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Abstract

We introduce new theoretical measures for the qualitative and quantitative assessment
of encryption schemes designed for broadcast transmissions. The goal is to allow a cen-
tral broadcast site to broadcast secure transmissions to an arbitrary set of recipients while
minimizing key management related transmissions. We present several schemes that al-
low a center to broadcast a secret to any subset of privileged users out of a universe of
size n so that coalitions of k users not in the privileged set cannot learn the secret. The
most interesting scheme requires every user to store O(k log k log n) keys and the center
to broadcast O(k2 log2 k log n) messages regardless of the size of the privileged set. This
scheme is resilient to any coalition of k users. We also present a scheme that is resilient
with probability p against a random subset of k users. This scheme requires every user to
store O(log k log(1/p)) keys and the center to broadcast O(k log2 k log(1/p)) messages.
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1 Introduction

We deal with broadcast encryption. We consider a scenario where there is a center and a set
of users. The center provides the users with prearranged keys when they join the system.
At some point the center wishes to broadcast a message (e.g. a key to decipher a video clip)
to a dynamically changing privileged subset of the users in such a way that non-members
of the privileged class cannot learn the message. Naturally, the non-members are curious
about the contents of the message that is being broadcast, and may try to learn it.

The obvious solution is: give every user its own key and transmit an individually en-
crypted message to every member of the privileged class. This requires a very long trans-
mission (the number of members in the class times the length of the message). Another
simple solution is to provide every possible subset of users with a key, i.e. give every user
the keys corresponding to the subsets it belongs to. This requires every user to store a huge
number of keys.

The goal of this paper is to provide solutions which are efficient in both measures, i.e.
transmission length and storage at the user’s end. We also aim that the schemes should be
computationally efficient.

To achieve our goal we add a new parameter to the problem. This parameter represents
the number of users that have to collude so as to break the scheme. The scheme is considered
broken if a user that does not belong to the privileged class can read the transmission. For
a given parameter k, our schemes should be resilient to any subset of k users that collude
and any (disjoint) subset (of any size) of privileged users.

We also consider another scheme parameter, the random-resiliency of a scheme which
refers to the expected number of users, chosen uniformly at random, that have to collide so
as to break the scheme.

In many applications, it suffices to consider only the (weaker) random-resiliency measure.
For example, if decryption devices are captured from random users, (or were assigned at
random to users), it is the random resiliency that determines how many devices need be
captured so as to break the scheme. We discuss a number of different scenarios with
differing assumptions on the adversary strength. We show that even powerful and adaptive
adversaries are incapable of circumventing the protection afforded by our schemes.

The final goal of the broadcast encryption scheme is to securely transmit a message to
all members of the privileged subset. If cryptographic tools such as one-way functions exist
then this problem can be translated into the problem of obtaining a common key. Let the
security parameter be defined to be the length of this key.

1.1 Definitions

A broadcast scheme allocates keys to users so that given a subset T of U , the center can
broadcast messages to all users following which all members of T have a common key.

A broadcast scheme is called resilient to a set S if for every subset T that does not
intersect with S, no eavesdropper, that has all secrets associated with members of S, can
obtain “knowledge” of the secret common to T . Knowledge here can have two different
interpretations:

• The secret of T has some a-priori distribution (usually the uniform distribution) and
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given the keys of S and the message transmitted by the center the conditional distri-
bution of the secret is not changed. This is the “information-theoretic” definition of
security.

• The secret of T is pseudo-random, i.e. no computationally bounded (by probabilistic
polynomial time) eavesdropper can distinguish between the secret and a truly random
string; even if the eavesdropper is provided with the keys of the coalition S the secret
of T remains pseudo-random. This is the computational definition of security. For
more information on pseudo-randomness, see [15], [4] or [10].

A scheme is called k-resilient if it is resilient to any set S ⊂ U of size k. We also deal
with random coalitions: a scheme is called (k, p)-random-resilient if with probability at least
1− p the scheme is resilient to a set S of size k, chosen at random from U . Let |U | = n, we
use n and |U | interchangeably hereinafter.

The relevant “resources” which we attempt to optimize are

• The number of transmissions used by the center to create the common secret. (this
is “wasted” bandwidth).

• The number of keys associated with each user. Since the user may be weak, i.e. a
smart card, this should be minimized.

• The computation effort involved in retrieving the common key by the members of the
privileged class.

1.2 Results

As a function of the resiliency required, we provide a large set of schemes that offer a tradeoff
between the two relevant resources: memory per user and transmission length.

If nothing is known about the privileged subset T , any broadcast scheme requires that
the transmission be sufficiently long to uniquely identify the privilege subset T . Otherwise,
by a simple counting argument, there would be two non-identical sets, T and T ′, both of
which somehow manage to obtain the same common key.

Thus, in general, simply representing a subset T ⊂ U requires |U | bits. Using our
schemes, transmitting an additional o(|U |) bits guarantees security against all coalitions
of size Õ(

√
|U |) users and randomly chosen coalitions of Õ(|U |) users. The computational

and memory requirements for these schemes are Õ(
√
U). Thus, in some sense, security is

available for “free”.
In fact, in many contexts the privileged set may be identified by sending a relatively short

transmission. E.g., if the set can somehow be computed from an old privileged set or the
set representation can be compressed. Thus, we distinguish between the set identification
transmission and the broadcast encryption transmission. Our goal is the study of broadcast
encryption transmissions and their requirements. In general, the center will identify every
user with a unique identification number, and thus the set representation can be a bit vector.
There are distinct advantages that the identification numbers be assigned at random to new
users, we discuss this hereinafter in the context of random resiliency.

We distinguish between zero-message schemes and more general schemes. Zero-message
schemes (Section 2) have the property that knowing the privileged subset T suffices for
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all users x ∈ T to compute a common key with the center without any transmission. Of
course, to actually use a zero-message scheme to transmit information implies using this
key to encrypt the data transmitted.

More general schemes (Section 3) may require that the center transmit many messages.
All the schemes we describe require that the length of the center generated messages be
equal in length to the security parameter. Thus, when counting messages transmitted by
the center, each messages is s bits in length.

Our general approach to constructing schemes is to use a two stage approach. First,
we construct low resiliency zero-message schemes and then use these to construct higher
resiliency schemes. The latter are not zero-message type schemes.

For low resiliency schemes, we describe assumption-free constructions, that are based
upon no cryptographic assumption (the equivalent of a one-time pad). Then, we describe
more efficient schemes based upon a some cryptographic assumptions, either the existence
of a one way function or the more explicit assumption that RSA is secure. These results
are described in Theorems 1, 2, 3.

We then deal with the more general case, and describe schemes of high resiliency (Section
3). For clarity of exposition, we describe our constructions in terms of the number of
“levels” involved in the scheme construction. Informally, the levels refer to a sets of hash
functions that partition and group users in a variety of ways. Our proofs are all based upon
applications of the probabilistic method [1].

To obtain a resiliency of k, it suffices to store k log k log n keys per user, while the
number of messages transmitted by the center is O(k2 log2 k log n) (Theorem 5). To obtain
a random resiliency of k, with probability p, it suffices to store log k log(1/p) keys per user,
while the number of messages transmitted by the center is O(k log k log(1/p)) (Corollary
2). Other points along the tradeoff between memory and transmission length are given in
Theorem 4.

1.3 Related Work

Several papers considered the problem of a center who wants to broadcast to a group (cf.
[2, 6, 14]). However, all these schemes are “one-time”, and the keys must be updated after
every use.

Suppose that a user subscribes to a Pay-TV service, receives a decryption box and then
opens it and duplicates it. There is nothing to stop him or her from doing so (except for
tamper-proof hardware, which may be problematic). However, suppose that given an illegal
box manufactured by such a user, or a coalition of k such users, it is possible to trace at
least one “traitor”. Then such a tracing scheme would work very well in conjunction with
broadcast encryption: given the illegal box, a traitor is traced and its name is removed
the privileged list. These can be repeated until the box is rendered useless. Chor, Fiat
and Naor [7] have recently designed such traitor tracing schemes. The complexity of their
schemes (in terms of the length of broadcast and number of keys stored) is similar to the
schemes of this paper.

Blundo and Cresti [3] have recently provided tight lower bound for the information-
theoretic version of the broadcast encryption problem discussed in this paper.
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2 Zero Message Schemes

In this section we present several schemes that do not require the center to broadcast any
message in order for the member of the privileged class to generate a common key. The
main significance of the schemes presented in this section is their application as building
blocks for the schemes presented in Section 3.

2.1 The Basic Scheme

The basic scheme we define allows users to determine a common key for every subset,
resilient to any set S of size ≤ k. The idea is very simple.

For every set B ⊂ U , 0 ≤ |B| ≤ k, define a key KB and give KB to every user x ∈ U−B.
The common key to the privileged set T is simply the exclusive or of all keysKB, B ⊂ U−T .
Clearly, every coalition of S ≤ k users will all be missing keyKS and will therefore be unable
to compute the common key for any privileged set T such that S ∩ T is empty.

The memory requirements for this scheme are that every user is assigned
∑k

i=0

(n
k

)
keys.

With these requirements we need make no assumptions whatsoever. We therefore have

Theorem 1 There exists a k-resilient scheme that requires each user to store
∑k

i=0

(n
k

)
keys

and the center need not broadcast any message in order to generate a common key to the
privileged class.

2.2 1-Resilient Schemes using Cryptographic Assumptions

We now see how to improve the memory requirements of the scheme described above using
cryptographic assumptions such as “one-way functions exist” and that extracting prime
roots modulo a composite is hard. The improvements are applicable to any k, however they
are the most dramatic for k = 1.

2.3 A 1-resilient scheme based on one-way functions.

Consider the 1-resilient version of the scheme described above. It requires every user to
store n+ 1 different keys. However, this can be reduced to lceil log n⌉ keys per user if the
keys are pseudo-randomly generated from a common seed, as we explain below.

Assume that one-way functions exist and hence pseudo-random generators exist (see
[13, 12])). Let f : {0, 1}ℓ 7→ {0, 1}2ℓ be a pseudo-random generator (the length of the
output of f is twice the length of the input). We first explain how the key distribution is
done. Associate the n users with the leaves of a balanced binary tree on n nodes. The root
is labeled with the common seed s ∈ {0, 1}ℓ and other vertices are labeled recursively as
follows: apply the pseudo-random generators f to the root label and taking the left half
(first ℓ bits) of f(s) to be the label of the left subtree while the right half (last ℓ bits) of
f(s) to be the label of the right subtree. This is similar to the construction of the tree in
the generation of a pseudo-random function in [11].

By the scheme of Section 2.1, every user x should get all the keys except the one
associated with the singleton set B = {x}. To meet this goal remove the path from the leaf
associated with the user x to the root. The result is a forest of ⌈log n⌉ trees. Provide user x
with the labels associated with the roots of these trees. Given a label of a root of a subtree
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it is easy to compute the labels of the leaves of that subtree. Hence user x can compute the
all leaf labels (except K{x}) without additional help.

On the other hand, given this information, K{x} is still pseudo-random for user x, as
can be seen by a hybrid argument: if the labels provided to users x are (truly) random, then
K{x} is indistinguishable from a random key (recall thatK{x} was generated by an iterative
application of a pseudo-random generator, which is in itself a pseudo-random generator (cf.
[15])). Consider the distributions {Di|1 ≤ i ≤ ⌈log n⌉} where Di is the distribution where
the first i labels are random and the rest are pseudo-random. Since by assumption D0 and
D⌈logn⌉ are distinguishable, there must be an i such that Di and Di+1 are distinguishable.
However, this is impossible since it would imply a distinguisher for f .

Therefore we have

Theorem 2 If one-way functions exist, then there exists a 1-resilient scheme that requires
each user to store log n keys and the center need not broadcast any message in order to
generate a common key to the privileged class.

This scheme is not 2-resilient, since any two users have (together) all the keys KB. For
instance, x and x′ such that x is associated with a leaf in the left subtree of the root and
x′ is associated with a leaf in the right subtree of the root have the labels of both subtrees.

2.4 A 1-resilient scheme based on Computational Number Theoretic As-
sumptions

A specific number theoretic scheme, cryptographically equivalent to the problem of root
extraction modulo a composite, can further reduce the memory requirements for 1−resilient
schemes. This scheme is cryptographically equivalent to the RSA scheme [17] and motivated
by the Diffie-Hellman key exchange mechanism, and the original Shamir cryptographically
secure pseudo-random sequence. [8, 18].

The center chooses a random hard to factor composite N = P · Q where P and Q are
primes. It also chooses a secret value g of high index. User i is assigned key gi = gpi , where
pi, pj are relatively prime for all i, j ∈ U . (All users know what user index refers to what
pi). A common key for a privileged subset of users T is taken as the value gT = gpT mod N
where pT =

∏
i∈T pi. Every user i ∈ T can compute gT by evaluating

gi

∏
j∈T−{i} pj mod N

Suppose that for some T ⊂ U and some j ̸∈ T user j could compute the common key
for T . We claim that it implies that the user could also compute g: given ax mod N and
ay mod N and x and y one can compute aGCD(x,y) mod N by performing a sequence of
modular exponentiations/divisions on ax and ay (see [18]; this sequence is derived from
applying the Euclidean GCD algorithm on the modular loga of ax and ay). As the GCD of
pj and

∏
h∈T

ph is 1, it follows that g can be computed by user j in this manner. Thus, the

user could compute the pj ’th root of gpj while knowing only the composite N . Therefore if
this is assumed to be hard, then the user cannot get the key common to T . Note however
that this is not strong enough for our definition of security 9even the computational one),
since the key for T is pseudo-random. If we relax this requirement to one that says that it
is computationally hard to construct the common key, then we have:
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Theorem 3 If extracting root modulo composites is hard, then there exists a 1-resilient
(under the relaxed definition) scheme that requires each user to store one key (of length
proportional to the composite) and the center need not broadcast any message in order to
generate a common key to the privileged class.

This scheme is not 2-resilient since any two user can collude and compute g.

3 Low Memory k-Resilient Schemes

The zero message k-resilient schemes described in the proceeding section require for k >
1 a great deal of memory, exponential in k. In this section we provide several efficient
constructions of k-resilient schemes for k > 1. Our schemes are based on a method of
converting 1-resilient schemes into k-resilient schemes. Throughout this section we assume
the existence of a 1-resilient scheme for any number of users. This can be taken as the
no-assumption scheme, or any of the cryptographic assumption variants.

Let w denote the number of keys that a user is required to store in the 1-resilient scheme.
I.e w = n+ 1 if no cryptographic assumptions are made, w = log n if we assume that one-
way functions exists and w = 1 if we assume that it is hard to extract roots modulo a
composite. The efficiency of our schemes will be measured by how many w’s they require.

3.1 One Level Schemes

Consider a family of functions f1, . . . , fl, fi : U 7→ {1, . . . ,m}, with the following property:
For every subset S ⊂ U of size k, there exists some 1 ≤ i ≤ l such that for all x, y ∈ S:
fi(x) ̸= fi(y). This is equivalent to the statement that the family of functions {fi} contains
a perfect hash function for all size k subsets of U when mapped to the range {1, . . . ,m}.
(See [16] or [9] for more information on perfect hash functions.)

Such a family can be used to obtain a k-resilient scheme from a 1-resilient scheme. For
every 1 ≤ i ≤ l and 1 ≤ j ≤ m use an independent 1-resilient scheme R(i, j). Every user
x ∈ U receives the keys associated with schemes R(i, fi(x)) for all 1 ≤ i ≤ ℓ. In order to send
a secret message M to a subset T ⊂ U the center generates random strings M1, . . . ,M ℓ

such that
⊕l

i=1M
i = M . The center broadcasts for all 1 ≤ i ≤ ℓ and 1 ≤ j ≤ m the

message M i to the privileged subset {x ∈ T |fi(x) = j} using scheme R(i, j). Every user
x ∈ T can obtain all the messages M1, . . .M ℓ and by Xoring them get M .

The number of keys each user must store is m times the number needed in the 1-resilient
scheme. The length of the transmission is ℓ ·m times the length of the transmission for a
zero message 1-resilient scheme, equal to the security parameter.

Claim 1 The scheme described above is a k-resilient scheme

Proof. For any coalition S of size at most k there is an 1 ≤ i ≤ ℓ such that fi is 1-1 on
S. In the schemes R(i, j), 1 ≤ j ≤ m the coalition S has at most the keys of a single user
(which is not part of T ). Given the transmissions of R(i, j) only, then by assumption, S
gets no information about Mi (in the information theoretic definition of security) or Mi

is is pseudo-random (in the computational definition of security). Furthermore, given the
combined information of the schemes R(i, j), Mi is still random (in the information theoretic
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case) and is remain pseudo-random in the computational case. The latter can be seen by
hybrid argument. Therefore, even if M i′ is known to the eavesdropper for all i′ ̸= i, no
knowledge is gained about M =

⊕l
i=1M

i. 2

We now see what values can m and ℓ take. It turns out that setting m = 2k2 and
ℓ = k log n is sufficient. This can be seen via a probabilistic construction. Fix S ⊂ U of size
k. The probability that a random fi is 1-1 on S is at least

1−
(
k

2

)
· 1

m
= 1− k(k − 1)

2k2
≥ 3

4
.

Therefore the probability that for no i we have that fi is 1-1 on S is at most 1/4ℓ = 1/n2k.
Hence the probability that for all subsets S ⊂ U of size k there is a 1-1 fi is at least
1−

(n
k

)
· 1
n2k ≥ 1− 1

nk . We therefore conclude

Theorem 4 There exists a k-resilient scheme that requires each user to store O(k log n ·
w) keys and the center to broadcast O(k3 log n) messages. Moreover, the scheme can be
constructed effectively with arbitrarily high probability by increasing the scheme parameters
appropriately.

The proof implies that against a randomly chosen subset S ⊂ U of size k we can have
a more efficient scheme, since we can take ℓ to be log4(1/p):

Corollary 1 For any 1 ≤ k ≤ n and 0 ≤ p ≤ 1 there exists a (k, p)-random-resilient
scheme that requires each user to store O(log(1/p) · w) keys and the center to broadcast
O(k2 log(1/p)) messages. Simply choose m = k2 and ℓ = log p. Moreover, the scheme can
be constructed effectively.

As for explicit constructions for the family f1, . . . fℓ, they seem to be at least a factor
of k more expensive. One possibility of construction is via error-correcting-codes of large
relative distance (say 1− 1/k2) over an alphabet of size O(k2). For a simple construction,
Consider the family

F = {fp(x) = x mod p|p ≤ k2 log n and is a prime}

F satisfies the above requirement.
The number of keys stored per user in this explicit construction is O(k2 log n/ log log n)

and the number of messages that the center broadcasts is O(k4 log2 n/ log logn).

3.2 Remarks

After having seen the single-level schemes above, we wish to clarify certain points that can
be discussed only after seeing an example of the types of schemes we deal with. We continue
with more efficient multi-level schemes in the next section. The remarks of this section are
applicable to both single and multi level schemes.

7



3.2.1 Representing the Functions.

In some applications using probabilistic constructions is problematic because of represen-
tation problem, i.e that storing the resulting structure may be prohibitively expensive.
However, as described above, our schemes do not absolutely require that the fi functions
be computable, the user could simply be assigned fi(x). This could be chosen at random.
The center could in fact generate all required functions from a pseudo-random function and
a single seed.

Alternatively, instead of using completely random functions one can use function with
limited independence, such as random polynomials of degree d (see [1] for information on
limited independence functions). The results regarding the probabilistic construction of
this section require only pairwise independence (we need to worry about collisions), and
those of the next section require logk-wise independence. The advantage is that there is a
succinct representation for the functions now. Storing such function representations in the
user decryption devices is not much more expensive than storing the keys required in the
above schemes.

3.2.2 Reducing Storage.

Suppose that we are interested in limiting the number of keys that a user must store (at the
the expense of the number of keys that the center must broadcast). We can get a certain
tradeoff: instead of hashing to a range of size 2k2 we hash to range of size m = a · k2. The
results that we get in this case are that the memory requirements are smaller by a log a
factor and the broadcast requirements are larger by a factor of a. This is true for both
k-resilient schemes and for (k, p)-random-resilient schemes.

We now describe yet another tradeoff that may reduce storage requirements. Every
R(i, j) scheme above deals with a subset of the users. If we assume that the fi functions
can be computed by anyone (e.g., k-wise independent functions as described above), then
the R(i, j) 1-resilient schemes can be devised so as to deal with the true number of users
associated with the scheme, depending on the underlying 1-resilient scheme, this leads to
a saving in the memory requirements described in the scheme, at the expense of some
additional computation.

3.2.3 Adversary Limitations and Resiliency.

A k-resilient scheme is resilient to any coalition of size k, this means that irrespective of
how the adversary goes about choosing the coalition, no coalition of size smaller than k will
be of any use to the adversary. However, the scheme is resilient to many sets of size much
larger than k.

The adversary may capture devices at random, in this case the random resiliency mea-
sure is directly applicable. Given a (V, 1/2) randomized resilient scheme, the expected
number of devices that the adversary must capture to break the scheme is at least V/2.

A possibly legitimate assumption is that a user of the decryption device does not even
know his unique index amongst all users. For example, the user index and all user secrets
could be stored on a (relatively) secure smartcard, such a smartcard is probably vulnerable,
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but not to a casual user. Thus, if user indices are assigned at random any set of devices
captured will be a random set irrespective of the adversary strategy used.

The definition of (k, p) random resiliency is somewhat problematic for two reasons:

1. The probability p is an absolute probability, this does not make sense if the underlying
one resilient schemes we are using can be themselves broken with relatively high
probability (e.g., by guessing the short secret keys).

2. The assignment of users ids (index numbers) to users is assumed to be random and
secret. But, it may be possible to learn the user identification by monitoring trans-
missions and user behavior.

To avoid both these problems we define a new notion of resiliency and say that a scheme
is (k, p)-immune if for any adversary choosing adaptively a subset S of at most k users
and a disjoint subset T we have: the probability that the adversary (knowing all the secrets
associated with S) guesses the value the center broadcasts to T is larger by at most (additive)
p than the probability the adversary would have guessed it without knowing the secrets of
S.

If we assume that the functions f are kept secret then the results we can get for (k, p)-
immune schemes are very similar to the results for (k, p)-random-resilient schemes. However,
we do not know whether this holds in general for all random-resilient schemes. This is
true since the random constructions for both single level schemes and multi level schemes
(described in the next section), the analysis fixes the subset S and evaluates the probability
that it is good for a random construction. Since the adversary does not know the values of
the hash functions (fi for single level schemes) when adding a user to S, any choice of S
has the same probability of being bad.

For completeness, we note that yet another attack is theoretically possible, although
it may be rather difficult in practice. The adversary may attempt to actively subvert the
system by publishing a solicitation for dishonest users that meet certain criteria. Specifically,
it would be very useful for the adversary to capture pairs of devices that belong to the
same 1-resilient R(i, j) scheme described above, if he captures ℓ pairs (ai, bi) such that
fi(ai) = fi(bi) then he has corrupted our scheme above. In this case, a true k-resilient
scheme is the only prevention. If k is sufficiently large and the number of traitors does not
exceed k then the scheme is secure.

3.3 Multi-Level Schemes

We now describe a general multi-level scheme that converts a scheme with small resiliency
to one with large resiliency. Consider a family of functions f1, . . . , fl, fi : U 7→ {1, . . . ,m}
and a collection of sets of schemes,

{R(i, j)|1 ≤ i ≤ l, 1 ≤ j ≤ m},

where each R(i, j) consists of w schemes labeled R(i, j, 1), . . . , R(i, j, w). These functions
and schemes obey the following condition: For every subset S ⊂ U of size k, there exists
some 1 ≤ i ≤ l such that for all 1 ≤ j ≤ m there exists some 1 ≤ rj ≤ w such that the
scheme R(i, j, rj) is resilient to the set {x ∈ S|fi(x) = j}.
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We claim that such a structure can be used to obtain a k-resilient scheme: Generate
independently chosen keys for all schemes R(i, j, r). A user x ∈ U receives for every 1 ≤ i ≤ l
and every 1 ≤ r ≤ w the keys associated with x in scheme R(i, fi(x), r). Given a subset
T ⊂ U and a secret message M , the center generates:

• StringsM1, . . . ,M l such that
⊕l

i=1M
i = M andM1, . . . ,M l−1 are chosen at random.

• For every 1 ≤ i ≤ l, and 1 ≤ j ≤ m random strings M
(i,j)
1 , . . . ,M

(i,j)
w , such that⊕w

t=1M
(i,j)
t = M i.

The center broadcasts for all 1 ≤ i ≤ ℓ and 1 ≤ j ≤ m and 1 ≤ r ≤ w the message

M
(i,j)
r to the privileged subset {x ∈ T |fi(x) = j} using scheme R(i, j, r). Every user x ∈ T

can obtain for all 1 ≤ i ≤ ℓ and 1 ≤ r ≤ w messages M
(i,fi(x))
r . To reconstruct the message

M , the user x ∈ T takes the bitwise exclusive or of all messages transmitted to the user in
all schemes to which the user belongs, i.e., in all schemes R(i, j, r) such that fi(x) = j.

The number of keys associated with user x is therefore the number of keys associated
with a scheme R(i, j, r) times l × w. The length of a broadcast is equal to the number of
messages transmitted in an R(i, j, r) scheme times l ×m× w.

Claim 2 The scheme described above is a k-resilient scheme.

Proof. For any coalition S of size at most k there is by assumption an 1 ≤ i ≤ ℓ and
r1, r2, . . . rm ∈ {1 . . . w} such that the schemes R(i, j, rj) are resilient to S. Therefore, for

all 1 ≤ j ≤ m the value of M
(
rj i, j) is random or pseudo-random for S and hence the value

of M i =
⊕w

t=1M
(i,j)
t is random or pseudo-random for S which implies that no knowledge

is gained about M . 2

We now describe a concrete two level scheme using this method. Set ℓ = 2k log n,
m = k/ log k, t = 2e log k and w = log k+1. The first level consists of a family of ℓ functions

f1, . . . , fl, fi : U 7→ {1, . . . ,m}. The second level consists of functions g
(i,j)
r : U 7→ {1, . . . 2t2}

for all 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m and 1 ≤ r ≤ w. Every such (i, j, r) and 1 ≤ h ≤ 2t2 defines
a 1-resilient scheme R(i, j, r, h) as in the scheme of Section 3.1. Every user x receives the

keys of schemes R(i, fi(x), r, g
(i,fi(x))
r (x)) for all 1 ≤ i ≤ ℓ and 1 ≤ r ≤ w.

For a set S ⊂ U of size k we say that i is good if:
for all 1 ≤ j ≤ m

1. |{x ∈ S|fi(x) = j}| ≤ t.

2. there exists 1 ≤ r ≤ w such that g
(i,j)
r is 1-1 on {x ∈ S|fi(x) = j}.

By Claim 2 we know that if for every set S ∈ U of size k there is a good i, then the
scheme is k-resilient.

We prove that randomly chosen fi and g
(i,j)
r constitute a good scheme with reasonably

high probability.
Fix a subset S ⊂ U of size k and j ∈ {1 . . .m}. The probability that Condition 1 above

is not satisfied is at most(
k

t

)
· ( 1
m
)t ≤ (

ek

2e log k
)2e log k · ( log k

k
)2e log k = (

1

2
)2e log k =

1

k2e
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Suppose that condition 1 is satisfied, then for any 1 ≤ r ≤ w the probability that g
(i,j)
r is

1-1 on {x ∈ S|fi(x) = j} is at least 1 − t 1
2t =

1
2 . Hence the probability that condition 2 is

not satisfied is at most 1/2w = 1/2k and therefore the probability that Conditions 1 and 2
are both satisfied for every 1 ≤ j ≤ m is at least 1/2. The probability that no i is good for
S is at most 1/2ℓ = 1/n2k. Hence the probability that all subsets S ⊂ U of size k have a
good i is at least

1−
(
n

k

)
· 1

n2k
≥ 1− 1

nk
.

We therefore conclude:

Theorem 5 There exists a k-resilient scheme that requires each user to store O(k log k log n·
w) keys and the center to broadcast O(k2 log2 k log n) messages. Moreover, the scheme can
be constructed effectively with high probability.

As in Theorem 4, the proof implies that against a randomly chosen subset S ⊂ U of size
k we can have a more efficient scheme:

Corollary 2 For any 1 ≤ k ≤ n and 0 ≤ p ≤ 1 there exists a (k, p)-random-resilient scheme
with the property that the number of keys each user should store is O(log k log(1/p) ·w) and
the center should broadcast O(k log2 k log(1/p)) messages. Moreover, the scheme can be
constructed effectively with high probability.

4 An Example and Implementation Considerations

The schemes described in this paper are valid for all possible values of the parameters.
However, if random resiliency suffices, and if one seeks a solution to a concrete example
then other considerations creep in.

Say we’ve got a user group of one billion subscribers. Also, assume that our goal is that
to discourage any possible pirate box manufacturer, and thus the expectation should be
that he is required to capture k = 100, 000 devices before seeing any return on his or her
investment.

Basing our 1-resilient scheme on the number theoretic scheme, and using our randomized
(100000, 1/2)-resilient scheme, the number of keys stored in every subscriber decryption
device is less than 20, and the length of a broadcast enabling transmission is on the order
of two million keys. (Vs., one billion keys transmitted for standard schemes).

However, there is a major problem, with the set identification transmission. It seems that
all subscribers will have to listen to one billion bits of set identification transmission without
making a single error. In fact, the subscriber is apathic to the presence or absence of most
of the users. It is only users that belong to the same underlying 1-resilient schemes that he
belongs to that matter. Thus, there are advantages to splitting up users into independent
broadcast encryption schemes, determining what user gets assigned to what scheme at
random. By appropriately resynchronizing and labeling schemes, the decryption device will
only have to deal with the set identification transmission dealing with one (smaller) scheme.

There is a tradeoff between error control issues and security. If the number of broadcast
encryption schemes gets too large, and the resiliency gets too small, then the (multiple)
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birthday paradox enters into consideration. (We say such a scheme is broken if any of it’s
component broadcast encryption schemes is broken).

Say we split the billion users above into randomly assigned broadcast encryption groups
of 1000 users. We use a non-random 5-resilient broadcast encryption scheme which re-
quires about 10 keys stored per user, and 100 keys transmission per broadcast encryption
scheme, for a total of 108 key transmissions. The total random resiliency is approximately
1, 000, 0005/6 = 100, 000. (The adversary must randomly select devices until he has 5 differ-
ent devices from the same broadcast encryption scheme). Transmissions are 50 times longer
than before, but still significantly shorter than individual transmissions. This is a practical
scheme since there is no longer any serious error control problem.

Another advantage of the scheme presented in this section is that if the adversary is
in fact successful, after collecting 100,000 decryption devices, and if we have captured one
of the adversary eavesdropping devices, all is not lost. It is still a relatively simple matter
to disable all adversary devices by disabling one group of 1000 users, splitting these users
amongst other groups, the adversary effort has been in vain.
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