
  

Simulating 
Physics
with 
Computers

Richard P. 
Feynman
Presented by Pinchas Birnbaum 
and Eran Tromer, 
Weizmann Institute of Science



  

Richard P. Feynman
1918-1988

● MIT (B.Sc.)
Princeton (Ph.D., research assistant), 
Manhattan Project (atomic bombs),
Cornell (professor),
Caltech (professor)

● Quantum electrodynamics  (Nobel prize in 1965),
superfluidity, 
weak nuclear force,
quark theory

● Famous hobbies: drumming (including a Samba band in 
Copacabana), safecracking, nude painting for Pasadena 
massage parlor, space shuttle disaster investigation...



  

Richard P. Feynman:
educator

“A lecture by Dr. Feynman is a rate treat indeed. For 
humor and drama, suspense and interest it often rivals 
Broadway stage plays. And above all, it crackles with 
clarity. If physics is the underlying 'melody' of science, 
then Dr. Feynman is its most lucid troubadour”

― Los Angeles Times science editor, 1967



  

Richard P. Feynman:
author

● Numerous textbooks / lecture transcripts

– Feynman Lectures on Physics
– Feynman Lectures on Computation
– The Character of Physical Law
– Quantum Electrodynamics
– Statistical Mechanics
– QED: The Strange Theory of Light and Matter
– ...

● Popular books

– Surely You're Joking, Mr. Feynman!
– What Do You Care What Other People Think?
– ...



  

Background (1981)
● Quantum theory has matured (to the extent relevant here)

● Computer science is up and running

● Computers have been used extensively for physical 
computation

● Recently understood links between physics and 
computation: 

– Maxwell's Daemon: relation between irreversibility in 
computation and thermodynamics

[Landauer 1961][Penrose 1970][Bennett 1982]

– Universal reversible computation and equivalence to 
general computation [Bennett 1973][Toffoli 1980]

– Realization of (classical) Turing machine under quantum 
formalism    [Benioff 1980]

– which spurs...



  

1st conference on Physics and Computation, MIT, 1981



  

1st conference on Physics and Computation, MIT, 1981



  

Simulating Physics with Computers
Richard P. Feynman

1.Can classical physics be simulated by a classical 
computer?

2.Can quantum physics be simulated by a classical 
computer?    

3.Can physics be simulated by a quantum computer?

4.Can a quantum simulation be universal?

Classical vs. quantum computational separation

Quantum computers

Quantum computation theory

Keynote talk, 1st conference on Physics and Computation, MIT, 1981
(International Journal of Theoretical Physics, 21: 467–488, 1982)



  

“Simulating” physics?
● Inherent part of using physics in other sciences and in 

technology

● Inherent part of doing physics:

– Connection between theory and experiment
– Derivation of known quantities from first principles
– Identifying deficiencies in the theory 

(e.g., diverging integrals)
– Developing interpretations of the theory and 

conceptualizations of its implications 
(e.g., Feynman diagrams)

● Computation lead to breakthroughs in linguistics, 
psychology, logic. Apply “computer-type thinking” to 
physics too.



  

(Meanwhile, behind the Iron Curtain...)
● R. P. Poplavskii, Thermodynamical models of information 

processing (in Russian), Uspekhi Fizicheskikh Nauk, 
115:3, 465–501, 1975

– Computational infeasibility of simulating quantum systems 
on classical computers, due to superposition principle

● Yuri I. Manin, Computable and uncomputable (in 
Russian), Moscow, Sovetskoye Radio, 1980

– Exploit the exponential number of basis states.
– Need a theory of quantum computation that captures the 

fundamental principles without committing to a physical 
realization.



  

Simulation requirements
● Exact

“The computer will do exactly the same as nature”
Dismisses “numerical algorithms” which yield an 
“approximate view of what physics have to do”.

● Linear size
Number of computer elements required for simulation 
a physical system is proportional (!) to the space-time 
volume of the physical system.

● Locality
No long wires (equiv., non-zero propagation delay).



  

1. Can classical physics be simulated 
by a classical computer?



  

Discretization
● Problem: space and time are continuous, but

a (classical) computer is discrete.

● Solution: assume/hope/pretend that the laws of nature 
are discrete at a level sufficiently fine that no current 
experimental evidence is contradicted.

● Note: discretization ≠ quantization.



  

Simulating time
● Classical physics is causal, so we can simulate the 

system's time evolution step by step. 

● But then “the time is not simulated at all, it is imitated 
in the computer”.

● Alternative computational model, where each cell in a 
space-time computational mesh is a function of its 
neighbors (both past and future). 

● Wonders about classical algorithms for solving this 
constraint-satisfaction problem... 

● ?!



  

Simulating probability: explicitly
● How to deal with probabilistic laws of nature (e.g., 

quantum mechanics)?

● Explicit: the simulation outputs the probability of every 
outcome

● Problem: discretized probabilities can't be exact.

● Problem: with R particles and N points in space, a 
configuration of the physical system contains ~NR  
probabilities. Too large to store (explicitly) in a 
computer of size O(N).

● “We can't expect to compute the probability of 
configurations for a probabilistic theory.”

● Roughly: claiming   #P ≠ P  or   #P ≠ ZPP
● (Implicit representations and time/space tradeoffs are not discussed.)



  

Simulating probability: implicitly
● Implicit: the simulation outputs each a (destination of) 

each outcome with correct probability.

● “Probabilistic simulator of a probabilistic nature.”

● Monte Carlo computation:
To get a prediction, run the simulator many times and 
compute its statistics. You will get the same accuracy 
as in measurements of the physical system.

● ?!

– But if an approximation vs. resources trade-off is 
allowed, why can't it allowed for the explicit simulator?

– The probability discretization problem remains (up to a 
polymomial factor)



  

2. Can quantum physics be simulated 
by a classical computer?



  

Q&A
● “Can a quantum system be probabilistically simulated 

by a classical (probabilistic, I assume) universal 
computer? In other words, a computer which will give 
the same probabilities as the quantum system does.”

(with discretized time and space, and implicit output)

● “The answer is certainly, 'No!' This is called the 
hidden-variable theorem: It is impossible to represent 
the result of quantum mechanics with a classical 
universal device.”  [Bell 1964]

(Proof omitted.)



  

Standard modern argument
● A state of the physical system corresponds to a 

function assigning a value to every basis configuration.

● The number of states is thus exponential in the size of 
the system.

● Moreover, these values are continuous.

● Different computational paths may add up.

● Nature makes this computation efficiently.

● But can a classical computers do so?

Sure. I've just described probabilistic classical physics 
and probabilistic classical computation.



  

Quantum vs. classical
● A classical (stochastic) state is represented by 

probability function:

P(x,p)

● A quantum (mixed) state is represented by a 
“state matrix” function:

ρ(x,x')

● The state matrix behaves like probability in many 
ways, except it may be negative (or complex).

(Note that the state matrix formalism differs from state function 
formalism more often employed in quantum computation.)



  

Negative “probabilities”
● Conveniently, quantum mechanics does not allow 

measurement of arbitrary “events” over this “probability 
space” (the Uncertainty Principle). 
The allowed events have non-negative probability.

● But inside the computation, you can get spooky 
behavior with no classical analog: interference.

● Contradicts locality, by Bell's theorem.

● We assumed locality for the computer.

● Hence, can't simulate that classically.

(Implicitly assumes a locality-preserving mapping of 
the physical system to the computer.)



  

Can't we?
● Explicit simulation

– Explicitly keep track of the full state matrix ρ(x,x') and 
compute its evolution.

– Exponential in number of the size of the system, 
contradicts “proportional size” requirement.

● Summation along computational paths

– Quantum mechanics is linear
– Do a depth-first search on the computation tree; compute 

the “probability” of each path separation  and keep a 
running sum.

– Exponential time, polynomial space   (BQP in PSPACE) 
– Essentially: path integral  [Feynman  1948]

– (No discussion of time complexity.)



  

A side remark:.

3. Can quantum physics be simulated
 by a quantum computer?

4. Can this simulation be universal? 



  

A quantum computer
● If physics is too hard for classical computers, then build a 

physical computer that exploits that power.

● “It does seem to be true that all various field theories have 
the same kind of behavior, and can be simulated every 
way.”

● Example: phenomena in field theory imitated in solid state 
theory (e.g, spin waves in spin pattice imitating Bose particles in field theory).

● Proposes to investigate the simulability relations between 
different (quantum) physical systems. 
Quantum analog of Church-Turing thesis.

● Conjecture: there exists a “universal quantum simulator” 
which is physically realizable and can simulate any 
physical system.



  

A universal quantum simulator
● ”I believe it's rather simple to answer that question [..], 

but I  just haven't done it.”

● Proposes (the basis of) a solution:

– Two-state system (e.g., polarized photon) with the 
4 Pauli operators operators 
A qubit  [Schumacher]

– Many copies with local coupling
● Conjectures universality.

● (No proof or suggestion of concrete realization.)



  

Feynman's conclusion

“Nature isn't classical, dammit, and if you want to 

make a simulation of Nature, you'd better make it 

quantum mechanical, and by golly it's a wonderful 

problem, because it doesn't look so easy.”



  

Quantum computation: progress
● Universal (inefficient) quantum Turing machine [Deutsch 1985]
● Universal (efficient) quantum Turing machine [Bernstein 

Vazirani 1993][Yao 1993]
● Equivalence between quantum Turing machines and (uniform) 

quantum circuits [Yao 1993]
● Quantum complexity theory [Bernstein Vazirani 1993]
● Separation results: relativized, communication complexity
● Factoring [Shor 1994]
● Promise problem [Simon 1994]
● Quantum searching [Grover 1996]
● Quantum error correction [Knill Laflamme 1996]
● Quantum cryptography (e.g., key distribution)
● Entanglement
● Experimental realizations



  

Quantum computation: challenges
● Practice

– Controlling decoherence
– Scalable implementations
– Programming paradigms

● Theory

– New algorithms and protocols
– New settings (e.g., game theory)
– Structural complexity, proving separations
– Convincing the skeptics


