Amortized Communication Complexity™

Tomas Feder Eval Kushilevitz*
IBM Research Division Computer Science Department
Almaden Research Center Technion - Israel Institute of Technology
Moni Naorf Noam Nisan®
Dept. of Applied Math and Computer Science Computer Science Department
Weizmann Institute Hebrew University

September 7, 1995

Abstract

In this work we study the direct-sum problem with respect to communication complexity: Consider
a relation f defined over {0,1}" x {0,1}". Can the communication complexity of simultaneously
computing f on £ instances (£1,¥1),. .., (#¢,y¢) be smaller than the communication complexity of
computing f on the /£ instances, separately?

Let the amortized communication complexity of f be the communication complexity of simul-
taneously computing f on /£ instances, divided by ¢. We study the properties of the amortized
communication complexity. We show that the amortized communication complexity of a relation
can be smaller than its communication complexity. More precisely, we present, a partial function
whose (deterministic) communication complexity is O(logn) and its amortized (deterministic) com-
munication complexity is O(1). Similarly, for randomized protocols, we present a function whose
randomized communication complexity is O(logn) and its amortized randomized communication
complexity is O(1).

We also give a general lower bound on the amortized communication complexity of any function

£ in terms of its communication complexity C'(f): for every function f the amortized communication

complexity of f is (C(f) — log n)

*An early version of this paper appeared in Proc. of 32nd IEEE Conference on the Foundations of Computer Science,
October 1991, pp. 239-248.

"Most of this work was done while the author was at the IBM Almaden Research center. e-mail:
naor@wisdom.weizmann.ac.il

{Research was supported in part by US-Tsrael BSF grant 88-00282. e-mail: eyalk@cs.technion.ac.il. Some of this work
was done while the author was at the Aiken Computation Lab., Harvard University.

YResearch was supported by the Wolfson Research awards administered by the Israel academy of Sciences and Human-
ities and by US-Israel BSF 89-00126. e-mail: noam@cs.huji.ac.il

1 Introduction

A very basic question in the theory of computation is the direct-sum question: Can the cost of solving
{ independent instances of a problem simultaneously be smaller than the cost of independently solving
the ¢ problems, say, sequentially? In this work we study the direct-sum question in the context of
communication complexity. This question was recently raised by Karchmer, Raz and Wigderson [7] as
part of a new approach for proving lower bounds on Boolean circuits using communication complexity
arguments (as in [8, 18]). For a general survey on communication complexity, see [11]. Different scenarios
where the direct-sum question was investigated are [4, 6, 17, 20].

Let f be a relation defined on {0,1}" x {0,1}™." Let f¥) be the extension of f to ¢ instances. The
communication complexity problem associated with f() is the following: Party P; receives { inputs
x1,...,2, and party P, receives { inputs y1,...,y¢ (each of 2; and y; is an n bit string). They need to
find values z1,..., 2 such that for each 7, the value z; satisfies the relation f(z;,y;). Denote by C(f)
the communication complexity of f. Namely, the number of bits that the parties need to exchange, on

the worst-case input, in the best protocol for computing f. Similarly, denote by C(f) the amortized

communication complexity of f. Namely,

C(f) = lim sup %C(f(f)).

{—o00

Clearly, C(f) < C(f) for every relation f. It was observed in [7] that when (non-partial) functions
are considered, an upper bound on C(f) which is significantly smaller than C(f), implies that the rank
lower-bound on C'(f) [12] is not tight. This is because the rank of the matrix representing O equals
the rank of the matrix representing f, to the power of £.

We present a partial function f, such that C(f) = ©(logn) and C(f) = O(1). This proves that
computing a relation f on f instances simultaneously may be easier than computing f on the £ instances
separately. In [7], it was conjectured that C'(f) can not be smaller than C'(f) by more than an additive

factor of O(logn). We prove two weaker versions of this conjecture:

e If one-way communication protocols are considered then any (partial) function f over {0,1}" x

{0, 1} satisfies C1(f) > C1(f) —logn — O(1).

e lor general (two-way) protocols, any (non-partial) function f over {0,1}"x{0, 1}" satisfies C'(f) >
C(f)]2—logn — O(1).

The proof of the first lower bound is via a reduction to an appropriate graph-coloring problem, and
then applying the results of Linial and Vazirani [10] on the chromatic number of product graphs. The
lower bound for general protocols is achieved by considering non-deterministic protocols and proving
that C'n(f) > Cn(f) —logn — O(1), and then applying a result of Aho, Ullman and Yannakakis

YA relation defines for every input pair (z,y) a subset f(z,y) of a domain D. We will be interested in particular in
two special cases of relations: functions — where for each input pair (z,y) there is a unique value in f(z,y), and partial

functions where for each input pair (,y) either there is a unique possible value or all values in D are possible.

[1] which relates the non-deterministic communication complexity of a function with its deterministic
communication complexity.

We also study the direct-sum question with respect to randomized protocols. The only trivial
upper bound on CR(f(f)) in this case is that for any (partial or non-partial) function f, CR(f(f)) =
O(L-log (-CR(f)) (the log { factor seems to be needed, since we are required to have a “good” probability
of success on all { instances simultaneously). For explicit functions we can do much better: We consider
the identity function (i.e., ID : {0,1}" x {0,1}" — {0, 1} defined by I D(z,y) = 1 iff 2 = y). It is well
known that Cr(ID) = O(logn) [23]. We prove that Cr(ID) = O(1).

Organization: In section 2 the various notions of communication complexity and amortized communi-
cation complexity are defined. In section 3 we exhibit a partial function whose amortized communication
complexity is smaller than its communication complexity. In section 4 we discuss the special case of
one-way communication protocols. In section 5 we prove our lower bound on the amortized communi-
cation complexity, for the case of general protocols. In section 6 we present a function whose amortized
communication complexity is smaller than its communication complexity, when randomized protocols

are considered. Finally, in section 7 we mention some open problems.

2 Preliminaries

In this section we give formal definitions for the various notions of communication protocols and com-
munication complexity used in this work.

Let D be a set, and let f be a relation defined over {0,1}" x {0,1}" such that for every (z,y) €
{0,1}" x {0, 1}™ it satisfies @ # f(x,y) C D. We say that f is Boolean if D = {0,1}. We say that f is a
function, if for every (x,y), | f(x,y)| = 1, and it is a partial function if for every (z,y) either | f(z,y)| =1
or f(z,y)=D.

Given a relation f and an integer £ > 1, we define the relation f(*) over ({0, 1}”)€ x ({0, 1}”)£7 with

range D’ as follows:

>

f(g)((xlv"'7$f)7(y17"'73/f)) {(Zlv"'vzf) | Z1 € f($173/1)7---72£ € f($£73/£)}-

In what follows we define the communication complexity of relations of the form f). Note however
that this covers the special case of f(1) = f.

Two parties P; and P, wish to compute a possible value of f(Y) on their input. The party P; is
given a n(-bit input and the party P, is given a nl-bit input y. We interpret z (resp. y) as consisting
of { pieces (or instances) x1,...,2s (resp. y1,...,y¢) each of n bits. The parties exchange messages in
rounds according to a deterministic protocol. That is, each message sent by a party P; depends on its
input, and the messages it received in previous rounds. The last message in the protocol is an £-tuple
z=(z,...,2) called the output of the protocol. We say that a protocol F computes the relation O
if for all inputs z and y the output z satisfies z € f(g)(ac, Y).

The concatenation of all the messages exchanged in the protocol F on input (z,y) is denoted F(z,y).

The (deterministic) communication complexity of the protocol F, denoted C(F), is the maximum

|F(z,y)| over all (z,y). The (deterministic) communication complexity of the relation O denoted
C(f1), is the minimum of C'(F), over all deterministic protocols F computing (),
The amortized communication complezity of the relation f is defined as

C(f) = lim sup %C(f(f)).

{—o00

We sometimes restrict the discussion to one-way protocols. In such protocols the communication
consists of a single message: Py sends a message to P» and P, has to compute the output. We denote by
C1(F),C1(f) and C1(f) the analogous of C'(F), C(f)and C(f) for the case that only one-way protocols
are considered.

We also consider randomized protocols, in which each of the parties has, in addition to its input, a
string of random coins (the random strings of the two parties are independent). A randomized protocol
F computes the relation f() if for every input (z,y) the output » of F satisfies » € f)(z,y) with
probability > %. The notions of Cr(F), Cr(f®) and Cr(f) are defined in a similar way, with respect
to randomized protocols. That is, Cr(F) is the maximal length of communication (over all inputs and
all strings of random coins) in the protocol F; Cr(f*)) is the minimum of Cr(F) over all randomized
protocols that compute the relation f@); and C'r(f) equals lim sup,_. %CR(f(g)). We emphasize that
the meaning of this definition is that when computing f() we require that with probability at least 3/4
the output is correct for all £ instances simultaneously.

It is also useful to consider a variant of the randomized model in which both parties have access to
a public random string. The quantities Cpub(f(f)) and Cpyup(f) are defined in a similar way.

Finally, we give the definitions for the nondeterministic case. In a nondeterministic protocol for
computing f the parties are allowed to make “guesses” while choosing their messages. In any com-
putation, the protocol gives either a correct value of f(f)(x,y) or “fail”. The protocol is required to
output a correct value of f)(z,y) in at least one computation on (z,y) (i.e., in this computation the
output is correct for all ¢ instances). The nondeterministic complexity of a protocol F, Cn(F), is
defined as the maximum over all (z,y) and over all computations (“guesses”) of F(z,y) (note that for
nondeterministic protocols F(z,y) is not unique). The measures Cn(f*)) and Cy(f) are defined with

respect to nondeterministic protocols.

3 A Partial Function With a Low Amortized Complexity

In this section we prove that (deterministic) amortized communication complexity can be substantially
lower than the corresponding communication complexity. We present a partial function f such that
C(f) = O(logn), while C(f) = O(1).

We start with the definition of f: Let M = {0,1,2,...,m—1}. Let t > 2, be a parameter. The input
of Py is S, a subset of M of size t (the length of this input is n = ¢-log m bits). The input of P is z € 5
(the length of this input is logm < n bits). The parties wish to compute the rank of z in the subset
S (a number in the range 0,...,¢—1). If # ¢ S then any output (in the range 0,...,7 — 1) is allowed.
Orlitsky [16] showed that the communication complexity of this function is C'(f) = ©(logt +log log m).

The protocols we present make use of the following set of hash-functions suggested by Fredman,

Komlos and Szemerédi [5]: Let p ~ t*log m be a prime. Define
H= {h:M—> {0,1,...,2t* = 1}|| h(z) = (az mod p) mod 2¢*, 1< agp—l}.

We say that h € H is good for a set S C M if his 1 — 1 with respect to the elements of 5. Otherwise,
we say that h is bad for S. Fredman, Komlos and Szemeredi [5] proved the following property of these

hash-functions:

Lemma 1: Let H be as above and let 5 be any subset of M of size {. Then, at least % of the functions
in I are good for 5.

We start by presenting the following protocol from [16] that meets the lower bound for computing
f on a single instance (5,2). This protocol (which uses the above H) has the advantage that an

appropriate generalization of it gives the amortized result.

e P finds a function h € H which is good with respect to S. It sends its name (O(logt + loglogm)
bits) to P.

e P, computes h(z) and sends this value (O(logt) bits) to P;.

e Since h is good with respect to S, then if 2 € § the value h(z) determines z. (If z ¢ S then either
h(z) = h(s) for some s € 5 or not. For the correctness of the protocol it does not matter which
is the case.) Now P; computes the value f(S5,2) and sends it to P, (O(logt) bits).

We now show how to generalize the protocol in order to efficiently compute the values f(57,x1),

f(S2,22),..., f(Se,2) simultaneously. The main idea is formalized by the following claim:

Claim 1: Let H be as above and let S1,..., 5, be any £ subsets of M of size t. Then, there exists a
set L of log{ 4 1 hash-functions hy, ha, ..., hiegey1 € H such that:

e Lor every j (1 < j < logl+ 1), h; is good with respect to at least % of the §;’s for which
hi,...,h;—1 are all bad.

In particular, it follows that for every 5; (1 < i < () there exists at least one hash-function in L,
denoted hj;y, such that h;;) is good for 5;. The proof uses Lemma 1 and a simple counting argument:
Proof: We show how to construct L iteratively. In the 7' iteration we consider a matrix with all
the subsets \5; for which hq,...,h;_1 are bad as rows, and the hash functions in H as columns. The
(S, h) entry in this matrix is 1 if & is good with respect to 5, and 0 otherwise. By Lemma 1, at least
half of the entries in every row are 1’s. Therefore, there exists a column in which at least half of the

entries are 1’s. We take the corresponding hash-function to be h;. L

The following protocol computes f on £ instances simultaneously:

o P finds a set I of log ¢+ 1 hash functions as above, and sends the names of functions in L to P;.

In addition, for every 1 <@ < (, it sends the index j(¢).
o P, computes h;;(;), for every 7, and sends it to Py.

e Since hj(;) is good with respect to 5;, the party Py knows the value of z; for every 1 <: < { and
thus can compute f(S1,21),..., f(5,z¢).

The correctness of the protocol is obvious. For every ¢ such that z; € 5; it computes the correct answer

(and if z; ¢ S; then any answer is good). We now analyze its complexity:

Claim 2: The above protocol can be implemented so that the number of bits exchanged is O({-log? +
log ¢ - (logt + loglog m)).

Proof: To specify the names of functions in L, P uses O(log (- (logt + loglog m)) bits. In addition,
for specifying all the indices j(7), Py needs only O({) bits (which is better than the obvious O({log()
bits). This is because hy is good for about % of the sets, hy is good for about }1 of the sets etc. Therefore,
by using, say Huffman coding, we get that O({) bits are enough. In the second step P, sends the results
of applying h;;y on x;, for every ¢, which requires O((-logt) bits. L]

Take, for example, ¢ = 2 and recall that in this case the length of the input satisfies n = 2logm,
we get that the number of bits exchanged in this protocol is O(¢ + log{ - logn). Thus, we proved the

following theorem:

Theorem 1: There exists a (partial) function f with communication complexity C'(f) = ©(logn),

and amortized communication complexity C(f) = lim sup,_, . %C(f(f)) = 0(1).

4 One-Way Communication

In this section we deal with one-way communication protocols. We show that if we restrict the discussion
to the computation of relations using one-way protocols then we can still “save” bits by computing f
on many instances simultaneously. In fact, the partial function f of the previous section yields such
an example: take t = 2 and assume that S; = {yi, 95} where 0 < yi < yi < m — 1. As stated before,
C(f)=0(logn) (and clearly Cy(f) > C(f)). On the other hand, a slight modification of the previous
protocol gives C1(f) = O(1): P; sends together with the list L of hash functions also hj(i)(y{) and
hj(i)(yé) for 1 < ¢ < {. Now P, can decide whether z; = ¢} or ; = y5.

On the other hand, we can prove that for every (partial) function f no more than logn bits can
be saved: Cy(f) > C1(f) —logn — O(1). We start with a simple theorem, which claims that if f is a
non-partial function then essentially nothing can be saved. That is, Cy(f) = Cy(f).

Theorem 2: Let f be a (non-partial) function defined on {0,1}"x{0,1}". Then, Cy(f)—1 < Cy(f) <
Ci(f)-

Proof:; Define the following relation on the inputs of Pi: 21 ~ zy if f(21,y) = f(ag,y) for every
y. Clearly ~ is an equivalence relation. Denote by Class(f) the number of equivalence classes of the
~ relation. It can be easily verified that for computing f the party P must use Class(f) different
messages (i.e, C1(f) is exactly [log C'lass(f)]). This is true, since P; can send on input z the index of
equivalence class for which « belongs. From this information P, can easily compute f(z,y) (by choosing
arbitrary 2’ from that equivalence class and computing f(2',y)). On the other hand, if for two inputs
x, 2’ in different equivalence classes Py sends the same string then by the definition of the relation ~
there exists y such that f(z,y)# f(2’,y). If P, holds y as his input then clearly the protocol is wrong
for at least one of f(x,y) or f(a',y). Similar arguments show that for computing @ the party P
must use Class(f9) = Class(f)" different messages. As this number of strings is enough, the theorem
follows.]

The above example shows that this result cannot be extended to partial functions. The key point
is that for partial functions ~ is not necessarily an equivalence relation. However, in the following we
show that this example is optimal in a sense. More precisely, we prove for every partial function f that
C1(f) cannot be smaller than C'y(f) by more than an additive factor of O(logn).

Theorem 3: Let f be a (partial) function defined over {0,1}" x {0,1}". Then Cy(f?)) > 2Cy(f) —
logn — O(1).

Proof: The idea of the proof is to reduce the problem of the one-way communication complexity
of a function to an appropriate graph-coloring problem,? and then to use results of Linial and Vazirani
[10] on this problem.

We construct a graph Gy = (V, F) as follows: Each vertex corresponds to 2 € {0,1}". There is an
edge between and 2’ if there exists y such that f(z,y) N f(2',y) = 0@ (this happens if and only if
|f(z,)| = |f(2',y)] = 1 and f(a,y) # f(2',y)). Intuitively, there is an edge between a and 2’ if
P, should be able to distinguish between these two inputs in order to compute the output correctly
when it holds input y. Similarly, we define a graph G y); its vertices correspond to pairs (z1,22) €
{0,1}" x {0,1}". There is an edge between © = (2y,23) and 2’ = (&}, 2%) if there exists y = (y1,y2)
such that f®)(z,y)n fO(2',y) = O (this happens if and only if either |f(z1,51)| = |f(z},41)] = 1 and
For,um) # £), or i | f(w2,2)| = |f(@hsy2)l = 1 and [(22,52) # F(ehy 12).

The number of different messages used by the optimal one-way communication protocol for f is exactly
the chromatic number of Gy (denoted x(Gy)): If we have a legal coloring of Gy then this coloring
defines a one-way communication protocol for computing f: P; sends the color ¢ of its input z. This
color together with P,’s input y determine z € f(x,y). To see this, fix a y and consider all the vertices
colored by ¢. If for all these vertices, the corresponding z satisfies f(x,y) = D then any z € D will
do. If for some z, |f(z,y)] = 1 then we take z = f(z,y). For any other 2’ colored by ¢ since there is

no edge between z and z’ it follows from the construction that z € f(a’,y). On the other hand, every

2Similar reductions appear in [16, 21]. In these works the two parties have an input (z,y) in some domain .4 and P; has
to transmit its input x to P». This problem corresponds in our setting to the problem of computing the specific function

f which is defined as f(z,y) =z if (z,y) € A and f(z,y) = D otherwise.

protocol induces a legal coloring of Gy where the color of every z is the message P sends on it. This
is because for ever x, 2’ on which the same message m is sent by P; and for every y, there is a z that
P, outputs. The correctness of the protocol guarantees that z € f(x,y) and z € f(a’,y) and therefore
fla,y)n f(a',y) # 0. Hence, there is no edge between 2 and 2’ so the coloring is legal. Similarly, the
number of different messages used by the optimal one-way communication protocol for @) is exactly
X(G p»)) (again, fix (y1,y2) and argue about each coordinate separately the existence of 21 and z; as
needed).

Now, we define the product operation on graphs: Given Gy = (Vq, Fy) and Gy = (Va, F3) the vertices
set of the product G; X G2 is Vi x V5. The edge set includes all the edges ((v1,v2), (u1,uz)) such that
(v1,u1) € 4 or (v2,ug) € Ey. (In the terminology of [10] this is called inclusive-product). It is easy to
verify that G y2) = Gy X Gy.

Using this reduction to the graph-coloring problem we can now prove the theorem: it is enough to prove
that for every f, x(G) > M, for some constant ¢. This is proved in [10, Theorem 1]. L]

on

The statement of [10, Theorem 1] is more general than what we used and allows not only products
of a graph G by itself but products of any two graphs. In particular, it says that for any two graphs
(1, Gy such that |Vi| < |V3], the chromatic number satisfies x(G1 x Gz) > %L Thus, by the
same proof as above, we get:

Theorem 4: Let n < m. Let f be a (partial) function defined over {0,1}" x {0,1}", and let ¢
be a (partial) function defined over {0,1}™ x {0,1}™. Let f X g be defined in the obvious way over
({0,1}" x {0,1}™) x ({0,1}" x {0,1}™) (each party receives two instances; one is an n-bit string and
the other is an m-bit string). Then, C1(f x g) > C1(f) + C1(g) —logn — O(1).

Therefore, we have

Corollary 5: Let f be a (partial) function defined over {0,1}" x {0,1}". Then Cy(f) > C1(f) >
Ci(f)—logn —O(1).

Proof: The first inequality is obvious. For the second inequality, we will prove (by induction) that
Cr(fD) > LCy(f) — (£ = 1)logn — (£ — 1)c (for some constant ¢), which implies the corollary. This is
certainly true for £ = 1. For a general £ we can write Cl(f(f)) =Ci(f x f(f_l)). By Corollary 4 this is
at least C1(f) + C1(f"Y) —logn — ¢. Now, by the induction hypothesis Cy(f¢=1) > (£ = 1)Cy(f) -
(—2)logn — (£ — 2)c which gives us what we need.]

For additional examples of partial functions with C';(f) significantly smaller than Cy(f), we show
that for every graph G with 2" vertices there exists a (partial) function f such that G = Gy. Label the
vertices of G by strings in {0,1}" and define a function f as follows: for every z, f(z,2) = 1. For every
edge (z,y) € I define f(z,y) = 0. For all the other pairs f(z,y) = D. It can be easily verified that
G = G4. This implies that from every graph G with 2" vertices, such that x(G x G) = %ngl, we can
construct a partial function f such that C7(f(?)) = 2C;(f) —logn — O(1). Examples of such graphs are
given in [10, Theorem 2].

5 Lower Bound for General Protocols

In order to prove lower bounds on C(f) for a specific relation f, we may use traditional techniques. For
example, consider the identity function (i.e., I D(z,y) equals 1 if # = y, and 0 otherwise). It is easy to
verify that C(ID) = C(ID) = n (as in [23]). In this section we give a general lower bound on C(f) in
terms of C'(f), for any (non-partial) boolean function f.

To this end, we first discuss the amortized non-deterministic communication complexity of relations.
We start with some definitions and notations that are used in the proof. Given a relation [defined
over {0,1}" x {0,1}", and £ > 1, we denote by M) the matrix representing the relation FO. That is,
each row of M) corresponds to an input o = (z1,22,...,2¢) of P1, and each column corresponds to
an input y = (y1,Y2,. .., ye) of Po. The entry (@,y) of M contains the set f(x,y) (a subset of D). A
monochromatic rectangle of M) is a set R = R; x R, C {0,1}" x {0,1}" such that we can associate
with R an output vector zg € D, in a way that every input (z,y) € R satisfies zp € f(x,y). We denote
by N(f(f)) the minimal number of monochromatic rectangles needed to cover (possibly with overlaps)
all the entries of M. Since any nondeterministic protocol for computing F@ induces such a cover,
log N(f) < Cn(f). The next theorem claims that N(f(?)) cannot be much smaller than N2(f).

Theorem 6: Let f be a relation defined over {0,1}" x {0, 1}". Then, for some constant ¢,

N(f)

c-n

N >
For the proof of this theorem, we need the following claim, provided by the proof of [10, Theorem 1]:

Claim 3: Let A be an ¢ X d matrix whose entries assume k values and such that ¢ < d. Let k; be
the minimal size of a set T' C {1,2,...k} that covers all the rows of A. That is, for every row ¢ there
exists a column j such that the value A;; belongs to T'. Similarly, let k; be the minimal size of a set
that covers all the columns. Then kq - ko < ¢’ -logt - k.

Proof: Consider an optimal cover of M), with & = N(f(Q)) monochromatic rectangles, denoted by
Ri, Ry, ..., Ri. We show how to cover My with m monochromatic rectangles, where m? < c-n- N(f(z))
for some constant ¢. This implies that N2(f) < ¢-n- N(f?).

Consider the following 22" x 22" matrix A (this is not Mz): each row of A corresponds to an input
(21,y1) and each column to an input (x2,y2). Every entry ((z1,31),(22,92)) of A contains an element
tin {1,2,...k} such that ((z1,22),(y1,y2)) belongs to Ry. (If ((z1,22),(y1,y2)) belongs to more than
one rectangle, then we choose one of them arbitrarily). Apply Claim 3 to the matrix A described above,
and assume without loss of generality that &y < kg; we get that k% <c¢-n-k. Let T be a set of ky values
that covers the rows. We now prove that this implies that My can be covered with k£; monochromatic
rectangles.

Associate with every entry (z,y) in My an element of 7" that appears in the row (z,y) of A (if there

is more than one possibility, then choose one arbitrarily). Now we extend this to (possibly overlapping)

rectangles in the obvious way. Namely, for every ¢ € T the rectangle R} includes every (z,y) with value
t,and if (z,y) and (2’,y') are in R} then also (2',y) and (z,y’) are in R}.

Clearly, these are k; rectangles and they cover M;. What we still have to prove is that any such
rectangle R} is monochromatic. That is, there exists a z such that for all (z,y) € R} it satisfies
z € f(x,y). By the construction, if (z,y) and (2/,y") both have the value ¢, then there exist xq,ya, 25
and yj such that both ((z, z2), (v, y2)) and ((2,25), (v', v5)) belong to R;. Since R, is monochromatic, we
can associate with Ry a vector (21, z2) with whom all pairs in R; “agree”. This, in particular, implies that
z1 € f(z,y) and z; € f(2',y'). In addition, since Ry is a rectangle it also contains ((z,a2), (¥, v5)) and
((2',2%), (y, y2)) which implies that also z; € f(x,y’) and z; € f(2/,y). Therefore R} is monochromatic.

To conclude, we can cover My with no more than y/c-n - N(f(2)) monochromatic rectangles, which

completes the proof of the theorem.]

Again, the above theorem (using [10]) can be generalized to prove the following:

Theorem 7: Let n < m. Let f be a relation defined over {0,1}" x {0,1}", and let g be a relation
defined over {0,1}™ x {0,1}™. Then,

N(f)-Nig)

N(fxg)= C_'

n

£
It follows that N(f()) > %{—)1 We now focus our attention on the case where f is a (non-partial)
function. For this case we can apply known relations between deterministic and nondeterministic

communication complexity [1]:
Claim 4: Let f:{0,1}" x {0,1}* — {0,1}, be a (non-partial) function. Then, C(f) < 2log® N(f).
Using Theorem 6 and Claim 4 we get the desired lower bound:

Corollary 8: TLet f:{0,1}" x {0,1}" — {0,1}, be a (non-partial) function. Then, C'(f) > C(f) >
C(f)/2—-1logn — O(1).

Proof: Clearly, C(f) > C(f). For the other inequality we write

C(f9) = logN(fY)
> Llog N(f)—Lllogn— O(()
> - (\fe)2-tosn - 0n)
By the definition of C'(f) the result follows. O

We do not know how to extend the above result to general relations or even to partial functions.
Our proof method fails in these cases as the gap between deterministic and nondeterministic complexity

may be exponential (examples of such partial functions can be constructed based on results is [19]).

10

6 A Function With Low Amortized Randomized Complexity

In this section we consider amortized randomized communication complexity. Clearly, for every relation
f, Cr(f) < C(f) < n. However, unlike the deterministic case, we do not know whether C'r(f) < Cr(f)
for all relations f. If f is a (partial) function then § -Cr(f®) is O(CRr(f) -logl), as we can compute
f separately for each instance. We do this O(log () times and take the majority as the output (the
O(log () factor seems to be needed, since we require the protocols for computing F to be correct with
high probability on all ¢ instances simultaneously). For specific relations we can do much better. We
consider the identity function I D(z,y). It is known that Cr(/D) = O(logn) (see [23]). We show that
the amortized complexity of I D, with respect to randomized protocols, is Cr(ID) = O(1). Moreover,
the probability of error in our protocol for I'D is much less than a constant: it goes down exponential
with v/¢. (This can actually be improved to exponential in (.)

For simplifying the presentation of the protocols we first assume that the two parties have a way
of agreeing on a random string with no cost in communication. This can be thought as protocols in
the public-coins model. After presenting the protocols we describe how the parties can agree on such
strings while preserving both the communication complexity and the correctness of the protocols.

The following protocol computes the identity function on a single pair of inputs, (z,y):
e The parties agree on a random string b € {0, 1}".
e P computes (b, x), the inner product of b and 2 (mod 2), and P, computes (b, y).

e The parties exchange the bits (b,) and (b,y). If the bits are equal they output “equal” (z = y),
otherwise they output “not-equal” (z # y).

The number of bits exchanged in the protocol is O(1). If = y it is always correct, while if # y it
is correct with probability % (which can be improved to any other constant advantage while preserving
the O(1) complexity).

Suppose now that the two parties P, and P, wish to compute the identity function on ¢ input
pairs (z1,%1), (2,¥2),- ., (2¢,y¢). Consider the protocol where P; and P, amortize the first step in the
above protocol while exchanging the bits (b, ;) and (b,y;), for all 1 < ¢ < {. Such a protocol gives
a “good” success probability for computing each of the f(z;,y;) separately, while what we want is a
“good” probability of computing f on all £ instances simultaneously. A possible idea is to decrease the

error probability on each (z;,y;) to pollw by choosing k = O(log () vectors b;’s. Formally,
Protocol multi_compare:
1. The parties agree on k random strings by, bs, ..., by € {0, 1}™.
2. Fori=1,2,...,k:
(a) Py computes u; = (b;, x1), (b;, x2), ..., (b, x¢).
Py computes v; = (bi, y1), (bi, y2), - - -» (bis yr).

11

(b) The parties exchange the vectors u; and v; (each of them is an {-bit string) using a procedure
exchange(u;, v;).

(c) For1 < j </, if the j-th bits of u; and v; are different then the parties P; and P, replace z;
and y; (respectively) by z; = y; = 0", where 0" denotes a string of n zeros. (The motivation

for this step will become clear while making the analysis below.)

3. The output for the j-th pair (z;,y;) is “equal” (z; = y;) if and only if for every 1 < i < k the

j-th bits of u; and v; are equal.

The probability that the protocol will err on any pair is at most (2=%. The only problem with
this protocol is that if & = O(log{), and if the procedure exzchange, in step (2b), is implemented in
a naive way (i.e., Py sends u; to Py, and P; sends v; to P;) then the communication complexity of
the protocol is O({log () (i.e., O(log () invocations of the procedure exchange, each requires O(() bits).
This complexity is more than what we are aiming for.

The main idea for reducing the communication complexity is the following: even if a vector b; does
not recognize all the pairs such that z; # y;, we expect that it does recognize a constant fraction of
them. At each time that the parties recognize such a pair, they replace it by z; = y; = 0" (step (2¢)),
therefore the expected Hamming distance between the vectors u; and v; in the above protocol decreases
from round to round. We present an implementation of the procedure exchange(u,v) that uses this
property: It enables the parties to exchange u; and v; (step (2b))in a cost that depends on the Hamming
distance between the vectors; Namely, the smaller the Hamming distance, the lower the communication
complexity. This will give us the desired complexity.

We start with a simple case where the parties P; and P, receive, in addition to the input vectors
u,v € {0,1} respectively, a bound d such that u and v are promised to be at Hamming distance at most
d. The following deterministic protocol exzchangeq(u,v) enables each party to learn the value of the other
party, by exchanging O(log (S)) bits (we assume that d < /4, otherwise the parties simply exchange
their inputs). The protocol is due to Brandman, El-Gamal and Orlitsky (in [15]), Witsenhausen and
Wyner [22] and Karchmer and Wigderson [9]:

Protocol exchangeq(u,v):

o The parties consider the graph with 2° nodes corresponding to the strings in {0,1}* and edges
between nodes which are at Hamming distance at most 2d. The parties fix a coloring of the graph.

(An effective coloring can be constructed using linear error correcting codes such as BCH.)

e P sends P, the color of v and P, sends the color of » under the coloring. Since the Hamming
distance between u and v is bounded by d and since there is at most one member of every color
class at distance d from v (as we have a legal coloring of vectors with Hamming distance < 2d)

then P, can identify w. Similarly, P; can identify ».

The degree of every node in this graph is less than 2d - (;d). Therefore there exists a coloring of the
graph with that many colors. Since the communication in this protocol consists of names of colors then
O(log (;d)) = O(log (S)) bits are communicated.

12

The protocol exchangey above assumes that we have an upper bound on the Hamming distance
between u and v. In our case (step (2b) of the protocol multi_compare), a good bound on the distance
between u; and v; is not knows. If we use the protocol exchangey with the wrong bound d then it may
fail. Therefore, we generalize the protocol exchangey to a (randomized) protocol exzchange (which in
fact uses exzchangey as a procedure). This generalized protocol can work in the case that a good bound
d is not known. The expected number of bits exchanged is still only O(log (ﬁ)) bits, where A is the
actual Hamming distance between u and v. We use this protocol to implement step (2b) of the protocol

multi_compare.

Protocol exchange(u,v):
1. The parties agree on k random “test strings” ¢, ca,...,cp € {0,1}".
2. For d = 2,22,23, ... 2los!

(a) Py and P, engage in exchangeq(u,v). Denote the output of Py by v' and the output of P,
by u'.

(b) Test step: Py and P test whether v’ = u by comparing the inner product of the “test strings”
€1,€9,...cp with w and u’; this is done in a bit by bit manner, quitting early if they discover
an error and going to the next d. If all the & bits are equal the protocol terminates (i.e., the

parties assume that d is correct, and therefore v’ = w and v’ = »).

By the analysis of the protocol exchange; made above, the number of bits required in step (2a)
is O(log <§)) if d < /4 and O(() otherwise. If u' # u then the expected number of bits exchanged in
the test step is O(1). If ' = u then the number of bits exchanged in the test step is k, however this
happens only once (note that once we reach d such that d > A then the deterministic sub-protocol
exchangeq (step (2a)) always stops and with the correct values). Therefore, the expected number of
bits communicated is O(k + Zi»ozglA log (2{)) For computing the overall number of bits communicated

we need the following technical claim:

log D
L
Claim 5: For any D < (/2, Z log (22) is O(log (é))

=1

Proof: = We claim that for all 1 < &k < {/8 we have (;k) > (£)3/2: we know that

() _ (=R k=1 ((=2k 4 1) (=1 (k1) (=1)-(L—k+1) ()

¢ 2h(2k — 1) - (k + 1) = 2k(2k — 1) (k + 1)2F = k! 2k 2k gk

In addition, we have that (f;) > (%)k > 8% (for the last inequality we use the assumption k < (/8)

and hence (;k) > (£)2/4k > (£)3/2

Zﬁng log (2{) is at least at 3/2 times the preceding term, and the sum is bounded by some constant

Therefore every term (except perhaps the last two) in the sum

times the largest term which is log (é). [

13

Therefore the expected number of bits exchanged is O(k +log (ﬁ)) if A <%andO(k+log <€f2)) oth-
erwise. The error probability in each round is bounded by 2=% and therefore the total error probability
is bounded by log (- 27%.

As mentioned, we now use the procedure exchange described above to implement step (2b) of
the protocol multi_compare. The analysis of the protocol multi _compare is as follows: let D; be the
random variable counting the number of indices 1 < j < (such that (b;,2;) # (b;,y;) but (b1, ;) =
(b1,9;), ..., {bi—1,2;) = (bi—1,y;). In other words D; is distance between u; and v; (recall, that if for
some i’ < 1, (by, ;) # (by,y;) then both z; and y; are replaced by 0" and therefore the j-th coordinate
of u; and v; must be the same).

The expected number of bits exchanged in an execution of the protocol given that D; = d is bounded
by ¢ - Zle (k + log (S)) for some constant ¢. For any set of inputs, the expected value of D;y; given
that D; = d and that procedure exchange does not fail is bounded by 1/2d. Therefore, conditioned on
that exchange does not fail, E[D;] < £-27% and for all 0 < m < i we have Prob[D; > (2™~ < 2™, If
exchange does fail at some round, then at most ¢ - k bits are exchanged as result. The expected total

number of bits exchanged is therefore at most

k k
{ {
E[CE (k—l—log (D'))]—I—Prob[exchange faﬂs]-ﬁ-kgc-kz—l—k-ﬁlog@_k—l—c- g Ellog (D)]

K3

=1 =1
) A kE i-1 () A k (k .
< ¢ k*4+k-ALlogl27" +¢ 27" 1o) <ekf 4Lk Llogl277 + ¢ lo 2”
: et ey e 1) < et e ()
<

k
(
k2 Lk Llogf27F 12 1
c + og + c; og (KQ—S)

which by Claim 5 is O(k% 4+ k - Llog(2=% + ¢). Tf k is O(v/{), then the expected number of bits
communicated is O(().

As for correctness, if x; # y; then with probability at most 27% we have that for all 1 < i <
k, (bi,z;) = (bi,y;). Therefore the probability that for some j, and for all 1 < ¢ < k we have that
(bi,x;) = (b;,y;) is bounded by 2%. In addition there is the probability of failure each time we invoke
exchange(u,v). This probability is at most 107%—[. Thus the probability of error in our protocol is bounded
by g""ﬁkzlﬂoﬂ. Therefore, if k = V/(, then the probability of error is at most 2-%VD | To summarize we

have

Lemma 2: The protocol described above computes in the public coins model the identity function
on { instances while maintaining that the number of bits communicated is O({) and the probability of

error on any instance is at most 9-0(V7),

Newman [14] has considered the public-coins model vs. the private coins model. He showed that

Cr(f) = O(Cpup(f) +logn), which in particular implies

Cr(fP) = O(Cpu(f19) + log n).

14

Clearly,
CrfM) 2 Copu(£1)) = O(L-log € Cpun()).

All together we have the following:
Theorem 9: Let f:{0,1}" x {0,1}" — {0, 1} be a (partial) function. Then

L Cr(f) = 0(Cpus(f))-

2. For every sufficiently large £, 1 - Cpr(f) = O(logl - Cpu(f)).
In particular, this Theorem together with Lemma 2 give:
Theorem 10: Cg(ID)= O(1).

Note however that Newman’s method is non-constructive in nature. In the rest of this section we
turn to the question of constructively converting the protocols described above to run in the private
coins model. We describe a way for the parties to agree on the random strings (i.e., the b;’s and ¢;’s)
with not much additional cost in the communication.

We first describe how to agree on a single string b;. A collection of vectors B,, C {0,1}™ is called
e-biased if every x € {0,1}™ satisfies Prycp,,((b,z) = 0) = I £e. In [13] and [3] the existence and
construction of such sets which are of size polynomial in m (and thus each of them can be represented
by O(log m) bits) is shown. For our purposes it is sufficient to take ¢ to be say 1/4. Fix B,, and By, two
¢-biased probability spaces. Py selects b; € B,, by choosing log | B,,| random bits and sends those bits to
P,. They can both compute b;. Clearly, if @ = y then (b;,2) = (b;, y) while if z # y then (b;, 2) # (b;, y)
with probability at least 1/4. In order to pick k strings by, bs, ..., b; the party P, samples k times B,
using O(k -logn) bits altogether. He sends those bits to P». The probability that multi_compare errs
is at most (- (2)* and the expectation of D; is at most £ (2)7".

The strings c¢1,¢,..., ¢ are selected similarly from B, using O(klog() bits. Note however that
step (1) in protocol exchange(u,v) should not be repeated, i.e. ¢1,¢g,...c; are chosen once and for
all at the beginning of the protocol multi_compare. In the public coins model there is no reason for
doing that; we can allow the parties to use new strings ¢y, ..., c; each time that step (2b) of exzchange
is executed. However, the fixed choice of ¢q,...,c; makes the conversion to the private coins model
easier. Choosing the ¢;’s once and for all, using e-biased spaces, has the property that in protocol
exchange(u,v), in case v’ # u the expected number of bits exchanged is O(1). Also the probability of
error is at most (3)F.
error is at most 2~%VD and the number of bits exchanged is O(¢ + v/{logn).

For values of £ which are around log n we would like to replace the term \/Zlog n with \/Z—I—log n. This

Thus the analysis of Lemma 2 still applies and we get that the probability of

can be done by sampling the b;’s via a random walk in an expander a la Ajtai, Komlos and Szemeredi
[2] (in such a case the b;’s are not independent): The elements of B,, are mapped to nodes of a constant
degree expander G. Then, a random walk of length £ in G is generated, and the vectors by, b, ..., bg

are the vectors corresponding to the nodes of the walk. The number of bits required to specify the walk

15

is O(log | By, | + k) which is O(logn + k). (See e.g. [13] for details.) As before, P selects the random bits
and sends them to P;, so that they both agree on the same sequence. If # y then the probability that
(b;,z) = (b;,y) for all 1 < i < k goes down exponentially in k. The strings ¢1,¢q,. .., are selected
similarly in By using O(k + log () bits.

To conclude, we have a randomized protocol, in the private coins model, for computing the identity
function on £ instances with probability of error at most 2-2(vD) and expected complexity of O({+logn),
which is O({), for { sufficiently large. With a “small” additional error the protocol can be converted to

a protocol that uses O(() bits in the worst case. This gives a constructive proof for Theorem 10.

7 Open Problems

We conclude this work by mentioning some open problems:

e In [7] it was conjectured that for any relation f, the communication complexity, C'(f), can not be
smaller than C(f) by more than an additive factor of O(logn). The examples given in our paper
do not contradict this conjecture. On the other hand, according to the best lower bound we are
able to prove (Corollary 8), even for (non-partial) functions a quadratic gap between C(f) and
C(f)is possible (and the gap may be even bigger for general relations). Therefore, the main open
problem is to try to close this gap by either improving the lower bound (in particular, trying to
extend it to relations), or presenting relations with more than O(logn) difference between C'(f)
and C(f). (Presenting other relations with O(logn) difference between C'(f) and C'(f) may also

be interesting).

e Another open problem is trying to achieve similar lower bounds for the randomized model. Namely,
can one prove a lower bound on C'g(f) in terms of Cr(f) ? In the randomized case, it is also not
known whether C'r(f) < Cr(f), for every relation f.

e In the case of partial functions f, one can consider a weaker definition for the correctness of a
protocol for computing f): The protocol is required to succeed in computing f(f)(f, §) only if
for all ¢ (1 <¢ < () we have |f(x;,y;)| = 1 (otherwise, there is no requirement). In such a model
we think of inputs such that f(z;,y;) = D as “illegal”. Clearly, proving upper bounds under this

definition is easier, while proving lower bounds is harder.

8 Acknowledgments

We thank Mauricio Karchmer and Avi Wigderson for raising the question and for helpful discussions,
and Amos Beimel, Benny Chor, Alon Orlitsky and Steve Ponzio for many interesting comments on
earlier versions of this paper. Finally, we thank an anonymous referee for his very helpful comments

and criticism.

16

References

[1]

[2]

[3]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Aho A., J. Ullman, and M. Yannakakis, “On Notions of Information Transfer in VLSI Circuits”,
Proc. of 15th ACM Symposium on Theory of Computing, 1983, pp. 133-139.

Ajtai M., J. Komlos, and E. Szemeredi, “Deterministic Simulation in LOGSPACE”, Proc. of 19th
ACM Symposium on Theory of Computing, 1987, pp. 132-140.

Alon N., O. Goldreich, J. Hastad and R. Peralta, “Simple construction of almost k-wise independent
random variables”, Proc. of 31st IEFE Symposium on Foundations of Computer Science 1990, pp.
544-553.

Bshouty, N. H., “On The Extended Direct Sum Conjecture”, Proc. of 21th ACM Symposium on
Theory of Computing, 1989, pp. 177-185.

Fredman M., J. Komlos, and E. Szemeredi, “Storing A Sparse Table with O(1) Access Time”,
Journal of the Association for Computing Machinery, Vol 31, 1984, pp. 538-544.

Galibati G., and M. J. Fischer, “On The Complexity of 2-Output Boolean Networks”, Theoretical
Computer Science, Vol 16, 1981, pp. 177-185.

Karchmer M., R. Raz, and A. Wigderson, “On Proving Super-Logarithmic Depth Lower Bounds
via the Direct Sum in Communication Complexity”, Proc. of 6th IFEF Structure in Complexity
Theory, 1991, pp. 299-304.

Karchmer M., and A. Wigderson, “Monotone Circuits for Connectivity Require Super-Logarithmic
Depth”, Proc. of 20th ACM Symposium on Theory of Computing, 1988, pp. 539-550.

Karchmer M., and A. Wigderson, private communication.

Linial N., and U. Vazirani, “Graph Products and Chromatic Numbers”, Proc. of 30th , IFEFE
Symposium on Foundations of Computer Science, 1989, pp. 124-128.

Lovasz, L., “Communication Complexity: A Survey”, in Paths, Flows, and VLSI Layout, edited
by B. H. Korte, Springer Verlag, Berlin New York, 1990.

Mehlhorn, K., and E. Schmidt, “Las-Vegas is better than Determinism in VLSI and Distributed
Computing”, Proc. of 14th ACM Symposium on Theory of Computing, pp. 330-337, 1982.

Naor J., and M. Naor, “Small-Bias Probability Spaces: Efficient Constructions and Applications”,
SIAM J. on Computing, vol 22, 1993, pp. 838-856.

Newman, L., “Private vs. Common Random Bits in Communication Complexity”, Information
Processing Letters 39, 1991, pp. 67-71.

17

[15] Orlitsky, A., “Communication Issues in Distributed Communication”, PhD thesis, Stanford Uni-
versity, 1986.

[16] Orlitsky, A., “Two Messages are Almost Optimal for Conveying Information”, Proc. of 9th Sym-
posium on Principles of Distributed Computing, 1990, pp. 219-232.

[17] Paul W., “Realizing Boolean Function on Disjoint Sets of Variables”, Theoretical Computer Science
2, 1976, pp. 383-396.

[18] Raz R., and A. Wigderson, “Monotone Circuits for Matching Require Linear Depth”, Proc. of 22nd
ACM Symposium on Theory of Computing, 1990, pp. 287-292.

[19] Razborov A., “Applications of Matrix Methods to the Theory of Lower Bounds in Communication
Complexity”, Combinatorica, 10(1), 1990, pp. 81-93.

[20] Q. F. Stout, “Meshes with multiple buses”, Proc. of 27th IEEE Symposium on Foundations of
Computer Science, 1986, pp. 264-273.

[21] Witsenhausen, H. S., “The Zero-Error Side Information Problem and Chromatic Numbers”, IFEFF
Transactions on Information Theory, 1976, pp. 592-593.

[22] Witsenhausen, H. S. and A. D. Wyner, “Interframe Coder for Video Signals”, United States Patent
number 4,191,970, 1980.

[23] Yao, A. C., “Some Complexity Questions Related to Distributed Computing”, Proc. of 11th ACM
Symposium on Theory of Computing, 1979, pp. 209-213.

18

