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Abstract

Harmonic analysis, and in particular the re-
lation between function smoothness and ap-
proximate sparsity of its wavelet coefficients,
has played a key role in signal processing
and statistical inference for low dimensional
data. In contrast, harmonic analysis has thus
far had little impact in modern problems in-
volving high dimensional data, or data en-
coded as graphs or networks. The main con-
tribution of this paper is the development
of a harmonic analysis approach, including
both learning algorithms and supporting the-
ory, applicable to these more general settings.
Given data (be it high dimensional, graph or
network) that is represented by one or more
hierarchical trees, we first construct multi-
scale wavelet-like orthonormal bases on it.
Second, we prove that in analogy to the Eu-
clidean case, function smoothness with re-
spect to a specific metric induced by the tree
is equivalent to exponential rate of coefficient
decay, that is, to approximate sparsity. These
results readily translate to simple practical
algorithms for various learning tasks. We
present an application to transductive semi-
supervised learning.

1. Introduction

In recent years, vast data sets in the form of (i) graphs
or networks, and (ii) data in high dimensional Eu-
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clidean space, are routinely collected in many areas.
Analysis of these types of data is a major challenge for
the statistics and machine learning communities.

The statistical theory underlying data analysis has
been studied extensively in both communities. The
traditional statistics literature has, by and large, fo-
cused on the setting of data in (low dimensional) Eu-
clidean space (Lehmann & Casella, 2003; Hardle et al.,
1998). In contrast, the theoretical machine learning
community has developed a theory of learning from
abstract hypothesis classes (Vapnik, 1998), where no-
tions of function smoothness and the geometry of the
ambient space are often absent.

Neither of these traditional approaches is particu-
larly well suited to the graph or high-dimensional
Euclidean settings. Many traditional statistical in-
ference approaches are inapplicable for high dimen-
sional Euclidean data and become meaningless on non-
Euclidean data such as a graph. Nonetheless, both
graph data and high dimensional data typically have
a rich geometrical structure, which is often not directly
exploited in the abstract machine learning framework.
New statistical learning tools are thus needed, which
would capitalize on the geometrical structure available
in these settings. These tools should be accompanied
by an underlying theory, specifying the conditions un-
der which they can be expected to be useful.

In this work we propose a harmonic analysis frame-
work and develop such tools and supporting theory,
under the assumption that the geometry of a graph
or a high-dimensional Euclidean data set is captured
by a hierarchical tree of increasingly refined partitions.
We present two main contributions. First, given data
encoded as a hierarchical tree, we build data adaptive
wavelet-like orthonormal bases for the space of func-
tions over the data set, in the spirit of the Haar basis
on the unit interval [0, 1] (see Fig. 1). Second, we
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Figure 1. An illustration of a Haar-like basis.

prove that for these bases, function smoothness with
respect to a certain tree metric can be measured by
the rate of function coefficient decay. In particular,
for a balanced tree (defined below), smooth functions
have coefficient decay exponential in the tree level.

As fast coefficient decay, or approximate sparsity, is
the key principle underlying many inference techniques
in the Euclidean case, our results readily translate into
new simple and practical algorithms for various learn-
ing tasks in the more general setting of graphs and high
dimensional data. As a particular application of our
approach, we present a novel semi-supervised learning
(SSL) scheme. Preliminary results on various datasets
show that our scheme is competitive with other ap-
proaches, often achieving lower prediction errors.

2. Problem Setting and Related Work

Let X = {x1, . . . , xN} be the dataset we wish to an-
alyze. The samples xi may be points in a high di-
mensional space, or nodes in a weighted graph or net-
work. Most supervised learning problems in this set-
ting involve inference on an unknown target function

f defined on X. Examples include i) function denois-
ing: given values yi = f(xi) + ǫi, where ǫi are i.i.d.
noise variables, estimate the underlying f , ii) semi-
supervised learning: given f |S where S is a subset
of X, estimate f |X\S , iii) active learning: given f |S
choose the next unlabeled point x ∈ X \S to query, to
“optimally” estimate f with as few queries as possible.

The key question is thus what are good methods
to represent, process and learn functions on general
datasets X having the form of a weighted graph or
points in a high dimensional space.

In the ML community, a common approach to handle
high dimensional data is to represent it as a symmet-
ric weighted graph with the aid of a similarity ker-
nel. Common methods to process functions defined
on graphs, in turn, are based on the graph Laplacian
matrix L, and its variants (Chapelle et al., 2006). For
example, in (Zhu et al., 2003) global function smooth-
ness w.r.t. the graph is measured by fTLf . A related
approach involves representing the target function in
the eigenbasis of the graph Laplacian (Belkin & Niyogi,
2003). Here learning is performed by estimating the
first few eigenbasis coefficients from the labeled data.

Despite their empirical success on various datasets,
these global methods have several limitations. First,
as described in (Nadler et al., 2009), measuring func-
tion smoothness via the graph Laplacian (fTLf) leads
to ill-posed problems for semi-supervised learning with
high dimensional data as the number of unlabeled data
grows to infinity. Second, eigenvector based methods
are not always best suited for representing functions on
a graph. Since these basis vectors are eigenvectors of a
symmetric matrix, in general they have global support
and become increasingly oscillatory. This limits the
number of coefficients that can be robustly estimated.
On the theoretical side, there is still no sufficient jus-
tification for these methods for data that is not neces-
sarily sampled from a low dimensional manifold. Fur-
thermore, to date, even in the manifold setting there is
no well understood theory for how many coefficients to
estimate. For example, Belkin & Niyogi (2003), heuris-
tically propose to estimate n/5 coefficients where n is
the total number of labeled points.

Inspired by the classical Euclidean setting, where sim-
ilar limitations of the Fourier basis are alleviated by
wavelet bases, in this paper we propose a multiscale
harmonic analysis approach to learning from graph
or high dimensional data and develop both new algo-
rithms as well as supporting theory. Our key assump-
tion is that the geometry and structures of the input
graph or high dimensional data are captured by one
or several (possibly random) hierarchical trees. First,
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we remark that trees are ubiquitous in statistics and
computer science. Given a dataset X, there are many
methods to construct a hierarchical tree, including de-
terministic, random, agglomerative and divisive. Fur-
thermore, in a Euclidean setting, tree-based classifiers
are highly successful (Breiman et al., 1984; Breiman,
2001; Binev et al., 2005). Note, however, that our
setting is different as we do not necessarily assume a
Euclidean structure. In this paper we do not focus
on the exact method of tree construction, but rather
assume that the input data X is equipped with a hi-
erarchical tree, either already given or constructed by
some method. Our main results are a sensible defini-
tion of function smoothness with respect to this tree,
a corresponding multiscale learning approach and its
supporting theory, assuming this function smoothness.

As mentioned above, harmonic analysis has had thus
far little impact on learning from graphs or from high
dimensional data. As such, there are relatively few
works suggesting multiscale representations for learn-
ing in these settings (Coifman & Maggioni, 2006;
Mahadevan & Maggioni, 2006; Jansen et al., 2009).
Jansen et al. (2009) explicitly state the lack of support-
ing theory for their methods: “The main disadvantage
is that, apart from analogies with regular wavelets,
there is currently no substantial body of theory be-
hind our methods”. This work provides a step forward
towards the development of such a theory.

3. Main Results

Let X be the given dataset, and let f : X → R be the
unknown target function to be learned. Further, de-
note by V = {f | f : X → R} the space of all functions
on the dataset, with the inner product

〈f, g〉 = 1

N

N
∑

j=1

f(xj)g(xj). (1)

Inspired by the success of multiscale wavelet decom-
positions for 1-d signals and 2-d images (Mallat, 1999;
Hardle et al., 1998), our harmonic analysis approach
consists of constructing a multiscale basis {φj}Nj=1 for
the space V , such that the target function f admits an
efficient sparse representation in this basis. Accurate
approximation of f is then possible by estimating only
a few of its coefficients 〈f, φj〉.

3.1. Trees and Multi-Resulution Analysis

The starting point for constructing a basis for V is
a hierarchical tree representation of the data X. We
denote by ℓ = 1, . . . , L the level in the tree with ℓ = 1
being the root and ℓ = L the lowest level, where each

sample xj is a single leaf. We further denote by Xℓ
k the

set of all leaves of the k-th folder (subtree) of the tree
at level ℓ, and by sub(ℓ, k) the number of subfolders of
Xℓ

k at the next level ℓ+ 1.

The crucial property we require of the given dataset
X is that the resulting tree is balanced: that is, for all
parent folders in the tree,

0 < B ≤ |offspring folder|
|parent folder| ≤ B < 1 (2)

This property implies that L = O(logN). Note that
B = B = 1/2 gives a perfectly balanced binary tree.

Our next step is based on the following simple ob-
servation (see also Donoho (1997); Murtagh (2007);
Lee et al. (2008)): A tree representation of data nat-
urally induces a multi-resolution analysis (MRA) with
an associated Haar-like wavelet basis. In more detail,
for each level ℓ denote by V ℓ the space of functions
constant on all folders (subtrees) at level ℓ,

V ℓ = {f | f : X → R, f constant on all folders Xℓ
j}.

For example, V 1 is the one-dimensional space of con-
stant functions on the dataset, V 1 = Span

R
{1X},

whereas V L = V . By construction,

V 1 ⊂ . . . ⊂ V ℓ ⊂ V ℓ+1 ⊂ . . . ⊂ V L = V. (3)

This sequence of subspaces resembles a multiresolution
analysis of V , a key property for the development of
wavelets on Euclidean spaces (Mallat, 1999). As in
classical MRA, let W ℓ (1 6 ℓ < L) be the orthogonal
complement of V ℓ in V ℓ+1 (V ℓ+1 = W ℓ

⊕

V ℓ). The
space of all functions V can then be decomposed as

V = V L =
[

L−1
⊕

ℓ=1

W ℓ
]

⊕

V 1 . (4)

3.2. Haar-like bases on the dataset

Eq. (4) is the key to construct multiscale, localized
orthonormal bases for the space V . Consider a folder
Xℓ

k at level ℓ that is split into two subfolders Xℓ+1
i and

Xℓ+1
j . Then, there is a zero mean Haar-like function

ψℓ,k,1 supported only on these two subfolders, which
is piecewise constant on each of them (see for example
ψ2,1,1 in Fig. 1). If a folder Xℓ

k is split into three or
more subfolders, then sub(ℓ, k)−1 Haar-like orthonor-

mal functions {ψℓ,k,j}sub(ℓ,k)−1
j=1 need to be constructed.

The collection of all these functions, augmented by
the constant function on X, forms an orthonormal
basis of V , that we term a Haar-like basis, B =
{ψℓ,k,j}. To clarify notation, ℓ denotes the level of
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the tree, k is the index of folder Xℓ
k at level ℓ, and

j = 1, . . . , sub(ℓ, k)− 1. For binary trees the third in-
dex is not required, and we recover the standard dou-
ble index wavelet notation ψℓ,k. Figure 1 illustrates
some Haar-like wavelet functions for a simple tree.
These functions resemble the classical Haar functions
in the following sense: i) Since W ℓ ⊂ V ℓ+1, each ψℓ,k,j

is piecewise constant on folders at level ℓ+1; ii) Since
ψℓ,k,j is supported on the folder Xℓ

k, it is nonzero only
on folders at level ℓ + 1 which are subfolders of Xℓ

k;
iii) Since W ℓ ⊥ V ℓ, each ψℓ,k,j is orthogonal to the
constant function on Xℓ

k, 〈ψℓ,k,j , 1Xℓ
k
〉 = 0.

3.3. Function Smoothness, Exponential

Coefficient Decay and Learnability

Our main theoretical result is an explicit relation be-
tween the following concepts: the geometry of the data,
as represented by the tree structure; the smoothness
of a function with respect to the tree; and the decay
or sparsity of its coefficients in a Haar-like expansion.
The practical implications of these theorems to func-
tion learnability, e.g., to accurate approximation of f
from partially labeled data are considered in section 4.

To relate the geometry of the data to the tree struc-
ture, we first define a probability measure ν on the tree
as follows: For each set S ⊂ X, define ν(S) = |S|/|X|.
Next, consider the following tree ultrametric, also pop-
ular for metric approximations (Bartal, 1996; 1998):

Definition 3.1 Tree Metric: For any x, y ∈ X, define

d(x, y) =

{

ν(folder(x, y)) x 6= y
0 x = y

(5)

where folder(x, y) is the smallest folder in the tree
containing both x, y.

Given the tree metric, the following definition of
smoothness is a straightforward analogue of Hölder
smoothness in the Euclidean setting1:

Definition 3.2 A function f is (C,α)-Hölder w.r.t.
the tree (with 0 < α < 1) if

|f(x)− f(y)| ≤ C d(x, y)α, ∀x, y ∈ X. (6)

With these definitions, the following theorems relate
function smoothness, the geometry of the data and
fast coefficient decay:

Theorem 1 Let f : X → R be (C,α)-Hölder and let
ψℓ,k,j be a Haar-like basis function supported on the

1For trees constructed on Euclidean spaces, Hölder
w.r.t. the tree is not equivalent to Hölder in the Euclidean
space. This issue is beyond the scope of this paper.

folder Xℓ
k. Then

|〈f , ψℓ,k,j〉| 6 C2α+1 · ν(Xℓ
k)

α+1/2 . (7)

The tree-balance requirement (2) implies that

ν(Xℓ
k) 6 B

ℓ−1
for all ℓ, k. Therefore, smoothness

of f implies exponential decay rate of its wavelet coef-
ficients as a function of the tree level ℓ,

|〈f , ψℓ,k,j〉| 6 2α+1C ·B(ℓ−1)(α+1/2)
. (8)

In particular, for a perfectly balanced binary tree with
B = 1/2 we recover the familiar wavelet coefficient
exponential rate of decay for smooth functions, see for
example (Mallat, 1999), theorem 6.3.

Theorem 2 Let f : X → R. Suppose that for all
functions ψℓ,k,j in some Haar-like basis

|〈f, ψℓ,k,j〉| 6 C · ν(Xℓ
k)

α+1/2

with some α > 0, and some constant C. Then f is
(C ′, α)-Hölder, with C ′ = 2C

B3/2
1

1−B
α .

Finally, the following theorem, which seems new even
in the Euclidean setting, shows an interesting relation
between L1 sparsity in a multiscale Haar-like basis,
and function approximation:

Theorem 3 Let hI(x) be a Haar-like basis, where
each function hI is supported on a set I ⊂ X and
such that |hI(x)| ≤ 1/|I|1/2, and let f =

∑

I aIhI(x).
Assume

∑

I |aI | ≤ C, and for any ǫ > 0 consider the

approximation f̂ =
∑

|I|>ǫ aIhI . Then

‖f − f̂‖1 =
∑

x∈X

|f(x)− f̂(x)| ≤ C
√
ǫ. (9)

Proofs of these theorems appear in the supplementary
material. The key point of these theorems is that the
multiscale representation of a weighted graph via a hi-
erarchical tree allows for the development of a theory
of harmonic analysis on graphs. Theorems 1-2 pro-
vide a clear connection between the notion of function
smoothness w.r.t. the tree and fast coefficient decay
in a Haar-like expansion. These theorems have well
known analogues in the Euclidean setting. Theorem 3
has interesting implications to statistical inference as
it shows that under an L1 bound on the coefficients
in a Haar-like expansion, for a reconstruction error of
O(

√
ǫ) it is sufficient to estimate only coefficients cor-

responding to Haar-like functions with support larger
than ǫ, that is, at most O(1/ǫ) coarse-scale coefficients.
Eq. (20) in supplementary material shows that our
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Haar-like functions satisfy the condition of Theorem
3, |ψℓ,k,j(x)| ≤ 1/(Bν(Xℓ

k))
1/2.

We emphasize that a balanced tree is a key assump-
tion in our method. Empirically, on many datasets
with given affinities, various graph-to-tree construc-
tions indeed resulted in balanced trees. We note that
the ability to represent data by a balanced tree is re-
lated to some notion of “intrinsic low dimensionality”
of the data. Theoretical conditions on graph affinities,
on graph-to-tree constructions that provide balanced
trees, and on the relations between function smooth-
ness w.r.t. graph metrics and smoothness w.r.t. tree
metrics are all subjects for further research.

From a computational view, Haar-like functions are
piecewise constant and thus simple to handle. Fur-
thermore, expanding a function or estimating its coef-
ficients in the Haar-like domain admit fast algorithms
resembling the fast wavelet transform. One limitation
of Haar-like functions is their lack of smoothness. Due
to the arbitrary locations of their discontinuities, this
may introduce artifacts when processing functions in
the coefficient domain. In the context of signal denois-
ing, (Coifman & Donoho, 1995) suggested to remove
such artifacts by averaging shifted Haar bases. Simi-
lar to their approach and to random forest (Breiman,
2001), we also average functions learned using several
different randomly constructed trees.

Finally, from a mathematical viewpoint, the above
construction of a probability measure and metric on
a tree leads to a particular instance of an abstract ob-
ject known in harmonic analysis as a Space of Homo-
geneous Type (Coifman & Weiss, 1977; Deng & Han,
2009). To the best of our knowledge, our work presents
one of the first applications of these theoretical con-
cepts to practical problems in statistics and machine
learning. In section 4 we present an application of
these theoretical results to semi-supervised learning.

4. Semi-Supervised Learning

The problem of transducive learning can be phrased
in our setting as follows: An unknown target function
f : X → R is to be inferred, from its (possibly noisy)
values f

∣

∣

S
on a given subset S = {s1, . . . , sn} ⊂ X.

For example, when the values of f are class labels, the
problem is to classify the remaining points X\S, using
the observed class labels f(s1), . . . , f(sn).

SSL is an active area of research with many different
algorithms suggested over the past few years (Chapelle
et al., 2006; Zhu, 2008). Given a basis {φ1, . . . , φN}
for V , a natural approach is to decompose the un-
known function in a series f =

∑N
i=1 〈f, φi〉φi and

then estimate the unknown coefficients 〈f, φi〉 using
the available values of f . For a dataset X augmented
by pairwise affinities, this is the approach suggested
by Belkin & Niyogi (2003) with φi the eigenvectors of
the corresponding graph Laplacian. Building on The-
orems 1-2, we now propose to use a Haar-like basis
that is designed by some balanced tree, as an alter-
native to the Laplacian eigenbasis, that is generated
by matrix diagonalization. We remark that (Herbster
et al., 2009; Kemp et al., 2004; Neal & Zhang, 2006)
also suggested SSL algorithms using trees, albeit by
different approaches.

Our approach is as follows: Given a hierarchical tree
representation ofX and a labeled set S ⊂ X, (typically
with |S| ≪ |X|) only relevant Haar-like coefficients
are estimated. For a folder Xℓ

k with no labeled points,
or with labeled points only on some of its subfold-
ers, we set the respective wavelet coefficient to zero.
Wavelet coefficients are estimated only on sufficiently
large folders where labeled data is available in all their
subfolders. Theorems 1-2 provide the theoretical sup-
port for this approach, provided the target function
f is smooth w.r.t. the tree. We emphasize that even
though the tree must be balanced (see Eq. (2)), the
class labels themselves may be highly unbalanced.

To derive the formula for the estimated coefficients at
sufficiently large folders it is instructive to first recall
the formula for the actual wavelet coefficient aℓ,k,j .

Definition 4.1 The coefficient aℓ,k,j of f : X → R

corresponding to the basis function ψℓ,k,j is given by

aℓ,k,j = 〈f , ψℓ,k,j〉 =
1

N

∑

x∈Xℓ
k

f(x)ψℓ,k,j(x) (10)

=
∑

i∈sub(ℓ,k)

ν(Xℓ+1
i )ψℓ,k,j(X

ℓ+1
i )m(f,Xℓ+1

i )

where m(f,Xℓ+1
i ) = 1

|Xℓ+1
i |

∑

x∈Xℓ+1
i

f(x) is the mean

of f on the folder Xℓ+1
i , and ψℓ,k,j(X

ℓ+1
i ) is the con-

stant value of ψℓ,k,j on the folder Xℓ+1
i .

Given partial labeled data, Eq (10) suggests the follow-
ing estimator for aℓ,k,j : For folders with at least one
empty subfolder, we set âℓ,k,j = 0. For folders whose
subfolders each contain at least one labeled point,

âℓ,k,j =
∑

i∈sub(ℓ,k)

ν(Xℓ+1
i )ψℓ,k,j(X

ℓ+1
i )m̂(f,Xℓ+1

i ) (11)

where m̂(f,Xℓ+1
i ) = 1

|S∩Xℓ+1
i |

∑

x∈S∩Xℓ+1
i

f(x) is the

empirical mean of f on Xℓ+1
i using only the labeled

data of the set S.
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For a regression problem, our estimator for f is

f̂(x) =
∑

ℓ,k,j

âℓ,k,j ψℓ,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of Xℓ
k having

at least one labeled point, âℓ,k,j is unbiased, E[âℓ,k,j ] =
aℓ,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall âℓ,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ℓ. The
following theorem quantifies the expected L2 error of
both the estimate âℓ,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by

E[âℓ,k,j − aℓ,k,j ]
2 / 1

|S|
C2

1B
2α

ν(Xℓ
k)

2α

1−e−|S|Bν(Xℓ
k
)

(13)

+ 1
B e−|S|Bν(Xℓ

k) · a2ℓ,k,j
The resulting overall MSE is bounded by

E ‖f − f̂‖2 = 1
N

∑

i

(f(xi)− f̂(xi))
2

≤ C2
1B

2α

|S|

∑

ℓ,k,j

B
2α(ℓ−1)

1− e−|S|Bℓ (14)

+
22α+1C2

1

B

∑

ℓ,k,j

e−|S|Bℓ

(B
2α+1

)ℓ−1

The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(Xℓ

k) ≫ 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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Figure 2. Results on the USPS benchmark.

code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, ℓ = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).
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Table 1. Test classification errors for USPS benchmark

Method 10 labeled 100 labeled

1-NN 19.82 7.64
SVM 20.03 9.75
MVU + 1-NN 14.88 6.09
LEM + 1-NN 19.14 6.09
QC + CMN 13.61 6.36
Discrete Reg. 16.07 4.68
TSVM 25.20 9.77
SGT 25.36 6.80
Cluster-Kernel 19.41 9.68
Data-Dep. Reg. 17.96 5.10
LDS 17.57 4.96
Laplacian RLS 18.99 4.68
CHM (normed) 20.53 7.65
Haar-like 14.01 4.70

5.1. The USPS benchmark

This benchmark (Chapelle et al., 2006) contains 1500
grey scale 16x16 images of the digits {0, . . . , 9}. The
task is to distinguish the digits {2, 5} from the rest.
The pixels are shuffled and some are missing, so
each image is viewed as a vector xi ∈ R

241. The
original benchmark consists of 10 training sets each
with 10 labeled digits, and 10 training sets each with
100 labeled digits. The affinity matrix is W (i, j) =

exp(−‖xi − xj‖2/ε) with ε = 30. Table 1 shows re-
ported results on this benchmark; The bottom row is
the test error of our classifier, constructed by averaging
over 10 trees, generated using different random seeds.
Note that unlike other SSL methods reported in this
benchmark, our Haar-like approach achieves competi-
tive results for both few and many labeled points.

For a more careful comparison, we generated 10
random training sets for each of the sizes, |S| =
20, 30, . . . , 80, 90. Fig. 2 shows that for this data
set, the Haar-like classifier dominates the Laplacian
Eigenfunction when labeled points are few and is com-
parable when they are many. When just a few la-
beled points are available, the oscillatory nature of
the Laplacian eigenfunctions limits robust estimation,
whereas the Haar-like multiscale approach allows us to
capitalize on the multiscale structure of the data set.

Further insight into the fundamental difference be-
tween Laplacian Eigenmaps (which can be viewed as
an extension of Fourier basis) and a Haar-like wavelet
basis, corresponding to a tree constructed from the
same affinity graph, can be gained by plotting the ex-
pansion coefficients of the original label function in
these two bases. Fig 4 shows in log-scale an exponen-
tial rate of decay of the Haar-like coefficients (consis-
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Figure 3. Results on the MNIST subset.
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Figure 4. Coefficient decay of target function of USPS
benchmark, in the Laplacian eigenbasis and in a Haar-like
basis. Note that in the Haar-like basis 930 coefficients out
of 1500 are identically zero.

tent with Theorem 1), in contrast to a polynomial rate
of decay of Laplacian Eigenfunctions coefficients. This
dramatic difference in the efficiency of representation
of the target function may explain the difference in
classification accuracy.

5.2. A subset of the MNIST dataset

A similar comparison was done on small subsets of
the MNIST handwritten digits3. For each of the dig-
its {8, 3, 4, 5, 7}, 200 samples were selected at ran-
dom. Digits 8 were labeled as +1, the rest as −1.
The affinity matrix was Wi,j = exp(−(1 − ρij)/σW )
with σW = 0.2 and ρij the maximal correlation be-
tween two images, up to a global up/down or left/right
shift by one pixel. For each labeled set size |S| =
10, 20, . . . , 100, classification results over 50 random
sets were recorded. Fig. 3 shows average test errors,
exhibiting a similar phenomena - a clear advantage of
the Haar-basis approach for small labeled sets.

3available at http://yann.lecun.com/exdb/mnist/
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6. Summary and Discussion

Multiscale representations of data and graphs via
Haar-like bases have various potential applications,
ranging from signal de-noising to density estimation.
In this paper we considered their application to semi-
supervised learning. Our approach raises many the-
oretical questions for further research, in particular
regarding construction of trees that best capture the
geometry of these challenging datasets.

Acknowledgments. The authors thank the anony-
mous referees for valuable suggestions. BN was sup-
ported by Israel Science Foundation grant 432/06. MG
is supported by a William R. and Sara Hart Kimball
Stanford Graduate Fellowship.

References

Bartal, Y. Probabilistic approximation of metric
spaces and its algorithmic applications. In Proc.
of the 37th Annual IEEE Symp. on Foundations of
Computer Science, 1996.

Bartal, Y. On approximating arbitrary metrics by tree
metrics. In Proc. of the 30th Annual Symp. on The-
ory of Computing, 1998.

Belkin, M. and Niyogi, P. Using manifold structure for
partially labelled classification. In Advances in Neu-
ral Information Processing Systems, Vol. 13, 2003.

Binev, P., Cohen, A., Dahmen, W., DeVore, R., and
Temlyakov, V. Universal algorithms for learning
theory, part I: Piecewise constant functions. JMLR,
pp. 1297–1321, 2005.

Breiman, L. Random forests. Machine Learning, 45:
5–32, 2001.

Breiman, L., Friedman, J. H., Olshen, R. A., and
Stone, C. J. Classification and regression trees.
Wadsworth International, Belmont, CA, 1984.

Chapelle, O., Schölkopf, B., and Zien, A. Semi-
Supervised Learning. MIT Press, 2006.

Coifman, R.R. and Donoho, D.L. Translation-
invariant de-noising. In Wavelets and Statistics, pp.
125–150, NY, 1995. Springer-Verlag.

Coifman, R.R. and Maggioni, M. Diffusion wavelets.
Appl. Comp. Harm. Anal., 21(1):53–94, 2006.

Coifman, R.R. and Weiss, G. Extensions of Hardy
spaces and their use in analysis. Bulletin of the
AMS, 83(4), 1977.

Deng, D. and Han, Y. Harmonic Analysis on Spaces
of Homogeneous Type. Springer, Berlin, 2009.

Donoho, D.L. CART and best-ortho-basis: a connec-
tion. Annals of Statistics, 25:1870–1911, 1997.

Hardle, W., Kerkyacharian, G., Picard, D., and Tsy-
bakov, A.B. Wavelets, Approximation and Statisti-
cal Applications. Springer, NY, 1998.

Herbster, M., Pontil, M., and Rojas-Galeano, S. Fast
prediction on a tree. In Advances in Neural Infor-
mation Processing Systems, Vol. 21, 2009.

Jansen, M., Nason, G.P., and Silverman, B.W. Multi-
scale methods for data on graphs and irregular mul-
tidimensional situations. J. Royal Stat. Soc. B, 71:
97–125, 2009.

Kemp, C.C., Griffiths, T.L., Stromsten, S., and Tenen-
baum, J.B. Semi-supervised learning with trees.
In Advances in Neural Information Processing Sys-
tems, Vol. 14. MIT Press, 2004.

Lee, A.B., Nadler, B., and Wasserman, L. Treelets: an
adaptive multi-scale basis for sparse unordered data.
Annals of Applied Statistics, 2(2):437–471, 2008.

Lehmann, E.L. and Casella, G. Theory of Point Esti-
mation. Springer, 2nd edition, 2003.

Mahadevan, S. and Maggioni, M. Value function ap-
proximation with diffusion wavelets and Laplacian
eigenfunctions. In Advances in Neural Information
Processing Systems, Vol. 18, 2006.

Mallat, S. A wavelet tour of signal processing. Aca-
demic Press, 2nd edition, 1999.

Murtagh, F. The Haar wavelet transform of a dendro-
gram. J. Classification, 24:3–32, 2007.

Nadler, B., Srebro, N., and Zhou, X. Semi-supervised
learning with the graph Laplacian: The limit of in-
finite unlabeled data. In Advances in Neural Infor-
mation Processing Systems, Vol. 21, 2009.

Neal, R.M. and Zhang, J. High dimensional classifi-
cation with Bayesian neural networks and Dirichlet
diffusion trees. In Feature Extraction: Foundations
and Applications, pp. 265–295. 2006.

Vapnik, V.N. Statistical Learning Theory. Wiley, NY,
1998.

Zhu, X. Semi-supervised learning literature review.
Technical report, Computer Science Department,
University of Wisconsin, 2008.

Zhu, X., Ghahramani, Z., and Lafferty, J. Semi-
supervised learning using gaussian fields and har-
monic functions. In International Conference on
Machine Learning, Vol. 13, 2003.


