claim is edtablishile proving
the “if” direction of Theorem 17). Alas, Boolean independence is antalele feature of nontrivial
concept classes:

Theorem 23 Any infinite concept clas§ contains an infinite Boolean-independent subset.

Proof SupposeC contains no infinite Boolean-independent subsets. This means thatoevary
may be expressed as a finite Boolean combination of elerdejjtdrom some finiteE C C. But
the Boolean closure of a finite collection of sets is finiteCsmust be finite. [ |
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The moral of this section is that our approach is certainly vulnerable to the skassical com-
putational hardness reductions as other discrete concept-learningdmletjies. One must keep
in mind, however, that the hardness reductions are pessimistic, basededulg contrived target
concepts and distributions. As noted in Section 8, “typical” or “random’cepts are often much
easier to learn than their worst-case cousins (which is unsurprising tieenumerous NP-hard but
easy-on-average problems; see, for exampled@tiand Szemeédi 1988 or Flaxman 2003).

10. Discussion

We have presented a new generic technique for learning generabbtrinoncept classes and ap-
plied it to regular languages. Aside from its generality and ease of implementatio approach
offers certain advantages over existing techniques. Observe thattiptexity of the classifier con-
structed in Theorem 15 does not directly depend on the input string lergihthe case of learning
regular languages, it means that the training string lengths do not affeetitesis complexity. This
is not the case for the methods surveyed in the Introduction, which buildfi pree acceptor in
the initial phase. As already mentioned, we make no structural assumptitims anget automaton
(such as acyclic or nearly so), or on the sampling distribution (such aartige being “structurally
complete”).

In practice, giverm samples, our approach attempts to fit the labeled data by a linear combi-
nation of concepts with bounded complexifg|| < 6(m). This method may fail for two possible
reasons: Either we don't have sufficient number of samples to learmitreown target concept,
or we got unlucky - this specific concept has a very small margin. Notethleae sample size
restrictions are inherent also in the SRM framework, for example in The8re

The experiments presented in Section 8 provide support for our agprdé2ur basic method
could be easily adapted to learning context-free and other grammar® areesbvious computabil-
ity limitations—thus, if our concept class is all Turing-recognizable langsiatle corresponding
universal kernel is provably uncomputable (Blocki, 2007). Moduls¢hiémitations, any concept
class satisfying the efficient sampling and membership evaluation assumpisssar(ptions 10
and 11) is amenable to our approach.

Our work naturally raises some interesting questions—in particular, riegdeshrning regular
languages. We conclude the paper with a few of them.

1. CanKges be efficiently computed? Is it a #P-complete problem? Is tlaeneefficiently
computable universal regular kernel?

2. CanAy(S a) be efficiently recovered from its hyperplane representation? Caffsi&0))
be nontrivially bounded in terms of si#(SY))? (The notation is from the previous sec-
tion.)

3. Corollary 22 seems to thwart attempts to bound the margin-based ratesfgularrlanguage
in terms of the size of its minimal DFA. Is there a different natural complexity omeaf®r
regular languages which does allow a polynomial bound on the margimtbate®

4. The intractability results in Theorem 21 are highly pessimistic, in that bothutioenaton and
the training/testing distribution are contrived to be pathological. What abewtdmplexity
of learning “typical” automata—say, those drawn uniformly from DRf? What can be said
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about the margin distribution of such automata? Similarly, what about their sangptgn,
under some natural class of distributions on the striigs
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