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Abstract

Consider Alice, who is interacting with Bob. Alice and Bob have some shared secret which
helps Alice identify Bob-impersonators. Now consider Eve, who knows Alice and Bob, but does
not know their shared secret. Eve would like to impersonate Bob and “fool” Alice without
knowing the secret. If Eve is computationally unbounded, how long does she need to observe
Alice and Bob interacting before she can successfully impersonate Bob? What is a good strategy
for Eve in this setting? If Eve runs in polynomial time, and if there exists a one-way function,
then it is not hard to see that Alice and Bob may be “safe” from impersonators, but is the
existence of one-way functions an essential condition? Namely, if one-way functions do not
exist, can an efficient Eve always impersonate Bob?

In this work we consider these natural questions from the point of view of Ever, who is
trying to observe Bob and learn to impersonate him. We formalize this setting in a new compu-
tational learning model of learning adaptively changing distributions (ACDs), which we believe
captures a wide variety of natural learning tasks and is of interest from both cryptographic and
computational learning points of view. We present a learning algorithm that Eve can use to
successfully learn to impersonate Bob in the information-theoretic setting. We also show that
in the computational setting an efficient Eve can learn to impersonate any efficient Bob if and
only if one-way function do not exist.

1 Introduction

Consider the T-1000 robot in the movie “Terminator 2: Judgement Day”. The robot can “imitate
anything it touches... anything it samples,” which, if it were possible, would be an astonishing
computational learning achievement. The goal of the robot is to perfectly impersonate objects, but
the objects it is learning to impersonate (namely people) are highly complex, with probabilistic
behavior that changes adaptively in different settings. In this work we consider this type of com-
putational learning: we formalize a model for learning adaptively changing distributions (ACDs),
which is relevant both to the field of computational learning theory and to the field of cryptography.

The challenges of learning adaptively changing distributions are illustrated by the impersonation
example outlined in the abstract: Alice and Bob generate a random shared secret key. This secret
key is used (repeatedly) to protect Alice from Bob-impersonators: it should be impossible for
any third party that does not have the secret key to imitate Bob’s behavior (in Alice’s eyes).
Unfortunately for Alice and Bob, Eve is eavesdropping and observing Alice and Bob’s interaction.
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Eve does not know the secret key, but would like to learn to fool Alice by impersonating Bob.
How long would it take for Eve to learn to generate outputs that are indistinguishable (to Alice)
from Bob’s? What is Eve’s best strategy in this setting? These are fundamental questions in
cryptography, since if Eve can perfectly imitate Bob any meaningful notion of authentication or
identification between Alice and Bob is lost. Note that we make no restrictions on Bob’s behavior,
which may be affected by interaction, private random coins, his past outputs and even by the
environment.

Essentially, Eve wants to learn to imitate the behavior of a stochastic object whose behavior
changes adaptively. We measure learning by the ability to predict or emulate the distribution of
the object’s next output. In this work we explore this new model of learning adaptively changing
distributions (ACDs): distributions that can change adaptively and arbitrarily. Our model for
learning is inspired by the work of Kearns et al. [20] on learning static distribution, and by the
PAC-Learning model of Valiant [32]. We believe this is a very natural computational learning
model, as was evidenced by its recent use in Naor and Rothblum [25], the companion work to this
paper. The goal in [25] was to show that if a cryptographic object (an authenticator or online
memory checker) uses a cryptographic secret to generate public behavior, then after observing the
cryptographic object (not for too long), an adversary can predict the distribution of its behavior.
This is an essential ingredient for showing the cryptographic lower bound of [25].

In this paper we initiate the study of learning adaptively changing distributions. We define
the new model, and show polynomially tight bounds for the sample complexity of learning in
the information theoretic setting. We show that information-theoretically Eve can always learn
to impersonate Bob after observing him for a reasonable number of interactions with Alice. We
note that the information-theoretic task of learning ACDs is far from trivial, and we believe the
analysis of the learning algorithm is technically interesting, especially in its incorporation of the
mean value theorem in a setting of computational learning. From a cryptographic point of view,
our study of the interplay between the amount of secret entropy shared by the parties and the
ability of an unbounded adversary to impersonate one of the parties is a continuation of a similar
study initiated for encryption systems by Shannon [30] in his seminal paper on the theory of
secrecy systems. Complexity-based cryptography achieves the information-theoretically impossible
by assuming that adversaries are computationally bounded, and that some tasks (e.g. inverting a
one-way function) are hard for the adversary. In the impersonation setting, it is not hard to see that
if one-way functions exist then a computationally bounded adversary cannot learn to impersonate
all Bobs. In this work we show that an efficient adversary’s ability to impersonate Bob is tightly
tied to the existence of one-way functions: if one-way functions do not exist then Eve can efficiently
learn to impersonate any (efficient) Bob. Showing such tight equivalence between cryptographic
tasks is important because it gives a good characterization of the task’s inherent cryptographic
difficulty. Furthermore, this result is used in [25] to show that one-way functions are essential for
good online memory checking and sublinear authentication. We proceed by formally introducing
the model of learning adaptively changing distributions and formally stating our new results. A
comparison with previous work follows.

1.1 The Model

Adaptively Changing Distributions We are interested in learning distributions that change
adaptively over time. An adaptively changing distribution (ACD) is a process that defines a
(randomized) mapping between states that are composed of two parts: a public state p and a secret
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state s. In the impersonation example, the ACD is Bob (or the algorithm that Bob runs), the public
state is the public interaction between Alice and Bob, and the secret state is initially Alice and
Bob’s shared secret. An ACD is activated on such a pair of states, and each activation generates a
new pair of states, thus when Bob runs on the current public and secret states he outputs a new
public state (some new communication for Alice, appended to the history of communication), and
a new secret state (which would usually include the initial shared secret). We consider the new
public state to be the output of the process, and for simplicity restrict ourselves to a setting in
which both states do not change between activations of the ACD (i.e. only Bob generates messages
on the public channel). The set of possible public states is denoted by Sp and the set of secret
states is denoted by Ss. We do not restrict the sizes of the sets of states.

The new state is always a function of the current state and some randomness, which we assume
is taken from a set R. Thus the states generated by an ACD are determined by a function D:

D : Sp × Ss ×R 7→ Sp × Ss

When D (in the example, D is the algorithm that Bob runs) is activated for the first time, it is
run on some initial public and secret states p0 and s0 respectively (the process by which these
initial states are generated is of great importance in our learning model, and will be described and
motivated below). The public output of the process is a sequence of public states (p1, p2, . . .).

We would like to examine the task of “learning” the distribution of the next public state, with a
learning algorithm that knows D but only has access to the sequence (p0, p1, p2, . . .) of public states.
In the impersonation example the learning algorithm corresponds to Eve’s role (Eve sees only the
public communication between Alice and Bob). We compare the performance of such a learning
algorithm to that of an observer (Alice) who knows not only the public outputs, but also the initial
secret state s0. Note that the observer to which we compare the learning algorithm does not know
any other secret states, nor does it know anything about the randomness used by D in each step
(in the example, Alice only sees the initial shared secret and messages sent by Bob, she never sees
the random coins Bob flips). Thus the learning algorithm’s goal is learning to approximate the
distribution of the next public output of D, where the randomness for the distribution is over all
past activations of D, given the past public states and the initial secret state. This correspond to
Eve’s goal in the example: Eve would like to approximate the distribution of Bob’s next output in
a way that will “fool” Alice. Note that this distribution is indeed adaptive, and may change as D
is activated.

The Initial State Recall that when D is activated for the first time, it is activated on initial
secret and public states s0 and p0. The learning algorithm activates D consecutively, trying to
learn the distribution of the public state after D’s next activation (recall the distribution is taken
given all the past public information and the initial secret state), even though s0 isn’t known to it.

The initial state is selected by a distribution G, in the example this would be the secret-key-
generating algorithm that Alice and Bob use. We refer to the set of possible initial secret states as
Sinit (this is the “concept class”). The generating distribution G generates the initial secret state,
outputting an initial public state p0 ∈ Sp and an initial secret state s0 ∈ Sinit. We can view G as a
function of its randomness:

G : R 7→ Sp × Sinit

Definition 1.1. Adaptively Changing Distribution
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An adaptively changing distribution (ACD) is a pair of probabilistic algorithms for generation
(G) and for sampling (D). The generation algorithm G outputs an initial public state and an initial
secret state in Sinit. The sampling algorithm D receives public and private states, and generates
new (public and private) states.

Learning ACDs Given algorithms G and D for generation and sampling, a learning algorithm
L for the ACD (G,D) is a probabilistic algorithm that observes G and D’s public outputs as they
run. We always assume that the learning algorithm “knows” a description of G and D (for any
possible input to the algorithms, L can compute their output). A learning process begins when G
is activated, generating the initial public and secret states (p0 and s0). The learning algorithm is
then activated, and receives the initial public state p0 (the learning algorithm does not know s0!).

Throughout the learning process, the sampling algorithm D is run consecutively, changing the
public (and secret) state. Let pi and si be the public secret states after D’s i-th activation. We
often refer to the distribution Ds

i (p0, . . . , pi). This is a (conditional) distribution over the public
state that will be generated by D’s next (i + 1-th) activation.

Definition 1.2. The Distribution Ds
i

The distribution Ds
i (p0, . . . , pi) is the distribution of the next public state that D will output

(in the i + 1-th time it runs), given that past public outputs were (p0, . . . , pi), and given also that
the initial secret state that G computed was s. In the impersonation example, this is the
distribution Alice expects of Bob’s in round i + 1, given that their shared secret was s and given
the previous messages sent by Bob were (p1, . . . , pi+1).

For any initial secret state s ∈ Sinit, past public states (p0, . . . , pi), and (new) public state
pi+1 ∈ Sp: Ds

i (p0, . . . , pi)[pi+1] is the probability, conditioned on the public information (p0, . . . , pi)
and on the fact that the initial secret state G computed was s, that in D’s (i+1)-th activation, the
public output will be pi+1.

Note that (computational issues aside) the distribution Ds
i (p0, . . . , pi) can be computed by

enumerating over all random strings (for G and i + 1 activations of D), for which the algorithm G
outputs (p0, s) and then D outputs (p1, . . . , pi). The probability that D generates the new public
state pi+1 is the fraction of these random strings for which D’s i + 1-th output is pi+1.

After lettingD run for k steps, L should stop and output some hypothesis h as to the distribution
Ds0

k+1(p0, . . . , pk): the distribution of the next public state computed by D. It is important to note
that L sees only (p0, p1 . . . pk), the secret states (s0, s1 . . . sk) and the random coins used by D are
kept hidden from it. The number of times D is allowed to run (k) is determined by the learning
algorithm. We will be interested in bounding this number of “rounds”.

Definition 1.3. Learning Process
A learning process with learning algorithm L for learning an ACD (G,D) on input length n, is

run in the following manner:

1. The generating algorithm G is run on input 1n, generating initial secret and public states s0

and p0.

2. The learning algorithm L receives the initial public state p0.

3. The learning process proceeds in rounds. In each round i, L is given the new public state
and may choose whether to proceed to the next round (and get the next public state) or
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output a hypothesis h as to the distribution of the public state after D’s next activation (the
distribution Ds0

k+1(p0, . . . , pi)). The learning process halts when L outputs this hypothesis. If
L chooses not to output a hypothesis, then D is activated on the current public and secret
states, generating a new state and proceeding to the next round.

Definition 1.4. Learning Algorithm
Let L be an algorithm for learning an ACD (G,D) on input length n. We say that L is an

(ε, δ)-learning algorithm for (G,D), if when run in a learning process for (G,D), L always halts and
outputs some hypothesis h that specifies a hypothesis distribution Dh of the public state after D’s
next activation. We require that with high probability the hypothesis distribution is statistically
close to the real distribution of the next public state.

Namely, with probability at least 1− δ (over the coin tosses of D,G, and L), ∆(Ds0
k+1, Dh) ≤ ε,

where ∆ is the statistical distance between the distributions (see Section 2).

The hypothesis h can be used to generate a distribution that is close to the distribution of D’s
next public output. In the terminology of [20] we focus on learning by generation, though in the
information-theoretic setting learning by generation and evaluation are equivalent.

The main complexity measure for an ACD learning algorithm is the maximal number of rounds
it lets D run before outputting the hypothesis h (the sample complexity). Naturally, we expect that
the higher ε and δ are, and the larger the concept class Sinit, the higher the sample complexity for
learning the ACD will be.

Our goal in this work is to study under what conditions ACDs can be learned, and to quantify
the number of rounds required for learning ACDs. We present an algorithm for learning any ACD.
Unfortunately, this “generic” algorithm may need exponential time even if the generation and
sampling algorithms are efficient (i.e. polynomial time). We initiate a study of the computational
complexity of learning ACDs, especially the conditions under which learning ACDs efficiently (in
polynomial time) is always possible.

To study the complexity of learning ACDs (sample complexity or computational complexity),
we consider the task of learning ACDs for many input lengths. Towards this end we consider
an ACD as an ensemble, or a family of ACDs, one for each input length. We will assume the
input length parameter 1n is given as input to the generating algorithm G1. The input length
parameter is always known to the learning algorithm L, and thus (w.l.o.g) we assume it is part of
the initial public state p0 that G outputs. We require that the generation and sampling algorithms,
as well as the learning algorithm itself, work for different input lengths. Note that the generation
and sampling algorithms may be either uniform or non-uniform. In the latter case, the learning
algorithm will also be non-uniform. Throughout this work, when we refer to ACDs or learning
ACDs, we always implicitly refer to ensembles of ACDs.

Definition 1.5. Learning ACDs
Let L be an algorithm for learning an ACD (G,D). We say that L is an (ε(n), δ(n))-learning

algorithm for (G,D), if there exists some n0 such that for any input length n ≥ n0, the algorithm
L is a (ε(n), δ(n))-learning algorithm for (G,D) on input length n.

1Throughout this work will refer to G’s input as always being 1n, though our results hold even if G’s input is some
auxiliary input string in {0, 1}n (assuming this auxiliary input to G is known to the learning algorithm).
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1.2 Our Results

In Section 3 we present an algorithm for learning ACDs and analyze its sample complexity (without
limiting its running time). The learning algorithm checks whether almost all of the initial secret
states induce statistically close distributions. If they do, then the algorithm has a good idea of the
distribution of the next public output. If not, then we show that the algorithm can expect to learn
something about the initial secret state. This is a very natural observation: “If I can’t simulate
what is about to happen, then I can expect to learn something by observing it” (this is the converse
to the observation “if I can simulate what is going to happen, then I learn nothing from observing
it”, which is the basis of the definition of zero knowledge protocols in cryptography, see Goldwasser,
Micali and Rackoff [13]).

More formally, we examine the initial secret state as a random variable, and show that unless
almost all initial secret states induce close distributions, after D generates a new public state there
is a large expected drop in the Shannon Entropy of the initial secret state. The learning algorithm is
guaranteed to learn an ε-close distribution with probability at least 1− δ after at most O( log |Sinit|

ε2·δ2 )
rounds (“samples”). In terms of its running time the learning algorithm may require exponential
time even if the ACD’s algorithms G and D run in probabilistic polynomial time. In Appendix A
we present a lower bound, proving that learning ACDs requires sample complexity that is at least
linear in log |Sinit|, in 1

ε and in 1
δ . Specifically, we prove that learning ACDs requires activating D

at least Ω(1
δ + log |Sinit|

ε ) times. In particular, this implies that algorithms for learning ACDs cannot
be amplified efficiently (as opposed to, for example, PAC learning algorithms). We note that the
algorithm we present is nearly optimal in the sense that no other algorithm for learning ACDs can
achieve better (up to constant factors) performance (more on this in Section 3), the polynomial
gap between our upper and lower bound only indicates that perhaps our analysis is not optimal.

In fact in all our upper bounds the log |Sinit| factor can be improved to H(s0), where H(s0)
is the Shannon entropy of the initial secret state s0 that G outputs, given p0. Additionally, an
alternative (stronger) statement of the result would be that the algorithm can generate an ε-close
distribution in all but at most O( log |Sinit|

ε2·δ2 ) rounds. We note that all the results hold even if the
public state is not guaranteed to be persistent, and may change between activations of D. For
example, this could be the case in the impersonation scenario, if Alice issued “challenges” to Bob:
Alice’s “challenges” would be added to the public state between activations of Bob.

In Section 4 we investigate the computational power needed to learn ACDs that are constructible
in probabilistic polynomial time. We first observe that if one-way functions (see Section 2 for
standard cryptographic definitions) exist, then there exist ACDs constructible in polynomial time
that cannot be learned in polynomial time. We show that one-way functions are also an essential
condition. One-way functions (that are hard to invert for infinitely many input lengths) exist if
and only if there exists a polynomial time ACD that cannot be learned by any polynomial time
algorithm that activatesD at most O( log |Sinit|

δ2·ε2 ) times. One example for an ACD that is constructible
in polynomial time is any probabilistic automata with a polynomial number of states.

To show this result we improve a fundamental result of Goldreich [9]: he showed that one-way
functions exist if and only if there exist a pair of polynomial-time constructible distributions (ensem-
bles) that are statistically far but computationally indistinguishable. This result does not, however,
specify how large a gap between the statistical and computational distinguishabilities implies the
existence of one-way functions (Goldreich only shows that some polynomial gap suffices). In our
setting the question becomes cardinal, and we prove an essentially tight result: one-way functions
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exist if and only if there exist a pair of polynomial-time constructible distributions (ensembles)
with statistical distance ε, such that no polynomial-time algorithm can distinguish between them
with advantage that is close to ε.

1.3 A Discussion of The Model

We turn to discussing the model of learning adaptively changing distributions, and especially the
motivation for our definition of learnability in this model. We would like to argue that several
(seemingly innocuous) modifications to the definition of learning ACDs would make the learning
task too hard or impossible.

In this work, we present an algorithm for learning any ACD. The algorithm will work for any
ACD (G,D), as long as it knows G and D. Note that unlike other models of learning (e.g. the PAC-
learning model), even in the information-theoretic setting, we can never hope to guarantee that
after letting the algorithm run for a set number i of rounds, it always outputs a good hypothesis.
This is since (for example), for any fixed i, the ACD may output some fixed distribution up to
round i, and only then begin to use its secret state! An algorithm for learning ACDs must use its
knowledge of the ACD (G,D) in order to decide, on-the-fly, at what round it outputs its hypothesis.

In our model for learning ACDs we compare the performance of the learning algorithm to that
of an observer who knows the initial secret state. It is natural to ask whether one could design a
learning algorithm that gains as good an idea about the distribution of the next public state as an
observer who knows all the secret states, however this turns out to be impossible. No algorithm for
learning ACDs can hope to learn the distribution of the public state generated by the ACD’s next
activation given all the the secret states. To see this, consider for example that the distribution
generated in the next activation may be determined by a random string that was flipped in the
ACD’s last activation and stored in the secret state. In this scenario, no learning algorithm (that
does not see the last secret state) can hope to learn the distribution of the ACD’s next public
output. This is the reason that we settle for learning the distribution where the randomness is
taken over all previous activations of D, given all past public outcomes. Also, we cannot hope
for exact learning, since two different initial secret states may behave extremely similarly: in this
scenario no learning algorithm could exactly learn the distribution of the next public state with
high probability. Thus, we settle for approximate learning.

1.4 Related Work and its Relationship

Computational Learning Kearns et al. [20] were the first to explore efficient approximate
learning of static distributions, inspired by the PAC-learning model of Valiant [32]. They showed
that if one-way functions exist, then there exist sets of distributions that are easy to construct but
hard to learn. Thus they focused on presenting efficient learning algorithms for restricted classes
of static distributions. Our work diverges in its focus on adaptively changing distributions.

Much attention has been given in the computational learning literature to learning finite-state
automata, see Kearns and Vazirani [22]. Other work has considered learning probabilistic automata
(PFAs) and especially hidden Markov models (HMMs). The focus of this research is learning the
object generating samples (e.g. learning the transition probabilities of the HMM), and computing
maximum likelihood estimates on unknown data. A tutorial on the theory of HMMs and appli-
cations to speech recognition is given by Rabiner [27]. Abe and Warmuth [1], and Gillman and
Sipser [8] showed hardness of learning HMMs. Kearns et al. [20] presented hardness results for
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learning general PFAs. On the other hand, the Baum-Welch method [2, 3] is often used in practise
for learning HMMs from a sample. Ron et al. [28] presented an algorithm for learning a restricted
class of PFAs. While ACDs may bear a superficial resemblance to HMMs (both can be viewed as
chains of secret and public states), the size of an ACDs secret state is not bounded, and thus each
new public and secret sample generated by an ACD may in fact be a function of all previous secret
and public states. In HMMs the size of the secret state is bounded and small, furthermore each
secret states is only a function of the previous secret state.

Other work that is relevant in the field of computational learning theory includes the study
of drifting concepts (see [15]). In the model of drifting concepts, a learning algorithm is trying to
approximate a (standard) concept that is slowly changing. This is very different from the model
of ACDs. ACDs are probability distributions (and not concepts), and no restriction is made on
the amount of change in the distribution between samples. Kearns and Schapire [21] began an
investigation of learning probabilistic concepts, where examples are not simply labelled as 0 or 1,
but have a probability of being 0 or 1. Despite the fact that they are probabilistic, learning these
(static) concepts is different from the task of learning distributions. Probabilistic concepts induce
a probability distribution on the label of each example, whereas when dealing with distributions
the learning algorithm only sees samples, and no “labelled examples” come into play.

Cryptographic Primitives An central question in cryptography is studying which assump-
tions are required to implement a cryptographic task or primitive. For most cryptographic tasks
the answer is well understood: either one-way functions are essential and sufficient, or stronger
assumptions are used. This study was initiated by Impagliazzo and Luby [18], who showed that
implementing many central cryptographic tasks implies the existence of one-way functions. Proving
that one-way functions are essential and necessary for implementing a cryptographic task provides
a good characterization of the task’s inherent difficulty, and the possibility of actually implementing
a solution (for a discussion see Impagliazzo [16]).

Impagliazzo and Levin [17] showed that efficient universal learning (in an “average case” model)
is possible if and only if one-way functions do not exist. They show that universal learning becomes
possible exactly when cryptography becomes impossible (and vice versa). In this work we show a
similar result for learning adaptively changing distributions.

Identification and Authentication In the setting of secret-key cryptography, Shannon [30]
defined perfect secrecy as statistical independence of the plaintext and ciphertext, and then showed
that perfect secrecy requires that the entropy of the secret key be at least as large as the entropy
of the plaintext. In the context of authentication and identification there is no clear definition of
perfect security, since an adversary always has some chance of forging a message or impersonating
one of the parties. A study on information-theoretic lower bounds for authentication theory was
initiated by Simmons [31]. See Maurer [24] for a more generalized lower bound.

In the setting of identification, a corollary of our results on learning ACDs is that if Alice and
Bob share a secret key with entropy H(K), then even in a very general model where they can each
maintain a very large state, interact and use the environment2, a computationally unbounded Eve
can (almost) perfectly impersonate Bob in all but O(H(K)) rounds of identification. Furthermore,

2This assumes, of course, that Eve knows everything that Alice does about the environment. This isn’t the case,
for example, in the bounded storage model of cryptography.
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we show that in a computational setting the existence of one-way functions is an essential (and
sufficient) condition for breaking the O(H(K)) lower bound.

2 Definitions and Notations

2.1 Preliminaries

Notation We denote by [n] the set {1, 2, . . . n}. For a vector ~v, we refer to ~v’s i-th coordinate as
~vi. For a (discrete) distribution D over a set X we denote by x ∼ D the experiment of selecting
x ∈ X by the distribution D. For x ∈ X, we denote by D[x] the probability of x being selected by
the distribution D. For a subset A ⊆ X we denote by D[A] the probability (or weight) of the set
A by the distribution D (i.e. D[A] =

∑
x∈A D[x]).

Distributions, Ensembles and Entropy An ensemble D = {Dn}n∈N is a sequence of random
variables, each ranging over {0, 1}`(n), we consider only ensembles where `(n) is polynomial in n
(we occasionally abuse notation and use D in place of Dn). An ensemble D is polynomial time
constructible if there exists a probabilistic polynomial time Turing Machine (PPTM) M such that
Dn = M(1n).

We denote by H(X) the (Shannon) entropy of a distribution X over {0, 1}`, as defined by
Shannon in [29] (see also Cover and Thomas [6]).

H(X) = −
∑

α∈{0,1}`

Pr[X = α] · log(Pr[X = α])

Definition 2.1. The statistical distance between two distributions X and Y over {0, 1}`, which we
denote by ∆(X, Y ), is defined as:

∆(X, Y ) =
1
2

∑

α∈{0,1}`

|Pr[X = α]− Pr[Y = α]|

Definition 2.2. Two distributions X and Y are ε-statistically far if ∆(X,Y ) ≥ ε. Otherwise X
and Y are ε-statistically close.

Similarly, two ensembles D and F are ε(n)-statistically far if there exists some n0 such that for
all n ≥ n0 the distributions Dn and Fn are ε(n)-statistically far.

D and F are ε(n)-statistically close if there exists some n0 such that for all n ≥ n0 the distri-
butions Dn and Fn are ε(n)-statistically close. Note that ensembles that are not ε(n)-statistically
far are not necessarily ε(n)-statistically close.

We say that two ensembles X and Y are statistically far if there exists some polynomial p such
that X and Y are 1

p(n) -statistically far.

Definition 2.3. Computational Indistinguishability (Goldwasser Micali [12], Yao [33]) Two prob-
ability ensembles D and F are ε(n)-computationally indistinguishable if for any PPTM M, that
receives 1n and one sample s from Dn or Fn and outputs 0 or 1, there exists some n0 such that:

∀n ≥ n0 : |Prs∼Dn [M(s) = 1]− Prs∼Fn [M(s) = 1]| < ε(n)

We say that two ensembles D and F are computationally indistinguishable if for any polynomial
p, D and F are 1

p(n) -computationally indistinguishable.
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Definition 2.4. False Entropy Ensemble (H̊astad, Impagliazzo, Levin, Luby [14]) A polynomial-
time constructible ensemble F is a false entropy ensemble if there exists a polynomial-time con-
structible ensemble D such that F and D are computationally indistinuguishable but D has higher
entropy than F : there exists a polynomial p and n0 ∈ N such that:

∀n ≥ n0 : H(Dn) ≥ H(Fn) +
1

p(n)

One-way and distributionally one-way functions A function f , with input length k(n) and
output length `(n), specifies for each n ∈ N a function fn : {0, 1}k(n) 7→ {0, 1}`(n). We only
consider functions with polynomial input lengths (in n), and occasionally abuse notation and use
f(x) rather than fn(x) for simplicity. The function f is computable in polynomial time (efficiently
computable) if there exists a Turing Machine that for any x ∈ {0, 1}k(n) outputs fn(x) and runs in
time polynomial in n.

Definition 2.5. A function f is a one-way function if it is computable in polynomial time, and for
any PPTM A the probability that A inverts f on a random input is negligible. Namely, for any
polynomial p, there exists some n0 such that:

∀n ≥ n0 : Prx∼Uk(n),M[M(f(x)) ∈ f−1(f(x))] <
1

p(n)

Definition 2.6. Distributionally One-Way Function (Impagliazzo Luby [18]) A function f is dis-
tributionally one-way if it is computable in polynomial time, and for some constant c > 0, for any
PPTM M, the two ensembles:

1. x ◦ f(x), where x is selected by Uk(n)

2. M(f(x)) ◦ f(x), where the randomness is over x ∼ Uk(n) and M’s coin flips

are 1
nc -statistically far (if the ensembles are not 1

nc -statistically far we say that M comes 1
nc -close to

inverting f). The intuition is that it is hard to find a random inverse of a distributionally one-way
function (even though finding some inverse may be easy). This is a weaker primitive than a one-way
function, in the sense that any one-way function is also distributionally one-way, but the converse
may not be true. Despite this, the following lemma states that the existence of both primitives is
equivalent.

Lemma 2.1. (Impagliazzo Luby [18]) Distributionally one-way functions exist if and only if one-
way functions exist.

We now define almost one-way functions, functions that are only hard to invert for infinitely
many input lengths (compared with standard one-way functions that are hard to invert for all but
finitely many input lengths).

Definition 2.7. A function f is an almost one-way function if it is computable in polynomial
time, and for infinitely many input lengths, for any PPTM A, the probability that A inverts f on
a random input is negligible. Namely, for any polynomial p, there exist infinitely many n’s such
that:

Prx∼Uk(n),M[M(f(x)) ∈ f−1(x)] <
1

p(n)
Similarly, we define almost distributionally one-way functions as functions that are hard to

randomly invert for infinitely many input lengths, the existence of almost one-way and almost
distributionally one-way functions are equivalent, by the methods [18] used to prove Lemma 2.1.
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3 An Information Theoretic Learning Algorithm

In this section we present an algorithm for learning ACDs. Recall the algorithm can only observe
D’s public outputs as it runs. After observing D’s public outputs for i steps, we refer to the
distribution Gi: A (conditional) distribution over Sinit (recall Sinit is the concept class of possible
initial secret states). For a secret state s ∈ Sinit, Gi[s] is the conditional probability that s was
the initial secret state computed by G (s = s0), given all public information (the initial public
state G computed was p0 and the public outputs of the past activations of D were (p1 . . . pi)). The
randomness is over G and D’s (secret) random coins.

Recall also that Ds
i (defined in Section 1) is the distribution of the public state that will be

generated by D’s next activation (D’s public output), given that the initial secret state was s, and
given all the public information.

We will present an information-theoretic learning algorithm L for learning any ACD (G,D). We
do not analyze L’s size or running-time, but note that it uses G and D, and if G and D are uniform
then so is L. We remark that in general L is not polynomial-time, and even if G and D are PPTMs,
L as we present it below may require exponential time (we will see in the next section that if there
is no efficient learning algorithm for a polynomial-time ACD, then almost one-way functions exist).

Theorem 3.1. For any ACD (G,D), there exists a learning algorithm L that (δ(n), ε(n))-learns
the ACD, and activates D for at most O

(
log |Sinit|

δ2(n)·ε2(n)

)
steps.3

Proof. The hypothesis that the learning algorithm will output will be some secret state h ∈ Sinit,
such that with high probability the hypothesis secret state and the real secret state (s0) induce
statistically close distributions after D’s next activation.

We refer to a fixed input length n, and take δ = δ(n) and ε = ε(n). As the algorithm runs,
we examine the random variable X, the initial secret state that G computed (s0), and its Shannon
Entropy H(X) (see Section 2). Intuitively, as L sees samples distributed by Ds0

i , this entropy
should decrease. We will show that in each round either most of G’s possible outputs generate close
distributions, in which case the algorithm can stop, or the algorithm is given a new sample and the
expected entropy of X given the new sample decreases significantly.

The learning algorithm L
1. For i ← 1 . . . 64·log |Sinit|

δ2(n)·ε2(n)
do:

(a) If there exists some very high weight (by Gi) subset of initial secret states, whose distri-
butions (Ds

i ) are all “close” then we can terminate: if there exists some A ⊆ Sinit such
that PrGi [A] ≥ 1− δ

2 and ∀a1, a2 ∈ A,∆(Da1
i , Da2

i ) ≤ ε, then choose some h ∈ A, output
h and terminate.

(b) Activate D to sample pi+1 and proceed to round i + 1.

2. If the condition of Step 1a was not met in any loop iteration, output arbitrarily some h ∈ Sinit

and terminate.

Claim 3.1. If L terminates within the loop in round i, then with probability at least 1 − δ
2 , the

statistical distance ∆(Ds0
i , Dh

i ) is at most ε

3As mentioned previously, this theorem holds even if G is given an “auxiliary” input in {0, 1}n, instead of just an
input length parameter. In this setting, the learning algorithm also sees the auxiliary input.
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Proof. For any two initial secret states in A, the statistical distance between their induced distribu-
tions is at most ε. If L terminates in the loop, then PrGi [A] ≥ 1− δ

2 and thus PrGi [s0 ∈ A] ≥ 1− δ
2 .

If s0 ∈ A then (since h ∈ A) we conclude that ∆(Ds0
i , Dh

i ) ≤ ε.

It remains to bound the probability that L terminates in its second step. This will be done by
showing that as long as the condition of the first step in the loop does not hold, the entropy H(X)
decreases significantly with high probability. Towards this end we examine each round separately,
and look at two random variables:

• The random variable Xi over Sinit, distributed by Gi. This is the conditional distribution of
the secret state generated by G, given all of the past public outcomes.

• The random variable Yi over Sp, the public output of D’s next activation, given all of the
past public output. This distribution can be generated by sampling an initial secret state s
by Gi and then sampling from Ds

i .

We would like to show that the expected entropy of Xi given Yi is significantly smaller than the
entropy of Xi.

Lemma 3.1. For any distribution Gi on the initial secret state, if in the i-th round the condition
of Step 1a of L does not hold (i.e. there exists no A ⊆ Sinit such that PrGi [A] ≥ 1 − δ

2 and
∀a1, a2 ∈ A,∆(Da1

i , Da2
i ) ≤ ε), then the expected entropy drop is:

Ey∼Yi [H(Xi)−H(Xi|Yi = y)] ≥ ε2 · δ
32

Proof. The expected entropy drop is exactly:

Ey∼Yi [H(Xi)−H(Xi|Yi = y)] = H(Xi)−H(Xi|Yi) = I(Xi; Yi) = H(Yi)−H(Yi|Xi)

Where I(Xi;Yi) is the mutual information between Xi and Yi (see [6]). Consider the distributions
on the next public state {Ds

i }s∈Sinit over Sp, where t = |Sp|. We view these distributions as vectors
in Rt (the j-th coordinate of the vector is the probability of public state j by the distribution),
and denote ~ds = Ds

i (∀s ∈ Sinit, ‖~ds‖1 = 1). In round i, since L did not terminate inside the loop,
∀A ⊆ Sinit such that PrGi [A] ≥ 1− δ

2 we know that ∃a1, a2 ∈ A such that ∆( ~da1 ,
~da2) > ε, where

∆ is the statistical distance (1
2‖ ~da1 − ~da2‖1).

For a vector ~v ∈ Rt, define the set of vectors that are γ-close to ~v:

Bγ
~v , {s : ∆(~v, ~ds) ≤ γ}

Since for all ~v ∈ Rt every two distributions in B
ε
2
~v are ε-close:

∀~v ∈ Rt, P rGi [B
ε
2
~v ] ≤ 1− δ

2

We now turn to using the mean value theorem (see e.g. [24]): consider the Entropy function as
η : Rt 7→ R, where η(~v) = −∑t

j=1 ~vj · log~vj (we take 0 log 0 = 0). The random variable Yi is
distributed by the weighted mean of the distributions ~y =

∑
s∈Sinit

Gi[s] · ~ds, so H(Yi) = η(~y) and
we also note that H(Yi|Xi) =

∑
s∈Sinit

Gi[s] · η(~ds). W.l.o.g. we assume ∀j ∈ [t], yj > 0 (if yj = 0
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then no distribution ever samples coordinate j, and thus we can ignore the coordinate altogether).
By the mean value theorem for every s ∈ Sinit there exists some ~̀

s on the line between ~y and ~ds

such that:
η(~ds) = η(~y) +∇η(~y)× (~ds − ~y) +

1
2
(~ds − ~y)T ×Hesη( ~̀s)× (~ds − ~y)

Where Hesη(`s) is the Hessian of the function η at `s, the matrix of second derivatives of η at `s.
For the entropy functions we get that

Hesη( ~̀s) =



− 1

( ~̀
s)1

0 . . . 0

0 . . . . . . 0
0 . . . 0 − 1

( ~̀
s)t




Therefore, by taking:

αs , 1
2
· (~ds − ~y)T ×Hesη( ~̀s)× (~ds − ~y) = −1

2
·

t∑

j=1

((~ds)j − (~y)j)2

( ~̀s)j

We get by the mean value theorem that:

H(Yi)−H(Yi|Xi) = η(~y)−
∑

s∈Sinit

Gi[s] · η(~ds)

= η(~y)−
∑

s∈Sinit

[
Gi[s] ·

(
η(~y) +∇η(~y)× (~ds − ~y) + αs

)]

= η(~y)−

 ∑

s∈Sinit

(Gi[s] · η(~y))


−∇η(~y)×


 ∑

s∈Sinit

(Gi[s]× (~ds − ~y))


−


 ∑

s∈Sinit

(Gi[s] · αs)




= η(~y)− [η(~y)]−∇η(~y)× [~y − ~y]−

 ∑

s∈Sinit

(Gi[s] · αs)




= −
∑

s∈Sinit

Gi[s] · αs

We now bound αs for s such that ∆(~y, ~ds) ≥ ε
2 . We concentrate on j’s in T such that |(

~ds)j−(~y)j |
( ~̀

s)j
≥ ε

4 .

For such “good” j’s we make the following claim:

Claim 3.2. If ∆(~y, ~ds) ≥ ε
2 , then

∑
good j′s |(~ds)j − (~y)j | ≥ ε

2

Proof. For “bad j’s” (j’s that aren’t “good”) we know that ε
4 >

|( ~ds)j−(~y)j |
( ~̀

s)j
≥ |( ~ds)j−(~y)j |

max{( ~ds)j ,(~y)j}
, and

thus:
|(~ds)j − (~y)j | < ε

4
·max{(~ds)j , (~y)j}

We conclude that: ∑

bad j′s

|(~ds)j − (~y)j | <
∑

bad j′s

ε

4
·max{(~ds)j , (~y)j} ≤ ε

2

The statistical difference ∆(~y, ~ds) is at least ε
2 , so the sum of differences on all indices is at least ε.

Thus the sum of differences on “good” indices must be at least ε
2 .
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We conclude that:

−αs =
1
2
·

t∑

j=1

|(~ds)j − (~y)j |2
( ~̀s)j

≥ 1
2

∑

good j′s

|(~ds)j − (~y)j |2
( ~̀s)j

≥ 1
2

∑

good j′s

ε

4
|(~ds)j − (~y)j | ≥ ε2

16

Now recall that PrGi [B
ε
2
~y ] < 1 − δ

2 , or in other words the total weight of vectors ~ds that are at
distance at least ε

2 from ~y (“good” vectors) is at least δ
2 . We conclude that:

H(Yi)−H(Yi|Xi) =
∑

s∈Sinit

Gi[s] · −αs ≥
∑

good s′s

Gi[s] · −αs ≥ ε2

16

∑

good s′s

Gi[s] ≥ ε2

32
· δ

We have shown that the expected entropy drop of Xi in each round is at least δ·ε2

32 (regardless
of past outcomes). The initial entropy of X is at most log |Sinit|, and thus (using Theorem B.1 of
Appendix B), within the first 64·log |Sinit|

δ2·ε2 rounds, with probability at least 1− δ
2 , the entropy of X

conditioned on past samples becomes 0. This is true even though the entropy losses, as random
variables, are not at all independent. For a full discussion of this result, see appendix B which deals
with probabilistic recurrence relations. Once the entropy of X given past samples becomes 0, s0 is
known and the algorithm will terminate within the loop.

To conclude, with probability at least 1− δ
2 the algorithm’s termination is in the loop. When

the algorithm terminates in the loop, with probability at least 1− δ
2 its hypothesis distribution is

ε-close to the target distribution. Thus, the success probability of the algorithm is at least 1−δ.

4 Hard to Learn ACDs Imply Almost One-Way Functions

4.1 Two Useful Results

Combining almost one-way functions In this paper we use several efficiently computable
functions, and show that if there exist algorithms that for all but finitely many n’s can find almost-
random inverses for all the functions then there exist no ACDs that are hard to learn. We would
like to use this fact to show that the existence of hard to learn ACDs implies the existence of
one-way functions. The difficultly is that the sets of functions may be of polynomial size, if almost
one-way functions do not exist then each of the functions is invertible for all but finitely many n’s,
but this does not directly imply that together they are all invertible for all but finitely many n’s.
The following Lemma deals with this technicality, and the proof can also be applied to collections
of standard one-way functions:

Lemma 4.1. For n ∈ N, let f1 . . . fq(n) be some collection of efficiently computable functions, where

fin : {0, 1}ki(n) 7→ {0, 1}`i(n)

If almost one-way functions do not exist, then for any polynomial p there exists a PPTM M such
that for all but finitely many n’s, for all i ∈ [q(n)], M with input i comes 1

p(n) -close to inverting fi

(the distributions x ◦ fin(x) and M(i, fin(x)) ◦ fin(x), where x ∼ Uki(n), are 1
p(n) -close).
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Proof. We define a new function g, that receives an input beginning with an index i ∈ [q(n)]
and activates fi on the rest of it’s input. For any n, gn’s domain size is kg(n) = log q(n) +
maxj∈[q(n)]{kj(n)}, and gn’s range size is `g(n) = log q(n) + maxj∈[q(n)]{`j(n)}.

gn(i, x, z) = (i, fi(x), 0`g(n)−`i(n)−log q(n))

Where i ∈ {0, 1}log q(n), x ∈ {0, 1}ki(n), z ∈ {0, 1}kg(n)−ki(n)−log q(n) (z pads the input so we can use
inputs of a similar length for all fi’s, the output is similarly padded).

We assumed that almost one-way functions do not exist, and thus g is not almost distributionally
one-way and there exists an algorithm M that for all but finitely many n’s comes 1

q(n)·nc -close to
inverting g on randomly selected inputs. This implies that for all but finitely many n’s, for any
fixed i ∈ [q(n)], M comes 1

nc -close to inverting g on inputs of the form (i, x, z), where x and z are
selected uniformly and at random (and i is fixed).

We construct a PPTM M′ for inverting fin ’s: on input (i, y) the PPTM M′ activates M on
(i, y, 0`g(n)−`i(n)) to get (i, x, z) and returns x. M′’s activation ofM is on the distribution generated
by selecting x and z uniformly and at random, and then activating g on (i, x, z) (i is fixed) . We
have seen that for all but finitely many n’s M comes 1

nc -close to inverting g on inputs of this form.
Thus, for all but finitely many n’s, for any i ∈ [q(n)], when M′ is activated with i it also comes
1
nc -close to inverting fin on a randomly selected input.

Statistical versus computational distance Goldreich [9] showed that one-way functions exist
if and only if there exist ensembles that are statistically far but computationally indistinguishable.
This result is important in showing the connection between widely used cryptographic primitives,
but it leaves an interesting question open: how much larger than the computational distinguishabil-
ity can the statistical distance be before one-way functions are implied? Goldreich shows that some
polynomial gap implies one-way functions, but it seems natural to try and improve this result for
smaller gaps. For example, does the existence of a pair of ensembles that are at statistical distance
1
2 , but cannot be distinguished with advantage 1

100 by any PPTM, imply the existence of one-way
functions? Goldreich’s result, and the methods he uses (using false entropy generators and the
results of H̊astad et al. [14]), do not provide an answer to this question. In the next Theorem we
provide a simpler and self-contained (up to the equivalence of one-way and distributionally one-way
functions) proof of a tighter result. As a corollary we derive a simpler proof that the existence of
false-entropy generators implies the existence of one-way functions.

Theorem 4.1. One-way functions exist if and only if there exists a pair of polynomial time con-
structible ensembles D0 and D1 and polynomials ε(n), p(n) such that:

• The ensembles D0 and D1 are ε(n)-statistically far.

• The ensembles D0 and D1 are (ε(n)− p(n))-computationally indistinguishable.

Proof. If one-way functions exist then there exist pseudo-random generators (see [14]), and thus
there exist ensembles that are very far statistically but computationally indistinguishable. We will
focus on the second direction of the theorem. Assume (w.l.o.g.) the two sequences are over the
same domain T . We look at D0 and D1 as functions, whose input is the random coins flipped
by the algorithms that generate the ensembles. Suppose the polynomial q(n) bounds from above
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the number of coins flipped by both D0
n and D1

n. We construct an efficiently computable function
gn : {0, 1}q(n)+1 7→ T

∀r ∈ {0, 1}q(n) : g(b, x) =
{

D0
n(r) when b = 0

D1
n(r) when b = 1

If one-way functions do not exist then g is not distributionally one-way and there exists a PPTM
M that, for infinitely many n’s, comes O(p3(n) · 1

log 1
p(n)

)-close to finding a random inverse for g.

We will use M to construct an efficient algorithm A for distinguishing between D0 and D1. A
receives a sample s in the domain T of the distributions. The sample s is generated by activating
the function g on a uniformly random input (both the bit b and the random string r are selected
uniformly and at random). The goal of the algorithm A will be to “guess” whether the bit b used
to generate the sample was 0 or 1 (A’s out put is a single bit). We will show that if b and r are
selected uniformly and at random, then A guesses b correctly with probability 1

2 + ε
2 − p(n)

2 , which
implies that D0

n and D1
n are not (ε(n)− p(n))-computationally indistinguishable.

The Algorithm A on input s:

1. for i ← 1 . . . O( 1
p2(n)

· log 1
p(n)):

activate M to get (bi, ri) ←M(s)

2. If at least half of the bi’s are 0’s, answer 0, otherwise answer 1.

The following lemma shows that A is a good predictor for b on a uniformly generated sample:

Lemma 4.2. If ∆(D0
n, D1

n) ≥ ε(n), then the probability that A successfully predicts b is bounded
away from 1

2 :

Pr[A(g(b, r)) = b] ≥ 1
2

+
ε

2
− p(n)

2
Where the probability is over the random selection of (b, r) and A’s coin tosses.

Proof. Denote the statistical distance between D0
n and D1

n by ε. We begin by assuming that M
randomly inverts g (in truth M only comes statistically close to randomly inverting g, which will
suffice). We divide the samples in the distributions’ domain T into three disjoint sets, T0, T≈ and
T1, according to which of the two distributions gives them a higher probability. The set T0 is the
set of items whose probability by D0 is significantly larger than their probability by D1, T1 is the
set of items whose probability by D0 is significantly smaller than by D1, and T≈ includes all items
not in T0 or T1 (items whose probability by both distributions is approximately equal). Formally:

T0 = {s ∈ T : (1 +
p(n)

4
)D1

n[s] < D0
n[s]}

T1 = {s ∈ T : (1 +
p(n)

4
)D0

n[s] < D1
n[s]}

T≈ = {s ∈ T :
D0

n[s]

(1 + p(n)
4 )

≤ D1
n[s] ≤ (1 +

p(n)
4

)D0
n[s]}

The algorithm A answers 0 on items in T0 and 1 on items in T1 (with high probability):
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Claim 4.1. If s ∈ T0, then Pr[A(s) = 0] ≥ 1− p(n)
100 . If s ∈ T1, then Pr[A(s) = 1] ≥ 1− p(n)

100 .

We now analyze A’s success probability. Suppose that the sample s is generated by D0
n (the

case b = 0). To bound from below the probability that A outputs 0, we consider the 3 possible
scenarios s ∈ T0, s ∈ T≈, s ∈ T1. If s ∈ T0, then A outputs 0 with probability at least 1− p(n)

100 (see
Claim 4.1). We get that:

Pr[A(s) = 0|b = 0] ≥ D0
n[T0] · (1− p(n)

100
) +

∑

s∈T≈

D0
n[s] · Pr[A(s) = 0]

And similarly:

Pr[A(s) = 1|b = 1] ≥ D1
n[T1] · (1− p(n)

100
) +

∑

s∈T≈

D1
n[s] · Pr[A(s) = 1]

Since b is selected uniformly and at random we conclude that:

2 · Pr[A(s) = b] ≥ (1− p(n)
100

) · (D0
n[T0] + D1

n[T1]) +
∑

s∈T≈

D0
n[s] · Pr[A(s) = 0] + D1

n[s] · Pr[A(s) = 1]

Focusing on the second part of the equation, observe that:

∑

s∈T≈

D1
n[s] · Pr[A(s) = 1] ≥

∑

s∈T≈

D0
n[s]

1 + p(n)
4

· Pr[A(s) = 1]

=
∑

s∈T≈

(D0
n[s]−

p(n)
4 ·D0

n[s]

1 + p(n)
4

) · Pr[A(s) = 1]

≥ (
∑

s∈T≈

D0
n[s] · Pr[A(s) = 1])− (

∑

s∈T≈

p(n)
4

·D0
n[s])

≥ (
∑

s∈T≈

D0
n[s] · Pr[A(s) = 1])− p(n)

4

Thus:

2 · Pr[A is right on s] ≥ (1− p(n)
100

) · (D0
n[T0] + D1

n[T1]) +

(
∑

s∈T≈

D0
n[s] · (Pr[A(s) = 0] + Pr[A(s) = 1]))− p(n)

4

= (1− p(n)
100

) · (D0
n[T0] + D1

n[T1]) + (
∑

s∈T≈

D0
n[s])− p(n)

4

≥ D0
n[T0] + D1

n[T1] + D0
n[T≈]− p(n)

2

We would now like to show that T1’s probability is significantly higher by D1
n than by D0

n. This
seems to be true, since the two distributions have statistical distance ε. The (small) problem is
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that T1 is not the set of all samples which D1
n assigns higher probability than D0

n, but only the set
of such items with significantly higher probability. The following claim states that, despite this, T1

probability by D1
n is indeed significantly higher than by D0

n:

Claim 4.2. D0
n[T1] ≤ D1

n[T1] + ε− p(n)
4 .

We conclude that:

2 · Pr[A is right on s] ≥ D0
n[T0] + D0

n[T1] + D0
n[T≈] + ε− 3p(n)

4
= 1 + ε− 3p(n)

4
This result was achieved assuming that M was a perfect algorithm for randomly inverting g.

In truth, however, M only comes O(p3(n) · 1
log 1

p(n)

)-close to inverting g. This is sufficient, since we

activated M at most O( 1
p2(n)

· log 1
p(n)) times on a randomly selected sample, “accumulating” an

error of at most p(n)
8 :

Pr[A is right on s] ≥ 1
2

+
ε

2
− p(n)

2

By lemma 4.2, A is a good predictor for infinitely many input lengths. On any input length n
for which A is a good predictor, it can be used to distinguish between D0

n and D1
n with advantage

ε(n) − p(n). Thus the two ensembles are not ε(n) − p(n)-computationally indistinguishable, a
contradiction to the assumption that g is not distributionally one-way.

4.2 ACDs and One-Way Functions

In this section we deal with efficiently constructible ACDs. We say an ACDs is efficiently con-
structible if its generating algorithm G and its sampling algorithm D are both PPTMs. We will
show that if there exists an efficiently constructible ACD that is hard to learn by a PPTM learning
algorithm making few samples, then there exist almost one-way functions. This will also imply
that if there exists a polynomial time authenticator, where V’s access pattern is hard to learn, then
almost one-way functions exist.

Definition 4.1. An ACD (G,D) is hard to (δ(n), ε(n))-learn with k(n) samples if:

1. It is efficiently constructible

2. For any PPTM that tries to learn the ACD and lets the learning process run for at most k(n)
steps, outputting some hypothesis h, for infinitely many n’s:

Pr
[
∆(Ds0

k+1, D
h
k+1) > ε(n)

]
> δ(n)

Theorem 4.2. Almost one-way functions exist if and only if there exists an adaptively changing
distribution (G,D) and polynomials ε(n), δ(n), such that it is hard to (δ(n), ε(n))-learn the ACD
(G,D) with O

(
log |Sinit|

δ2(n)·ε4(n)

)
samples4.

4Similarly to the information-theoretic case, this theorem also holds if G is given an auxiliary input instead of just
the input length parameter 1n, as long as the auxiliary input is selected by an efficiently computable distribution
that is known to the learning algorithm.
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Proof. If almost one-way functions exist then there exist pseudo-random generators with arbitrary
polynomial stretch for the corresponding (infinitely many) input lengths (see [14]). To construct
an ACD, flip an n-bit seed for the generator as the initial secret input. The sampling algorithm D
outputs n pseudo-random bits in each activation. Note that D doesn’t even need to use random
coins! If this ACD could be learned (with non-negligible (δ(n), ε(n))) then the learning algorithm
could be used to distinguish the generator’s output from uniform random bits (a contradiction).
Alternatively, from the results of Kearns et al. [20], if almost one-way functions exist then they can
be used to construct pseudo-random functions for the corresponding input lengths (see [10]), and
there exists an ACD that is hard to learn. In fact, the distributions that they construct are static
and do not change!

We are primarily concerned with the other direction of the theorem, and follow the notation of
the previous subsection. Recall ~y is the weighted mean of the sampling distributions (by Gi):

~y =
∑

s∈Sinit

Gi[s] · ~ds

Assume that almost one-way functions do not exist, and let q(n) = c·
(

log |Sinit|
δ2·ε4

)
(the constant c will

be specified later), q(n) will be an upper bound on the number of rounds the algorithm runs. We
construct an efficient algorithm L for learning (G,D) for infinitely many n’s, beginning with a high-
level description of L’s operation. Note that the high-level description of this new (polynomial time)
learning algorithm is (intentionally) very similar to the information-theoretic algorithm described
in the previous subsection. In fact, the algorithms differ mainly in the termination condition within
their loops, where the termination condition of the new algorithm is a polynomial-time equivalent
of the information-theoretic algorithm’s termination condition.

The efficient learning algorithm L (in round i):

1. For i ← 1 . . . q(n) do:

(a) Recall ~y is the distribution of the next public output, pi+1, where the probability is over
G and D’s random coins given all of the previous samples and public states.
Estimate whether the weight of distributions ~ds that are “close” to ~y is high. If the
weight estimate is high then approximate sampling some h ∈ Sinit by Gi, output h and
terminate (the exact specification of this step will be given later).

(b) Activate D to sample pi+1 (by Ds0
i ) and proceed to round i + 1.

2. Output arbitrarily some h ∈ Sinit and terminate.

It remains to specify more precisely Step 1a of the algorithm, and to prove that if almost one-
way functions do not exist then it can be executed efficiently. After showing this we will prove the
algorithm’s correctness. We begin with an intuitive overview of Step 1a.

The Big Picture: The algorithm’s goal in Step 1a is to test whether there is a subset A ⊆ Sinit

of high weight (by Gi) such that the distributions {Ds
i }s∈A are all close to ~y. More formally, in this

step we run the concentrated− around−mean procedure to distinguish between two scenarios:
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1. The weight of distributions at distance ε
2 from ~y is not very large (less than 1− δ

2):

In this case concentrated−around−mean should reject with high probability (probability at
least 1− δ

4q(n)). This implies that when concentrated− around−mean accepts, by selecting
a random h from Sinit according to the distribution Gi, with high probability we select h such
that Dh

i is ε-close to Ds0
i .

2. The weight of distributions at distance ε2

36 from ~y is very large (at least 1− δ
10):

In this case concentrated−around−mean should with high probability (probability at least
1− δ

4q(n)). This implies, by similar arguments to those used in the proof of Theorem 3.1, that
whenever concentrated−around−mean rejects the entropy of X decreases significantly, and
thus with high probability within q(n) rounds concentrated−around−mean will accept with
high probability.

The main difficulty is showing that if almost one-way functions do not exist then we can im-
plement concentrated− around−mean efficiently. The procedure concentrated− around−mean
requires that we implement the following tasks efficiently:

Generating Gi: Generating samples (items in Sinit) by the distribution Gi

Generating Yi: Generating samples from the distribution Yi

Testing ∆(Yi, D
s
i ): For an initial secret state s ∈ Sinit, generated by sampling from the distribution

Gi, testing whether Yi and Ds
i are ε

2 -far or ε2

36 -close (by taking many samples from Yi and
Ds

i ).

We implement these tasks using two (efficiently computable) functions, f and g.
Take ` = 200 log 4q(n)

δ2 log 1
δ , m = 200

ε4 (log 1
δ + 4).

The function f : f receives the input length parameter 1n, a random string for the generating
algorithm, a number i ∈ [q(n)] (the number of sampling rounds) and random strings for q(n)
invocations of the sampling algorithm. f outputs i and all the public states and samples generated
by running G and then running i activations of D using the given random strings. If i < q(n), f
pads its output with 0’s. For input (1n, i, rG , r0, . . . , rq(n)−1), let pj be the j-th public state that
was generated:

f(1n, i, rG , r1
D, . . . , r

q(n)
D ) = (1n, i, p0, p1, . . . , pi, 0 . . . 0)

If the ACD is efficiently constructible then f is efficiently computable. We assumed that almost
one-way functions do not exist, thus by Lemma 4.1 f is not almost distributionally one-way, and
there exists a PPTM Mf that for all but finitely many n’s, for any i ∈ [q(n)], comes δ

8·4q(n)·`·m -close
to inverting f when i is fixed and the rest of the input is selected uniformly and at random.

The function g: The function g is very similar to f , and receives the same input as f , except
for an additional bit b ∈ {0, 1} and a random string rf for Mf :

g(1n, i, b, rG , rf , r1
D, . . . , r

q(n)
D ) = (1n, i, s′0, p0, p1, . . . , pi, 0 . . . 0)
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Where p0, . . . , pi−1 are generated as on f , s′0 is generated by Gi−1, and b determines whether pi is
generated by sampling from the distribution ~y (when b = 0), or by sampling from ~ds′0 (when b = 1).

We now specify g’s computational more precisely: the function g acts like f in generating the
first i − 1 samples and public states, but it then uses Mf to sample the distribution Gi−1 of the
initial secret state given the input length parameter 1n, the previous samples and public states,
generating a secret initial state s′0

5. Take:

(1n, i, r′G , r
′1
D, . . . , r

′q(n)
D ) = Mf (f(1n, i, rG , r1

D, . . . , r
q(n)
D ))

And g computes s′0, the secret state generated by G with input 1n and random string r′G . After
computing s′0, the function g outputs it and then generates a new public output pi. If b = 1, then
pi is generated exactly as in the function f (using (pi−1, si−1) and ri

D). If b = 0 then G uses s′0
and the random strings r′1D, . . . , r′i−1

D to generate secret states s′1 . . . s′i−1 (the random strings were
generated by inverting f and thus they compute the same public states). The new public output
pi is then taken to be D’s output on state (s′i−1, pi−1) using the randomness ri

D (note that g uses
the same random string ri

D in both cases). We conclude that:

pi =
{

b = 0 D(s′i−1, pi−1, r
i
D)

b = 1 D(si−1, pi−1, r
i
D)

The intuition is that if b = 1, g gives exactly the same information as f . However, if b = 0, g
also exposes the secret output of G. The 0’s at the end of the functions are padding to ensure that
outputs are of the same length regardless of i.

If the ACD is efficiently constructible and almost one-way functions do not exist then g is also
efficiently computable. By Lemma 4.1 we conclude that if almost one-way functions do not exist
then for all but finitely many input lengths the function g inverts f successfully, and there exists a
PPTM Mg that for the same (all but finitely many) input lengths, for any i, comes δ

8·4q(n)·`·m -close
to randomly inverting g when i is fixed and the rest of the input is selected uniformly at random.

Using f and g: Unless we explicitly state otherwise we assume that Mf and Mg randomly
invert f and g (respectively), we will later count the number of times that f and g are activated
by L and modify the error probability accordingly.

The key point is that by inverting f we can (almost) sample both from Gi and from Yi (the distri-
bution of the next public output). To sample from Gi useMf to invert f on (1n, i, p0, p1, . . . , pi, 0 . . . 0)
to get (1n, i, rG , r1

D, . . . , ri
D). Since the samples y1 . . . yi were indeed generated using uniform ran-

dom inputs, the distribution of rG is the distribution of random strings that G used, given the
public information. Sample s ∈ Sinit by computing the secret state generated by G(1n, rG). Simi-
larly, by computing G and D’s run over i rounds with the random strings (rG , r1

D, . . . , ri
D), we can

compute secret states (s′1, . . . s
′
i). We then sample the distribution Yi by computing the public state

generated by activating D on state (s′i, pi) with a uniform random string.
We use g to test the statistical distance between Yi and Ds

i , where s ∈ Sinit was generated by
sampling the distribution Gi. To do this, observe that by sampling a public state pi from the distri-
bution Yi and then inverting g on (1n, i, s, p0, p1, . . . , pi, 0 . . . 0) we get (1n, i, b, rG , rf , r1

D, . . . , r
q(n)
D ).

5Mf must be used in the computation of g because the initial secret state s′0 (sampled by the distribution Gi)
cannot be generated in probabilistic polynomial time unless f can be inverted! It is worth noting that this technicality
could be avoided by using the (stronger) assumption that auxiliary-input one-way function do not exist (in which s′0
could be used as the auxiliary input)
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Now, from the same argument used in the proof of Theorem 4.1, we observe that if ∆(Yi, D
i
s) ≥ ε

2

then b = 1 with probability at least 1
2 + ε2

16 . On the other hand, if ∆(Yi, D
i
s) ≤ ε2

36 then clearly the
probability that b = 0 is nearly equal to the probability that b = 1 (more concretely Pr[b = 1] ≤
1
2 + ε2

36). By repeating this test many times (generating many pi’s) we can distinguish between the
two cases! We use a sub-procedure far − from−mean(s) to run this distance test.

Finally, to estimate the weight (by Gi) of initial secret states s ∈ Sinit such that Di
s is close to

Yi, we draw samples s ∼ Gi and then test whether ~ds is statistically close to ~y.

The concentrated-around-mean procedure:

1. For j ← 1 . . . `, where ` = 200 log 4q(n)
δ2 log 1

δ :

(a) Use Mf to sample s ∼ Gi

(b) Run far-from-mean(s). If far-from-mean(s) accepts then aj = 0, otherwise aj = 1.

2. If 1
`

∑`
j=1 aj ≥ δ

4 then reject, otherwise accept.

The far-from-mean(s) procedure:

1. For k ← 1 . . . m, where m = 200
ε4 (log 1

δ + 4):

(a) Use Mf to sample pk
i+1 ∼ Yi.

(b) Use Mg to obtain:

(1n, i, bk, rG , rf , r1
D, . . . , r

q(n)
D ) = Mg(1n, i + 1, s, p0, p1, . . . , pi, p

k
i+1, 0 . . . 0)

2. If 1
m

∑m
k=1 bk ≥ 1

2 + ε2

22 then accept, otherwise reject.

Claim 4.3. The far-from-mean(s) procedure has the following properties:

1. If ∆(~ds, ~y) ≥ ε
2 then the probability that far-from-mean(s) accepts is at most δ

10 .

2. If ∆(~ds, ~y) ≤ ε2

36 then the probability that estimate-dist(s) rejects is at most δ
10 .

Proof. We consider two distributions on the input to Mg, which is:

(1n, i + 1, s, p0, p1, . . . , pi, p
k
i+1)

In the first distribution D, pk
i+1 is distributed by ~y (Yi), and in the second distribution F , pk

i+1 is
drawn by ~ds (Di

s). Following the proof of Theorem 4.1, we look at these distributions as functions
on random coins. The function g (with the given public outcomes) computes the distribution F
when its input b is 1, and the distribution F when its input b is 0.

The inputs on which we invert g with i (by using Mg) are selected uniformly and at random
from the inputs for which b = 1. If ∆(~ds, ~y) ≥ ε

2 then by Claim 4.2 of Theorem 4.1, for any iteration
k the probability that bk = 1 is at least 1

2 + ε2

16 . We run this experiment m = 200
ε4 (log 1

δ + 4) times,
and thus the probability that 1

2 + ε2

22 or more of the times bk = 1 is (by the Chernoff Bound) at
least 1− δ

10 .
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If ∆(~ds, ~y) ≤ ε2

36 , then in all iterations no Mg, that chooses bk by taking a random inverse of
g on randomly selected inputs with bk = 1, can have a greater than ε2

36 -advantage (over 1
2) when

guessing bk. We run this experiment m = 200
ε4 (log 1

δ + 4) times, the probability that 1
2 + ε2

22 or more
of the times bk = 1 is (by the Chernoff Bound) at most δ

10 .

Claim 4.4. The concentrated-around-mean procedure has the following properties:

1. If PrGi [B
ε
2
~y ] < 1− δ

2 then concentrated-around-mean rejects with probability at least 1− δ
4q(n) .

2. If PrGi [B
ε2

36
~y ] > 1− δ

10 then concentrated-around-mean accepts with probability at least 1− δ
4q(n) .

Proof. If PrGi [B
ε
2
~y ] < 1− δ

2 then in every iteration with probability at least δ
2 we get that ∆(~ds, ~y) ≥

ε
2 and with probability at least 1 − δ

10 far-from-mean rejects such s’s. We conclude that in every
iteration aj = 1 with probability at least δ

2 − δ
10 > δ

3 . By the Chernoff Bound, taking ` =
200 log 4q(n)

δ2 log 1
δ , the probability that 1

`

∑`
j=1 aj < δ

4 is at most δ
4q(n) .

If PrGi [B
ε2

36
~y ] > 1− δ

10 then in every iteration with probability at most δ
10 we get ∆(~ds, ~y) > ε2

36 ,

otherwise ∆(~ds, ~y) ≤ ε2

36 and far-from-mean rejects with probability at most δ
10 . We get (by the

Union Bound) that the total probability that aj = 1 in any iteration is at most 2δ
10 . By the Chernoff

Bound, taking ` = 200 log 4q(n)
δ2 log 1

δ , the probability that 1
`

∑`
j=1 aj ≥ δ

4 is at most δ
4q(n) .

The concentrated-around-mean procedure is run at most q(n) times, so by the union bound
the probability that there exists a round in which concentrated-around-mean “fails” is at most
δ
4 (we say concentrated-around-mean fails if it accepts when PrGi [B

ε
2
~y ] < 1 − δ

2 or rejects when

PrGi [B
ε2

36
~y ] > 1− δ

10).

Correctness when concentrated-around-mean accepts: The algorithm L runs the concentrated-
around-mean procedure in its second step. If concentrated-around-mean accepts in round i, then
the algorithm samples h ∼ Gi and returns h. If concentrated-around-mean never failed, then when
it accepts we know that PrGi [B

ε
2
~y ] ≥ 1 − δ

2 . Following the arguments used in the proof of Theo-
rem 3.1, there exists a set A ⊆ Sinit such that Gi[A] is at least 1− δ

2 and when the algorithm selects
h ∼ Gi, with probability at least 1− δ

2 we know that ∆(Di
s0

, Di
h) ≤ ε.

The concentrated-around-mean procedure eventually accepts with high probability:
We would now like to show that with high probability, L does not terminate in its third step. To
see this, note that if concentrated-around-mean never failed then whenever it rejected it is known

that PrGi [B
ε2

36
~y ] ≤ 1 − δ

10 . Thus there exists a set of initial secret states of weight at least δ
10 , and

for any s in this set, the distribution Di
s is ε2

36 -far from ~y. By the argument used in the proof of
Lemma 3.1, this implies an expected drop of δ

80 · ε4

362 in the entropy of X. By Theorem B.1, within

q(n) = 8·80·362·log |Sinit|
δ2·ε4 rounds, with probability at least 1− δ

8 , the entropy becomes 0 and then in
the next concentrated-around-mean will accept (unless it fails).
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The algorithm’s success probability: We conclude that the probability that L fails is at most
δ
4 + δ

2 + δ
8 = 7δ

8 . This is the error probability assuming thatMf andMg invert f and g perfectly, but
Mf and Mg only come δ

8·4·q(n)·`·m -close to inverting their respective functions. This is sufficient,
since L only calls Mf and Mg at most 1 + q(n) · ` · (1 + 3 ·m) ≤ 4 · q(n) · ` ·m times (one call when
concentrated-around-mean succeeds, q(n) calls to concentrated-around-mean, each of them making
` calls to Mf and ` calls to far-from-mean, each call to far-from-mean makes m calls ro Mf and
m calls to Mg, each call to Mg makes a single call to Mf ). Thus the total accumulated error from
using Mf and Mg instead of “perfect” inverting algorithms is at most δ

8 and we conclude that for
infinitely many n’s, with probability at least 1− δ, L learns h such that ∆(Di

s0
, Di

h) ≤ ε.
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A A Lower Bound

In this section we sketch a lower bound for the sample complexity of algorithms for learning ACDs.
The lower bound shows that any algorithm for learning ACDs (regardless of its computational
strength) must have sample complexity that is at least linear in n, in 1

ε and (more surprisingly) in
1
δ . In particular, this implies that there is no efficient amplification for the confidence of algorithms
for learning ACDs.

Theorem A.1. There exists an ACD (G,D) such that any algorithm that (δ(n), ε(n))-learns (G,D)
must activate D at least Ω( 1

δ(n) + log |Sinit|
ε(n) ) times.

Proof Sketch. For any ε(n), there exists an ACD such that any algorithm that (1
2 , ε(n))-learns it

must activate D at least Ω( log |Sinit|
ε ) times (this lower bound holds even for static distributions).
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The more interesting part of this theorem is showing a lower bound of Ω( 1
δ(n)) activations of D.

Let ε = ε(n), and δ = δ(n), and take the concept class Sinit to be the set {0, 1}n (log |Sinit| = n).
The generating algorithm generates an initial secret state selected uniformly and at random from
{0, 1}n (the initial public state is always 0). The sampling algorithm D is deterministic, and it
never alters the secret state. Also, the number of times D has been activated is always part of the
public state.

In each round some of the possible initial secret states will become unviable given the public
state. We take Si

init to be the set of initial secret states that are still viable given all the public
information before round i (thus S1

init = C). In round i, if the secret state is unviable thenD outputs
a special symbol (say #). Otherwise, if the secret state is any of the 2δ · |Si

init| (lexicographically)
first viable initial secret states in Si

init, then D always outputs 1 and the secret state, otherwise
D outputs 0. If D’s output was 0 then the secret state must be one of the (1 − 2δ) · |Si

init|
lexicographically last secret states in Si

init, the set of these secret states is Si+1
init.

The intuition is that as long as the learning algorithm only sees 0 outputs it cannot have a high
probability of successfully imitating the distribution of the next output. With high probability the
learning algorithm will only see 0’s for at least Ω(1

δ ) rounds, and thus it cannot successfully learn
with high probability in less than Ω(1

δ ) rounds. This is captured in the following two claims:

Claim A.1. As long as D has only given 0’s as output, for any ε < 1, no learning algorithm can
come ε-close to generating the distribution of D’s next output with probability greater than 1− 2δ.

Claim A.2. For δ < 1
3 , with probability at least 2

3 , D will output 0 in the first Ω(1
δ ) rounds.

We conclude that any algorithm for learning the ACD with confidence parameter δ < 1
3 must

activate D at least Ω(1
δ ) times.

B Probabilistic Recurrence

In this appendix we are concerned with analyzing probabilistic algorithms that use a divide-and-
conquer strategy to reduce the size of a problem they are trying to solve. This setting arises
throughout the computer science literature, as was noted by Karp [19], who presented a generalized
methodology for analyzing such algorithms. Karp, however, assumed that the algorithms never
increase the size of the problem they work on. Our learning algorithms, presented in Section 3,
treat the entropy of an unknown random variable as the “problem size” and try to reduce it. We
show that after every step these algorithms make there is a high expected entropy-drop, but there
is no guarantee that the entropy cannot increase! Thus, Karp’s results cannot be immediately used
in our setting. We will prove a theorem that shows that even if the problem size may increase, as
long as the expected drop in the problem size is high, it will not take too long for the algorithm to
reduce the problem to size 0 (with high probability). We treat the case where the expected drop
in the size of the problem is constant, and follow [19] in using induction to show a tail inequality.

Theorem B.1. Let s be a size function over problem instances and T (x) = 1 + T (h(x)) a proba-
bilistic recurrence relation, where T (0) = 0 and h(x) is a random variable with E[s(h(y))] ≤ s(y)−d
(for any problem instance y). Then for any positive integer t:

Pr[T (x) ≥ t] ≤ s(x)
t · d
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Proof. The proof will be by induction on t, for t = 1: either s(x) ≤ d, in which case T (x) ≤ 1, or
s(x) > d and the claim is trivial.

We assume correctness for t, and prove it for t+1: if s(x) ≥ (t+1) ·d then the claim is trivially
true. For s(x) < (t + 1) · d we get:

Pr[T (x) ≥ t + 1] = Eh(x)[Pr[T (h(x)) ≥ t]]

≤ Eh(x)

[
s(h(x))

t · d
]

=
Eh(x) [s(h(x))]

t · d
≤ s(x)− d

t · d
<

s(x)
(t + 1) · d
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