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Abstract

On-line machine scheduling has been studied extensively, but the fundamental issue of fair-

ness in scheduling is still mostly open. In this paper we explore the issue in settings where there

are long living processes which should be repeatedly scheduled for various tasks throughout the

lifetime of a system. For any such instance we develop a notion of desired load of a process,

which is a function of the tasks it participates in. The unfairness of a system is the maximum,

taken over all processes, of the di�erence between the desired load and the actual load.

An example of such a setting is the carpool problem suggested by Fagin and Williams [16].

In this problem, a set of n people form a carpool. On each day a subset of the people arrive and

one of them is designated as the driver. A scheduling rule is required so that the driver will be

determined in a `fair' way.

We investigate this problem under various assumptions on the input distribution. We also

show that the carpool problems can capture several other problems of fairness in scheduling.

1 Introduction

1.1 Our results

Consider the following edge orientation problem: on a set of n nodes labeled f1; : : : ; ng there is a

(possibly in�nite) sequence of edges, i.e. pairs of nodes. Undirected edges arrive one by one, and

each edge should be oriented upon its arrival. The goal is devise a method of orienting the edges so

that in every node at every point in time the di�erence between the indegree and outdegree is as

small as possible. This is measured by the unfairness at any time, de�ned to be half the maximum

over nodes, of the di�erence between indegree and outdegree.

The problem comes in three 
avors:
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1. Find a deterministic rule for orienting the edges and analyze it on the the worst input sequence.

2. Suggest a rule and analyze it under some assumption on the distribution of the sequence,

in particular that each edge in the sequence is chosen uniformly from all possible edges and

independently of the rest of the sequence.

3. Suggest a randomized rule for orienting the edges and analyze its expected performance on

the worst sequence.

The greedy algorithm is the one where an edge is oriented from the node with the smaller di�er-

ence between the outdegree and indegree to the one with the larger di�erence. In the deterministic

version of the rule ties are broken according to the lexicographic order. In the randomized version

of the rule ties are broken at random.

We address the three 
avors of the problem and obtain the following results:

1. The optimal worst-case unfairness of a deterministic algorithm is linear there is a method

(the greedy algorithm) that achieves the bound

n�1

2

on unfairness, and for any deterministic

rule there is a sequence where a di�erence of

1

2

d

n�1

2

e will occur. (In the broader setting of

the "carpool" problem, discussed below, a stronger lower bound of

n�1

3

has been provided in

[16].) These results are described in Section 2.

2. There is a randomized rule (local greedy) with expected unfairness O(

p

n logn) on any se-

quence. The lower bound is 
(

3

p

logn). These results are described in Section 3.

3. The expected unfairness of the greedy algorithm on a uniform distribution on the edges is

�(log logn) and we derive a complete description of the process in this case. This is the main

technical contribution of the paper. These results are described in Section 4.

We view the edge orientation problem as a game played between an algorithm that chooses the

edge orientations and an adversary that determines the sequence of edges. Each of the above cases

corresponds to one of the three main types of adversaries treated in the literature: the adaptive,

the oblivious, and the uniformly random, where the distinction is made according to the way the

adversary determines which edges appear in the sequence. An adaptive adversary constructs the

sequence on the 
y, making decisions that may depend on the whole previous history of the game.

An oblivious adversary must �x its sequence before the game starts, though it may choose this

sequence based on knowledge of the algorithm. Finally, the uniformly random adversary produces

a sequence in which each edge is chosen independently and uniformly at random.

In addition, we investigate the relationship between the edge orientation problem and the vector

rounding problem, a very general problem to which many problems in fair scheduling can be reduced.

In this problem, we are given a real matrix column by column and should produce an integer matrix

so that each column in the output matrix is a rounding of the corresponding column in the input

matrix that preserves the sum. The goal is to minimize the maximum over all rows of the di�erence

between the sum of the rows in the integer and real matrix. (A formal de�nition can be found in

Section 5.) We show:

4. A general transformation from the vector rounding problem to the edge orientation prob-

lem, at the price of doubling the expected di�erence. The transformation applies to both

deterministic and randomized algorithms. It is described in Section 5.
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1.2 Motivation

On-line machine scheduling has been studied extensively (see e.g. [3, 4, 5, 7, 14, 17, 14, 21]), but

the issue of fairness in job allocation has usually not been considered quantitatively (however, see

[2, 12, 15, 18, 19]). In a typical on-line scheduling problem, there are n machines and a number

of separate jobs; the jobs arrive one by one, and each job must be assigned to exactly one of the

machines, thereby increasing the load on this machine by an amount that depends on both the

job and the machine. The goal of the scheduling problems studied in all the above literature is to

minimize the maximum machine load. The situation in which this model seems most applicable is if

all machines have one owner that wishes to optimize their utilization. If the machines have di�erent

owners, then fairness in allocation may be an additional, or primary, parameter to be optimized by

the scheduler; for instance the dispatcher for a number of independently owned taxicabs.

Assuming that machines (or their owners) are reluctant (or eager) to do the required jobs, a

\fair" rule, which takes into account the bene�t to each machine (owner) of performing each task,

must be applied. Thus, when faced with such a problem we should de�ne the desired load of a

machine (the fair share) and then suggest an algorithm for scheduling the jobs that tries to give

each machine a number of jobs corresponding to its fair share.

An interesting property of the results we obtain in studying \fair" scheduling, is that there are

scheduling protocols for which the discrepancy between the loads of the machines can be bounded

in terms of functions only of the number of the machines, with no dependence on the elapsed time.

1.3 A general view: the Carpool Problem

The issue of fairness in scheduling was �rst isolated by Fagin and Williams [16], who abstracted it

to what they call the carpool problem. A rough quotation from [16]: \Suppose that n people, tired

of spending their time and money in gasoline lines, decide to form a carpool. Each day a subset

of these people will arrive and one of them should drive. A scheduling algorithm is required for

determining which person should drive on any given day. The algorithm should be perceived as

fair by all members so as to encourage their continued participation." The analogy to fair machine

scheduling is that the carpool participants correspond to the machines that are available to carry

some task. The driver is the machine to which the task is actually assigned and thus the machine

that incurs the cost of executing it.

The �rst question is how to de�ne fairness. If the driver were not a member of the group, but

a hired driver, then the meaning of fairness would be clear: The professional driver charges a �xed

price for every ride, and each day the people that show up split the price of the driver equally

among them. When the driver is just one of the set of people that show up, this reasoning leads

immediately to the following de�nition of fairness given in [16]: If on a certain day, d people show

up, each of them owes the driver 1=d of a ride. The unfairness of the algorithm at a certain point

of the execution is de�ned as the maximum number of owed rides that anybody has accumulated

up to that point or that anybody owes the rest of the group at that point. A scheduling algorithm

is fair if there is a bound on the unfairness that is a function only of the number of drivers, and

not of the schedule of arrivals (or in particular, the time elapsed). (Assuming an initial condition

in which no one owes or is owed any rides.)

In case of random arrivals, we will evaluate algorithms according to the expected value of their

unfairness when computed throughout the execution, and refer to this as expected unfairness.

Fagin and Williams proposed a natural algorithm for this problem, which we call the global

greedy algorithm. When a set of people shows up, the one to drive will be the one that is currently

the poorest. Ties are broken arbitrarily. A key contribution of their paper was to show that this
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algorithm is fair in the above sense. Namely, for a worst case sequence of requests, they showed that

the unfairness of this algorithm is bounded above by a number that is exponential in the number

of people, but independent of the number of days, and mentioned that Coppersmith managed to

reduce this upper bound to linear (however, this proof is lost [13]). Finally, in collaboration with

Coppersmith they showed a linear lower bound on the unfairness in this setting.

The edge orientation problem is simply a special case of the carpool problem, restricted to two

people arriving each day. On the other hand, the general carpool problem is a special case of the

vector rounding problem: each participant corresponds to a row, each day corresponds to a column;

the ith entry of the jth column is 0 if the ith participant did not show up on the jth day, and is

1

d

j

if d

j

participants, including himself, did show up.

Therefore, an immediate byproduct of the results mentioned above on the edge orientation

problem and of the general transformation to the vector rounding problem is that the general

carpool problem has unfairness of �(n) against an adaptive adversary, and expected unfairness of

O(

p

n log n) against an oblivious adversary. (In fact, we also show directly that the natural greedy

algorithm for the carpool problem maintains unfairness n against an adaptive adversary). Finally,

against a random adversary, our results show that the carpool problem has expected unfairness

�(log log n).

1.4 Comparison with competitive analysis

A popular methodology for evaluating the performance of on-line algorithm is the the competitive

analysis approach of Sleator and Tarjan [20]: the on-line algorithm is compared with a hypothetical

optimal o�-line and bounds on the competitive ratio are obtained (for an adaptive, oblivious or

random adversary). For the carpool problem, if one is given in advance a list specifying for each

of the days which subset arrives on that day, then it is possible to construct a schedule whose

unfairness is bounded by one (see Section 5). Therefore we can treat the results as being about the

competitive di�erence of the carpool problem. If, instead, we would have analyzed the ratio between

the an evenly distributed load (which is the best an o�-line algorithm could hope to accomplish)

and the actual load, we would have obtained a 1 + o(1) competitive ratio.

1.5 Other Related Work

Our problem is related to a chip game analyzed in [1]. In this game chips are placed in stacks on

the integers, and in each round, two chips which are in the same stack may be selected, and one of

them moved one step to the right while the other is moved one step to the left. This is the same

thing that happens in the edge orientation game when a pair of vertices with the same indegree-

outdegree di�erence is given; the di�erence between the games is that in ours pairs which are not

colocated may also be selected (and moved toward each other). While our game can continue ad

in�nitum, the game of [1] must terminate, and some of the principal results of that paper concern

the terminating states. In particular it is shown there that from any initial state of chips, there is

a unique terminating position; and when n chips start all at the origin, no chip can be brought to

distance more than d(n� 1)=2e from the origin.

One can obtain an upper bound of d(n � 1)=2e=2 on the maximum unfairness of the greedy

algorithm for the edge orientation problem by a reduction to the case of the game of [1]. The

reduction is to show that for the greedy algorithm, any sequence of requests for pairs of nodes can

be replaced by another sequence, which reaches the same unfairness, but which uses no requests

involving non-colocated pairs. (This reduction has also been noted recently by Babu Narayanan.)

The worst-case performance of the greedy algorithm for the edge orientation problem is therefore
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exactly d(n� 1)=2e=2. An upper bound of (n� 1)=2 for the more general carpool problem is given

in section 2.1.

1.6 Organization of the paper

Section 2 gives linear upper and lower bounds on the unfairness of the global greedy algorithm with

an adaptive adversary. Section 3 gives upper and lower bounds on the unfairness of the local greedy

algorithm with an oblivious adversary. Section 4 gives a detailed characterization of the behavior

of the global greedy algorithm when given a uniform random sequence of requests. Section 5 gives

the reduction from the vector rounding problem to the two-person carpool game.

2 The Global Greedy Algorithm and the Adaptive Adversary

In this section we describe the behavior of algorithms for the carpool problem in the face of an

adaptive adversary. We �rst show (Section 2.1) that the deterministic version of the global greedy

algorithm guarantees an upper bound of

n�1

2

on the maximum unfairness for any sequence of

requests. This is within a factor of 2 of what is possible against an adaptive adversary; against any

algorithm an adaptive adversary for edge orientation (2 people per car) can achieve d(n� 1)=2e=2

(Section 2.2), while if the adversary can schedule 3 people per car, the lower bound rises to (n�1)=3

(see [16]).

2.1 The global greedy algorithm

Against an adaptive adversary it is not much more di�cult to solve the general carpool game than

the edge orientation game. Thus we concentrate on the more general case here.

We consider the following on-line deterministic strategy for the n-participant carpool game. We

maintain the deviation d

j

for every j 2 [n]. Initially, d

j

= 0 for all j 2 [n]. Given a request r (i.e.,

a subset of [n] of cardinality 2 or more), the algorithm chooses j 2 r such that d

j

= min

i2r

d

i

,

breaking ties arbitrarily. The deviations are then updated as follows. d

j

increases by 1 � 1=jrj.

For all other elements i 2 r, i 6= j, d

i

decreases by 1=jrj. Other deviations remain the same. This

strategy is the global greedy strategy of [16].

We show an upper bound on the unfairness resulting from the deterministic global greedy

algorithm. We note �rst that the deviation d

j

tracks the cost to each participant in the carpool

game; thus for any adversary %, the unfairness of global greedy is given by max

j2[n]

jd

j

j, where the

values of d

j

are taken at the end of the game.

Lemma 2.1 Consider an n-participant carpool game between an adaptive adversary and the global

greedy algorithm. For every round of the game there exists a weighted directed graph with node set

[n], edge set E and weight function w with the following properties.

1.

8e 2 E;

1

n!

� w(e) �

1

2

:

2.

8e 2 E, w(e) =

p

q

, where p; q are integers,

and q divides n!.
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3.

8j 2 [n]; d

j

=

X

e2in(j)

w(e)�

X

e2out(j)

w(e)

4. The graph contains no anti-parallel edges: at most one of the edges (i; j) or (j; i) is present

in E.

where in(j) is the set of incoming edges incident to j and out(j) is the set of outgoing edges incident

to j.

Proof: The proof is by induction on the number of rounds. In the basis no rounds have occurred:

take an empty graph.

For the induction step, assume the claim holds for t � 1 rounds. Let the t-th request of the

adversary be X

t

= fi

1

; : : : ; i

k

g.

De�ne w(i; j) to be the weight of the directed edge from i to j, if such exists, or minus the

weight of the directed edge from j to i, if such exists, or 0 otherwise.

Without loss of generality, assume that the global greedy algorithm selects i = i

1

. We will

modify the graph in two steps. The �rst modi�cation, described below, maintains the conditions

of the lemma for round t � 1 and in addition establishes that there is no edge to i from any other

node in X

t

. The essential idea of this step is that since i is the poorest member of the group, any

debts owed to i (corresponding to an incoming edge) can be redistributed to i's creditors without

changing the deviation for any node in the graph. The second step adds an edge with weight 1=k

from every i

j

, 2 � j � k to i. This step has the e�ect of adding 1� 1=k to d

i

1

and subtracting 1=k

from d

i

j

. If these new edges create any pairs of anti-parallel edges, we merge each such pair to a

single directed edge. Its weight is the di�erence between the larger and the smaller weight in the

pair, and its direction coincides with the larger weighted edge in the pair. (If the two weights are

equal, we remove both edges from the graph.)

To complete the proof we show how to do the �rst step. Suppose there exists j 2 X

t

such that

w(j; i) > 0. From the de�nition of the algorithm we have that after round t � 1, d

i

� d

j

. Thus,

there exists l 2 [n] such that w(l; j)> w(l; i).

We execute the following procedure.

while w(j; i) > 0 do

Choose l 2 [n] such that w(l; j)> w(l; i)

if w(l; j)> 0 then

Let w = minf1=2� w(l; i); w(j; i); w(l; j)g,

Increase w(l; i) by w,

Decrease w(l; j) and w(j; i) by w each.

else (w(l; j)< 0)

Let w = minf1=2� w(j; l); w(j; i); w(i; l)g,

Increase w(j; l) by w,

Decrease w(j; i) and w(i; l) by w each.

stop .

Recall that by the inductive hypothesis, at the beginning of round t, w(e) =

p

q

, where p; q are

integers and q divides n!. Clearly, this property is preserved by the above procedure (note that

n � 2). Moreover, it implies that w(e) continues to be � 1=n! unless it becomes 0. Thus in both

cases of the procedure above, in each iteration the sum of the weights over all edges in the graph

decreases by w � 1=n!. Therefore, this process terminates.
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From the above lemma and the observation that unfairness is equal to max d

j

, it follows that:

Theorem 2.2 Against any adversary %, the unfairness of the global greedy algorithm is at most

n�1

2

.

2.2 Lower bound against an adaptive adversary

In comparison, we note that the results for the chip game given in [1] (described in Section 1.5)

provide a lower bound on the performance of any deterministic algorithm for the edge orientation

game, which we can strengthen to apply to any algorithm facing an adaptive adversary. (Since the

edge orientation game is a special case of the more general carpool game this lower bound applies

to the carpool game as well.) If we think of a node's location as the di�erence between its indegree

and outdegree, their results show that any sequence of requests which picks only colocated nodes

will eventually result in the nodes occupying the entire interval [�d(n� 1)=2e; d(n� 1)=2e] (except

the origin in case n is even). Moreover it is shown there that the number of requests necessary to

bring the nodes to this con�guration is n(n + 1)(n+ 2)=24 if n is even, and (n � 1)n(n+ 1)=24 if

n is odd. (We use this bound on the length of the request sequence later on to prove lower bounds

for randomized algorithms.)

This result applies immediately to any deterministic algorithm against even an oblivious ad-

versary, since the adversary can simulate the algorithm to determine which nodes are colocated.

Against a randomized algorithm an adaptive adversary is required, since otherwise it cannot deter-

mine which nodes will be colocated. A much weaker lower bound, which applies to a randomized

algorithm and an oblivious adversary, is given in Section 3.2.

We state the following general version of the result for later use:

Theorem 2.3 ([1]) For every deterministic edge orientation algorithm f , for every k 2 Z

+

, k �

1

2

d

n�1

2

e, there exists an oblivious adversary % that gives a sequence of at most k

3

requests, pushing

the unfairness achieved by f to at least k.

3 The Local Greedy Algorithm and the Oblivious Adversary

In this section we consider the case of a sequence of requests supplied by an oblivious adver-

sary. Section 3.1 describes an algorithm, the local greedy algorithm, that gives an upper bound

of O(

p

n logn) on the unfairness in the edge orientation game (the results of Section 5 allow this

upper bound to be applied to the more general carpool game). Section 3.2 shows how an oblivious

adversary can guarantee a lower bound of

3

p

log n, using techniques similar to those used by the

adaptive adversary.

3.1 The local greedy algorithm

For the upper bound, it is convenient to consider only the edge orientation game described in the

introduction. Through the reduction in section 5, our results apply to the general carpool problem

as well.

The upper bound is obtained using the following randomized local greedy algorithm. For each

pair of nodes (i; j) the algorithm keeps track of the di�erence �

i;j

between the number of edges n

i;j

directed from i to j and the number of edges n

j;i

directed from j to i. When a new (undirected)

edge fi; jg arrives, it is directed from i to j if �

i;j

is negative, from j to i if �

i;j

is positive, and
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in a direction chosen by a fair coin-
ip if �

i;j

is zero. (Note that this de�nition is symmetric if we

swap i and j, since �

j;i

= ��

i;j

.)

The algorithm is \locally greedy" in the sense that it always tries to minimize the di�erence

between nodes i and j independently of their relations with other nodes. This guarantees that for

each pair of nodes i and j, j�

i;j

j is at most one.

The following theorem gives an upper bound on the expected unfairness obtained by the ran-

domized local greedy algorithm:

Theorem 3.1 Against any oblivious adversary, the randomized local greedy algorithm gives an

expected maximum unfairness at any step of O(

p

n logn).

Proof: Fix a time in the execution and consider a particular vertex i. Let X

i

be the random

variable whose value is the di�erence between the indegree and outdegree of j. We can compute

X

i

as the sum of �

i;j

over all nodes j distinct from i.

Now for each such j, if fi; jg was requested an even number of times, then �

i;j

= 0. If fi; jg

was requested an odd number of times, then �

i;j

is 1 with probability

1

2

and �1 with probability

1

2

(the value being determined by the coin-
ip that orients the last fi; jg edge.) Furthermore,

the �

i;j

values are mutually independent for di�erent values of j. By Cherno�'s bound, 8a > 0,

Pr[jX

i

j > a] < 2e

�a

2

=2k

, where k � n � 1 is the number of nodes i for which fi; jg was requested

an odd number of times. Summing up over all nodes i Pr[9i; jX

i

j > a] � 2ne

�a

2

=2n

. Taking

a = 2

p

n ln n gives a probability of 2=n. Since max

j2[n]

X

i

� n� 1, the theorem follows.

3.2 Lower bound against an oblivious adversary

The upper bound derived in the preceding section can be compared with the following lower bound

for any algorithm facing an oblivious adversary.

Theorem 3.2 For any algorithm for the edge orientation problem, there exists an input sequence

that produces an expected maximum unfairness of 


�

3

p

log n

�

.

Proof: Rather than showing how to construct such a sequence, we will de�ne a single distribu-

tion over input sequences such that for any deterministic algorithm, the lower bound holds. By

the minimax principle of von Neumann (see [23, 11]), the existence of this \mixed strategy" for

the adversary that works equally well against any deterministic algorithm, implies that for each

randomized algorithm there is a corresponding \pure strategy" for the adversary that achieves the

same bound.

To get the adversary's mixed strategy, we modify the adaptive lower bound of Theorem 2.3.

The essential idea is to divide the set [n] of nodes into small disjoint subsets of size k (where k will

be determined later). In each such subset we will run the at most k

3

-long sequence from Theorem

2.3 based on a random \guess" about how the algorithm breaks ties. If we have enough subsets,

with high probability one of these guesses will be correct and we will get the desired unfairness.

Let us make this informal description more precise. For simplicity, assume that n is divisible

by k and that k is even. Let ` � k

3

be the exact length of the sequence produced by Theorem 2.3

to achieve unfairness k. For each set we generate a random sequence of ` pairs of nodes whose

distribution is given by following the strategy of Theorem 2.3 against an imaginary algorithm in

which edges are oriented according to independent random coin 
ips. (The theorem applies since

having �xed these ` independent random coin 
ips, the behavior of the algorithm is deterministic.)

There are 2

`

equiprobable sequences of coin 
ips. If the coin 
ips match the decisions made by

the real algorithm within a particular group, then by Theorem 2.3, some node in this group reaches

8



unfairness k=2. Let X

i

, i = 1; 2; : : : ; n=k, denote the indicator variable for the event that a node

in the i-th set reached unfairness k=2. Then 8i; Prob[X

i

= 1] � 2

�`

� 2

�k

3

. Since the X

i

's are

independent random variables, the probability that any X

i

reaches k=2 is at least 1�

�

1� 2

�k

3

�

n

k

.

If we take k �

3

p

logn, this probability is bounded below by a constant.

4 The Global Greedy Algorithm and Uniform Requests

In this section we analyze the behavior of the global greedy algorithm for the edge orientation

problem, in the case where the adversary schedules the edges uniformly at random. The combination

of the adversary and the algorithm is represented as a Markov process. Since requests are uniform,

we can forget about the identity of the nodes and describe a single state of the Markov chain by a

list consisting of the number of nodes at each position, where the position of a node is given by its

indegree minus its outdegree.

When two nodes are paired, they either each move one step away from the other, if they are at

the same position; or each move one step toward the other if they are not. Intuitively, we can think

of the process as a balance between a \repulsive force" between colocated nodes and an \attractive

force" between distant ones. To stretch this physical analogy further, we would expect that the

attractive force, being stronger in spread-out con�gurations, would tend to gather the nodes into

a tight clump held apart only by pressure from the repulsive force.

Our �rst analysis of the system, in Section 4.1, shows that the nodes do in fact clump together,

and that in the stationary distribution of the Markov chain the expected maximal unfairness is

O(logn). We de�ne a potential function on the states of the system, in which each node contributes

an amount that is exponential in its deviation from 0 in that state. Since the Markov chain

corresponding to the system is ergodic when n � 3, we can use the fact that in the stationary

distribution the expected change in the value of the potential function is 0. We show that at any

state where the maximal unfairness exceeds O(logn), the potential function is likely to drop by a

large amount: the expected decrease in the value of the potential function is at least n� 1. On the

other hand we show that from any state, the potential function can rise by at most 1. For these

small rises to balance out the large drops in the states with unfairness greater than O(logn), the

probability of \high" unfairness can be at most O(1=n); and since (as we show) the unfairness of

any state cannot exceed n, the expected unfairness is just O(logn).

However, in our simulations of the process it appeared that the maximum unfairness of the

global greedy algorithm against a uniform random adversary was much smaller than O(logn). An

approximation to the process (described in Section 4.2) suggested that the typical maximum unfair-

ness was closer to O(log logn). Proving this result without making the unwarranted assumptions

needed for this approximation turned out to be quite di�cult. However, after examining the process

more closely, we obtained the tight asymptotic bounds of �(log logn) on the expected maximum

unfairness described in Sections 4.3 and 4.4. We also show, in Section 4.5, that regardless of what

state the process starts in, it quickly converges to this bound.

As the proofs are rather involved we give a simple overview here. We obtain the O(log logn)

upper bound through a sequence of tighter and tighter approximations. To start, we pick a time

interval of length n

log logn

, whose starting point t is any point in the execution. We show that

with high probability, the maximal unfairness goes below logn by time t + n

4

, and then stays

below 2 logn throughout the interval. For the next step we restrict our attention to the subinterval

starting at t+n

4

. For each � > 0, with high probability we can chop o� a pre�x of this new interval

whose length is polynomial in n, leaving a su�x in which the unfairness of all but �n nodes is

9



bounded by a constant k. For any such interval we show that with high probability, we can chop o�

a second pre�x, whose length depends polynomially on n but not at all on k or �, to leave a su�x

in which at most �

2

n nodes are above k + 2. Repeating this operation log log n times gives us an

interval whose length is only polynomially less than the interval we originally started with, and in

which the maximal unfairness is at most O(log logn) (with high probability). Since for su�ciently

large n the low-unfairness interval is much longer than the high-unfairness interval, it dominates

the average and thus gives an O(log logn) upper bound on the expected unfairness.

This analysis is tight: by time t+n

5

, the unfairness is at least log logn and stays above log log n

for at least n

logn

additional steps. The proof of this lower bound mirrors the proof of the upper

bound. We show that with high probability, any su�ciently long interval throughout which the

unfairness of at least �n nodes is at least k contains a su�x, whose starting point is polynomially

shifted, in which the unfairness of at least c�

2

n nodes is at least k + 1; after log logn iterations of

this process we are left with an interval whose length is close to the length of the original interval we

picked, such that with high probability, throughout this resulting interval, the maximal unfairness

is at least log logn.

4.1 A simple O(log n) upper bound

This section describes a simple O(logn) upper bound on the maximal fairness. This upper bound is

the starting point of the sequence of approximations used to get the O(log log n) bound in Section

4.3. The de�nitions given here of the behavior of the global greedy algorithm and of the state space

will also be used in subsequent sections.

4.1.1 The Markov chain

We maintain a position d

j

for each node j in [n]. Initially, d

j

= 0 for all j. Given a request for

a pair of nodes, the algorithm increases by one the position of the node whose current position is

the smallest among the two, and decreases by one the position of the other particle in the pair.

If two particles in the same position are requested, we 
ip an unbiased coin to determine which

goes up and which goes down. Other positions remain the same. This is a randomized version of

the global greedy strategy of [16]. We assume that the sequence generated is very long. The exact

meaning of \very long" will be explained shortly. (We note that randomization of the on-line player

is not essential to the analysis since, against the uniformly random adversary, the nodes may be

considered unlabeled.)

Given such random input, the behavior of the global greedy algorithm can be represented as a

Markov chain. By our analysis of the deterministic global greedy performance in Section 2.1, we

know that jd

j

j � d(n� 1)=2e for all j 2 [n]. Thus, if the nodes are labeled, then the state space is

f�d(n � 1)=2e; : : : ; d(n � 1)=2eg

n

. The i-th coordinate of a state s, denoted s

i

, is the position of

the i-th node on the line. We now de�ne the transitions and their probabilities. Let s be a state

and fi; jg a possible request. Without loss of generality, assume s

i

� s

j

. If s

i

< s

j

, then with

probability

�

n

2

�

�1

there is a transition to s

0

with s

0

i

= s

i

+ 1, s

0

j

= s

j

� 1 and for all k 62 fi; jg,

s

0

k

= s

k

. If s

i

= s

j

, then with probability

�

n

2

�

�1

=2 there is a transition to s

0

as above, and with

the same probability there is a transition to s

00

with s

00

i

= s

i

� 1, s

00

j

= s

j

+ 1 and for all k 62 fi; jg,

s

00

k

= s

k

. For n � 3 it is easy to see that limited to the set of states reachable from the initial

state of the all-zero vector, this Markov chain is ergodic and therefore converges to a stationary

distribution. We are interested in the long-term behavior of the chain and therefore assume that

the adversary sequence is long enough for the stationary behavior to be dominant.
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If the nodes are unlabeled, which we can assume since we are considering the uniformly random

adversary, then e�ectively we are interested in a smaller Markov chain. This smaller chain is a

coarsening of the above chain in which each state is simply a count of the nodes lying at each

position: thus, the state is represented by a vector n

�d(n�1)=2e

; : : : ; n

d(n�1)=2e

where each n

i

is the

number of particles at position i. Let p

j

= n

j

=n. Note that if s is a state reachable from the all

0's vector, then

P

i

in

i

= 0.

4.1.2 The potential function

Here we de�ne the potential function that we will use to show that the expected maximum unfairness

is O(logn). Let � =

3

2

and let the potential function

�(s) =

d(n�1)=2e

X

j=�d(n�1)=2e

n

j

� �

jjj

:

Let ��(s) = E

s

0

[�(s

0

)]��(s), where s

0

denotes the (random) state reached from s in one step

of the Markov chain.

We wish to estimate ��(s). The following fact is easily veri�ed:

Fact 4.1 If s

0

is any outcome of requesting two nodes occupying the same position, then �(s

0

) �

�(s) > 0. If s

0

is the outcome of requesting two nodes that are at distance 1 apart, then �(s

0

) �

�(s) = 0. Otherwise, �(s

0

)� �(s) < 0.

Estimating ��(s) is done by estimating the contribution of each position separately, and adding

up those contributions. The idea is to show that for any j 6= 0, the positive contribution due to two

nodes in j being requested is overwhelmed by the negative contribution due to a node in j and a

node on the other side of 0 being requested. We will ignore other requests. They can only increase

the negative contribution. In order to do this correctly, we need to consider disjoint events, so, to

evaluate the contribution of position j, we will consider ordered pairs, where the �rst of the two is

from j. The following fact is also easily veri�ed:

Fact 4.2 Under a uniform distribution over pairs of nodes,

Prob[j; j] = Prob[ordered j; j] � p

2

j

;

and

1

2

Prob[i; j; i 6= j] = Prob[ordered i; j]

= Prob[ordered j; i] � p

i

p

j

:

These relations are inequalities (rather than equalities) because we draw each pair without replace-

ment; this makes it slightly less likely that we will draw two nodes at the same location.

Let A

j

be the event that the �rst node in a pair is j (given that we are at con�guration s).

Formally, the contribution of position j to ��(s) is p

j

E[�(s

0

)� �(s)jA

j

]. We now show:

Lemma 4.3 For j, 1 � jjj � d(n � 1)=2e, the contribution of position j to ��(s) is at most

�

1

6

p

2

j

�

jjj

.
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Proof: Let j > 0. The argument for j < 0 is symmetric. If the pair j; j is chosen, the increase

in the potential function is �

j+1

+ �

j�1

� 2�

j

. On the other hand, if the (ordered) pair chosen is

j; i (i < 0), the decrease in the potential function is �

j

+ �

i

� �

j�1

� �

i+1

. We need an estimate

on the distribution of nodes on the negative side. Since the sum of the positions of the nodes is 0,

the n

j

nodes at j must be balanced by nodes in negative positions. Hence:

X

i<0

(�i)n

i

� j � n

j

:

It is not di�cult to see that the worst case (the least decrease in �) is when equality holds and

when all the negative side nodes are in one position �x. Notice that we might need to consider a

non-integral x. So, we get xn

�x

� jn

j

, or p

�x

�

j

x

p

j

. The total decrease in the potential function

due to position j is at least:

p

2

j

�

j

x

�

�

j

+ �

x

� �

j�1

� �

x�1

�

� �

j+1

� �

j�1

+ 2�

j

�

;

for x minimizing this expression. Observe that this decrease is essentially the sum of two �rst

derivatives of �

j

, minus its second derivative. The basis of our lower bound on this expression is

that for � below some threshold, the increase due to the �rst derivative (representing the choice of

nodes at two di�erent locations) dominates the decrease due to the second derivative (representing

the choice of colocated nodes).

We show that for j > 0 the decrease is at least p

2

j

�

j

=6, i.e. that for all j � 1 and x > 0,

j

�

�

j

+ �

x

� �

j�1

� �

x�1

�

> x

�

�

j+1

+ �

j�1

� 2�

j

+

1

6

�

j

�

;

or

j

�

1� �

�1

��

�

j

+ �

x

�

> x

�

� + �

�1

�

11

6

�

�

j

:

Recalling that � =

3

2

we want to prove that

1

3

j

�

�

j

+ �

x

�

>

1

3

x�

j

:

If x � j this is trivial. If x > j write r = x � j > 0. We wish to show that j�

r

> r, and since

j � 1 it su�ces to show that �

r

> r for all r > 0. Let � = min

r

�

r

� r. Some calculus shows that �

is achieved at r =

� log log�

log�

; and moreover that � varies monotonically in �. Thus we can solve for

� = 0, �nding that this is achieved for � = e

1=e

� 1:4447, and conclude that � > 0 for all � > e

1=e

and in particular for the chosen � =

3

2

.

For j = 0 we cannot guarantee a negative contribution. However, we can upper bound the

conditional positive contribution by 2��2 = 1, since the probability of choosing a pair in positions

(0; 0) is at most 1 and the total increase due to these positions is at most 1.

Concluding the above discussion: the contribution of position 0 is at most +1. The contribution

of position j, jjj � 1 is at most �

1

6

p

2

j

(

3

2

)

jjj

.

Let T = 3 log 3

2

n + log 3

2

6 and assume n � 3. Then, if s has a node whose distance from 0 is

more than T , then ��(s) � �n + 1 (note that if this node's position is j, then p

j

�

1

n

).

Now, partition the state space into two subsets: A contains those states that do not contain a

node beyond T ; B contains the other states. We have
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Fact 4.4 8a 2 A, ��(a) � 1. 8b 2 B, ��(b) � �n + 1.

Since the total expected change in �, under the stationary distribution, must be 0, it must hold

that under the stationary distribution, Prob[B] �

1

n

. It follows that:

Theorem 4.5 For n � 3, in the stationary distribution, the probability that any node is beyond

distance T = 3 log 3

2

n+log 3

2

6 from the origin is at most 1=n. Thus the expectation of the maximum

distance of a node from the origin is � T + 1 = O(logn).

4.2 An approximation suggesting the O(log log n) bounds

This section describes an approximation by a dynamical system to the Markov chain described in

the previous section. This approximation justi�es the intuition that the \attractive force" operating

between nodes (which we will think of as \particles") at all distances is likely to overwhelm the

\repulsive force" operating on colocated nodes. However, it requires some assumptions that are

not necessarily warranted in the edge orientation game, and thus must be taken only as a hint of

the actual state of a�airs. The true bounds are shown in Section 4.3 and 4.4.

Focus on a single particle. At each step, we pair our particle with another random particle,

which we will call the second particle of the step. We can view our particle as making a random

walk along the fairness axis. The probability that the unfairness of our particle will increase by

one at a certain step equals (the probability that the step's second particle has higher unfairness)

plus (half the probability that the step's second particle has the same unfairness). In other words,

the dynamical system below describes our system under two assumptions:

1. We assume that the random walk of a single particle converges to a stationary distribution.

2. We assume that the probability of the second particle to have unfairness � j is independent

on whether our particle is at j.

Neither of these assumptions are necessarily true for the edge orientation process; however,

making these assumptions appears to give a good approximation of the process when n is large.

We thus consider the following dynamical system:

8j; �m � j � m; p

j

= r

j�1

p

j�1

+ `

j+1

p

j+1

;

p

�m�1

= p

m+1

= 0;

where

8j; �m < j < m; 1� r

j

= `

j

=

j�1

X

i=�m

p

i

+

1

2

p

j

;

and

`

�m

= r

m

= 0:

Lemma 4.6 There exists a (symmetric around 0) stationary distribution of this dynamical system

such that

1. p

0

�

1

6

;

2. 8j 6= 0, p

j

� (

3

5

)

jjj�1

.
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Proof: Fold the dynamical system as follows. Let

q

j

=

(

p

0

j = 0

p

j

+ p

�j

j > 0:

By symmetry, 8j 6= 0, q

j

= 2p

j

. Also,

Pr[right move from j] =

8

>

<

>

:

1 j = 0

0 j = m

r

j

otherwise:

The following is a stationary distribution of the folded system.

q

j

=

r

1

r

2

� � �r

j�1

`

1

`

2

� � �`

j

q

0

:

Since

0 � r

j�1

� r

j�2

� � � � � r

1

=

1� p

0

� p

1

2

�

1

2

�

1 + p

0

+ p

1

2

= `

1

� `

2

� � � � � `

j

� 1;

we have that

q

1

=

q

0

`

1

q

0

�

q

0

`

1

� 2q

0

q

j

�

�

r

1

`

1

�

j�1

2q

0

:

Let t = r

1

=`

1

. We have that

t =

1� p

0

� p

1

1 + p

0

+ p

1

�

1�

3

2

q

0

1 +

3

2

q

0

= 1�

3q

0

1 +

3

2

q

0

:

Since 3x=(1+3x=2) is monotonically increasing, we have that if q

0

� � then t � 1�3�=(1+3�=2).

We have that

1 =

m

X

j=0

q

j

� q

0

0

@

1 + 2

m

X

j=1

t

j�1

1

A

� q

0

�

1 +

2

1� t

�

� q

0

 

1 +

2(1 +

3

2

q

0

)

3q

0

!

;

where the last inequality follows from the assumption that q

0

< 2=3, justi�ed by t > 0. We get

that q

0

+ 2=3 + q

0

� 1, or q

0

� 1=6. We also get t � 3=5, which completes the proof.

Corollary 4.7 q

10

�

1

3

.

Lemma 4.8 Using the above notation, 8j � 10, q

j

�

p

q

j+1

.

Proof: We prove by induction on i that q

m�i

�

p

q

m�i+1

.

Basis: i = 0. Trivial, since q

m+1

= 0.

Inductive step: Assume correctness for j = m� i and higher indices. We have that

q

j

= q

j�1

r

j�1

`

j

;
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or

q

j�1

r

j�1

= q

j

`

j

:

Now,

r

j

=

1

4

q

j

+

1

2

m

X

k=j+1

q

k

;

and

`

j

= 1� r

j

:

So,

q

j�1

2

4

1

4

q

j�1

+

1

2

m

X

k=j

q

k

3

5

= q

j

2

4

1�

1

4

q

j

�

1

2

m

X

k=j+1

q

k

3

5

: (1)

Using the inductive hypothesis,

m

X

k=j

q

k

� q

j

+ q

2

j

+ q

4

j

+ q

8

j

+ � � � �

5

3

q

j

� q

j�1

;

where the second inequality can be shown using Corollary 4.7 and the third inequality follows from

the proof of Lemma 4.6. Similarly, we get from the inductive hypothesis

m

X

k=j+1

q

k

� q

j

:

Plugging these inequalities into 1 gives

3

4

q

2

j�1

� q

j�1

2

4

1

4

q

j�1

+

1

2

m

X

k=j

q

k

3

5

= q

j

2

4

1�

1

4

q

j

�

1

2

m

X

k=j+1

q

k

3

5

�

3

4

q

j

;

where the last inequality assumes q

j

�

1

3

.

Lemma 4.8 and Corollary 4.7 guarantee a double exponential decline of the distribution, thus

providing an O(log logm) bound on the expected deviation from 0.

4.3 Expected maximal unfairness is O(log log n)

This section gives the proof for the upper bound of O(log logn) for the expected maximal un-

fairness of the greedy algorithm running against the uniform random adversary. The argument is

based on a chain of implications of a special form described in Section 4.3.1. The argument uses

several corollaries of Hoe�ding's inequality for martingales (also known as Azuma's inequality); the

statement and proof of these lemmas can be found in Appendix A. The argument itself appears in

Section 4.3.2.

Since the argument is rather involved, we give here a road map to its intricacies. Lemma

4.11 shows that if we �x an interval [t

1

; t

1

+ n

�

] by choosing t

1

uniformly at random from the

steps of a su�ciently long execution, then with high probability the maximal unfairness is O(logn)

during that interval. Using a potential function argument (Lemmas 4.12 through 4.16) we show

that this implies (with high probability, in the sense described in Section 4.3.1) that for all but a

polynomially-sized pre�x of the interval at most �n of the particles have an unfairness above some

constant (Corollary 4.17). The next step is to show that if at most �n particles have an unfairness
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above k throughout some interval then (with high probability) at most O(�

2

)n are above k + 2

beyond a polynomially-sized pre�x of this interval (Lemma 4.18). To apply this fact repeatedly we

need to prove a uniformity condition on the probabilities that the implication fails (Lemmas 4.19

and 4.20). Iterating it (Lemma 4.24) shows that, with high probability, at most n

9=10

particles go

above some constant unfairness throughout a su�x of the original interval, which implies (from

Lemmas 4.21 and 4.22) that with high probability no particle rises above this constant level plus

O(log logn) during yet another su�x of the original interval. Since this statement is highly quali�ed

both in terms of its probability of occurrence and the interval during which it is likely to hold, a

small amount of additional work is required to show that, for a time chosen uniformly from a large

enough interval, the expected unfairness at that time is O(log log n). This last step is the proof of

Theorem 4.25.

The proof in this section does not address the issue of the rate of convergence to low maximal

unfairness starting from an arbitrary state. In Section 4.5 we provide an analysis that, when

combined with the analysis in this section, will provide the speed of convergence.

4.3.1 Probabilistic Delayed Implication

The proof of the upper bound of O(log logn) for the expected maximal unfairness of the greedy

algorithm works by analyzing the Markov process generated by the interaction between the de-

terministic global greedy algorithm and the uniform random adversary. In the end, it is shown

that with high probability, for most of any su�ciently long execution the maximal unfairness is

O(log logn). This fact is the consequence of a chain of intermediate facts that characterize the

behavior of the process over large intervals of the execution. For example, we will show that any

execution is likely to contain long intervals during which the maximal unfairness is O(logn); using

this fact we can then show that the process will tend to a situation where all but a constant frac-

tion of the particles have at most a constant unfairness; and �nally to one in which the expected

maximal unfairness is O(log log n) and remains so over a long interval.

Knowing only that some condition � (e.g., maximal unfairness is O(logn) holds throughout an

interval will often not be enough to guarantee that some other condition � (e.g., maximal unfairness

is O(log log n)) holds throughout the same interval, even though � describes conditions under which

� is likely to become true. The reason for this is two-fold. Because the system consists of many

small components, it may take time for the e�ect of � to propagate through the system and cause

� to become true. And because the system is a random process, we will not be able to completely

exclude the possibility that � does not happen or does not persist despite good conditions for its

occurrence. Instead, the most we can say is that it is likely that if � holds throughout an interval,

then � holds throughout a su�x of that interval.

We will express such statements as probabilistic delayed implications. Formally, suppose that

for each n, �

n

and �

n

are unary relations de�ned on the set of all possible unfairness functions (for

n people). If at time t the unfairness function satis�es �

n

(alternatively, �

n

) then we will say that

�

n

(t) (�

n

(t)) holds. If t

1

; �; � are positive real numbers we will denote by W (�

n

;�

n

; t

1

; �; �) the

following statement:

(8t 2 [t

1

; t

1

+ n

�

];�

n

(t))! (8t 2 [t

1

+ n

�

; t

1

+ n

�

];�

n

(t))

This says that if �

n

holds throughout the interval [t

1

; t

1

+n

�

], then �

n

holds throughout a su�x

of that interval consisting of all but the �rst n

�

steps. Such a statement is a delayed implication.

What turns it into a probabilistic delayed implication is its placement in the following context,

which forms the basic structure of several of our lemmas:
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8� > 0; 9� > 0; 8� > 0, if n is su�ciently large then for all positive integers t

1

we have

Pr [W (�

n

;�

n

; t

1

; �; �)] � 1� n

��

:

If this statement holds then we will write � � � or � pd-implies �. Since all of the variables in

the statement except � and � are bound by the quanti�ers this relation is well-de�ned. It is not

di�cult to see that if �

1

� �

2

� �

3

then �

1

� �

3

.

Remark 4.9 It will be important for our arguments that the entire implication is used to de�ne

the event whose probability is being measured. This makes it possible to estimate the probability in

question by considering a collection of independent random events. If we put the premise outside,

or equivalently if we use the probability of the consequence conditioned on the truth of the premise,

then we will lose the independence of these events.

Because the transitivity of � depends on being able to change the exponent �, it only works if

we use it a constant number of times. However, the proof depends on being able to apply a chain

of probabilistic delayed implications whose length is a function of n. To do so, we must �rst apply

a uniformity condition. Given, for each n, an index set I

n

and a set of pairs f�

�

n

;�

�

n

j� 2 I

n

g of

unary relations on the set of unfairness functions for n people, we will say that �

�

� �

�

uniformly

in � if the following holds:

8� > 0; 9� > 0; 8� > 0 if n is su�ciently large then for all positive integer t

1

and for all � 2 I

n

we have

Pr [W (�

�

n

;�

�

n

; t

1

; �; �)] � 1� n

��

:

Uniformity gives us a stronger version of transitivity. Intuitively, if we have a chain of n uniform

pd-implications, we can combine them so that the �rst relation in each chain pd-implies the last

relation. Because the de�nition of uniform pd-implication is rather complicated this intuitive

statement must be expanded on a bit:

Lemma 4.10 Let that I

n

= f1; : : : ; r

n

g where r

n

� n, and for each n, let �

i

n

, i = 1; : : : ; r

n

; r

n

+ 1

be a sequence of unary relations on the set of unfairness functions for n people. For each � 2 I

n

let

�

�

n

= �

�

n

, �

�

n

= �

�+1

n

. Finally let

�

�

n

= �

1

n

,

�

�

n

= �

r

n

+1

n

. If �

�

n

� �

�

n

uniformly in � then

�

� �

�

�.

Proof: Suppose that � > 0. We apply the de�nition of �

�

� �

�

uniformly in �, with � replaced

by �

0

= �+ 1. Let � > 0 be the number whose existence is guaranteed by the de�nition. We claim

that for any t

1

and � > 0

Pr[W (

�

�

n

;

�

�

n

; t

1

; �+ 1; �)] � 1� n

��

The proof is by bounding the probability that W (

�

�

n

;

�

�

n

; t

1

; �+ 1; �) does not hold. If it does

not hold, there is a positive integer j, 1 � j < n so that it is not true that

(8t 2 [t

1

+ (j � 1)n

�

; t

1

+ n

�

];�

j

n

(t))! 8t 2 [t

1

+ jn

�

; t

1

+ n

�

];�

j+1

n

(t),

For any �xed j 2 f1; : : : ; n� 1g the assumption that �

�

� �

�

implies that the probability of the

above event is at most n

��

0

= n

���1

. Since there are at most n choices for j, the probability that

W (

�

�

n

;

�

�

n

; t

1

; �+ 1; �) fails is thus at most n

��

.
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4.3.2 The Proof

We denote by s(t) the state of our Markov chain at time t. We now de�ne several random variables

on s(t). We abuse notation and de�ne s(i; t) as the position of particle i at time t. (Using this,

s(t) = f(i; s(i; t)) j i 2 [n]g.) N

=k

(t) denotes the cardinality of the set fi j js(i; t)j = kg. Similarly,

N

�k

(t) denotes the cardinality of the set fi j js(i; t)j � kg. Since the behavior of the system depends

on the position of uniformly-chosen participants, it will be convenient to normalize these quantities

by dividing by n; accordingly, let �

=k

(t) = N

=k

(t)=n and �

�k

(t) = N

�k

(t)=n. The quantity max(t)

denotes the maximum k for which N

=k

(t) > 0. For every � in the range 1 < � < 2, we de�ne a

potential function �

�

over the state space of the Markov chain:

�

�

(s(t)) =

X

i2[n]

�

js(i;t)j

:

In addition, we de�ne,

��

�

(s(t)) = E[�

�

(s(t+ 1))� �

�

(s(t)) j s(t)]:

(In other words, ��

�

(s(t)) is just the expected change in �

�

in the next step of the process starting

from s(t).)

Let E

j

(t) be the event that the �rst particle in the pair chosen at time t is j. The contribution

of position j to ��

�

(s(t)) is �

j

(t)E[�

�

(s(t+ 1)) j s(t) ^E

j

(t)]� �

�

(s(t)). Recall that Lemma 4.3

says that the contribution of position j is at most �

1

6

p

2

j

�

jjj

when jjj � 1.

Let T be an extremely large integer. We bound E[max(t)] on an interval whose starting point

is chosen uniformly at random in [T ], and whose length is su�ciently long and �xed in advance.

Let t

1

2

U

[T ], and let n

�

be the length of the interval we choose. From now on our goal is to bound

E[max(t)] for t 2 [t

1

; t

1

+ n

�

].

Let � =

3

2

. The next lemma constitutes the �rst step in our proof.

Lemma 4.11 Denote � =

log

2

12

log

2

n

. Let t

1

2

U

[T ]. Let � > 0, c > 2+ �+�, � < c� 2� ���. Then,

if n � 3,

Pr[8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n] > 1� n

��

:

Proof: Lemma 4.3 of Section 4.1 states that the contribution of position j, jjj � 1 to ��

�

(s(t))

is at most �

1

6

p

2

j

�

jjj

. If n � 2, c � 1, clearly c log

�

n � 1. Thus, for every c � 1, the contribution

of position �c log

�

n (if there are any particles there) is at most �n

c�2

=6.

Partition the state space into two subsets: A contains those states that contain a particle i whose

absolute position is at least c log

�

n, which by the above discussion contribute at most �n

c�2

=6

each; and B contains the other states. We thus have

8a 2 A;��

�

(a) � �n

c�2

=6; 8b 2 B;��

�

(b) � 1:

The total expected change in �, under the stationary distribution, must be 0. Since with

high probability t

1

occurs after we have come arbitrarily near to the stationary distribution, we

have that for each t 2 [t

1

; t

1

+ n

�

], the absolute expected change in �(s(t)) is at most 1. Hence,

Pr[s(t) 2 A] � 12n

2�c

. Thus,

Pr[9t 2 (t

1

; t

1

+ n

�

];max(t) > c log

�

n] � n

�

12n

2�c

= n

2+��c+�

< n

��

:

Here n

�

substitutes for the constant 12, which would otherwise add clutter to the n

��

bound.
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We will need the following technical lemma:

Lemma 4.12 Let 1 < � <

41

40

. Let � = � � 1. Let d > 4�

3=�

2

. Let n be su�ciently large. If

�

�

(s(t)) � dn

then

��

�

(s(t)) � �

�

40n

�

�

(s(t));

where

� = � � �

2

�

�

�

2

> 0:

Proof: Let C

i

be the expected change in � conditioned upon i being the �rst element of the pair

that marks the time t transition. We prove that for any �xed i we have

C

i

< �

�

40

�

js(i;t)j

:

Since the expected change in �

�

(s(t)) is

1

n

P

i

C

i

this implies the lemma.

Suppose that i is �xed and let j = s(i; t). Without loss of generality, assume that j � 0. Let i

0

denote the other particle that is hit at time t. We distinguish between three cases according to the

value of j. We use the following:

�

j+1

� �

j

= ��

j

;

�

j

� �

j�1

= ��

j�1

=

�

1+�

�

j

� (� � �

2

)�

j

, provided that j > 0.

Case 1. j <

3

�

2

. If s(i

0

; t) = j, then � increases by

�

j+1

+ �

j�1

� 2�

j

� ��

j

< �(1 + �)

3=�

2

:

In all other cases, � either stays the same or decreases. If s(i

0

; t) >

3

�

2

, � must decrease, so we

bound the expected decrease by considering particles from the range above

3

�

2

only. Let N

i

denote

the expectation of the change in � conditioned on i being the �rst element in the pair and the

other element in the pair being in position other than j. We get

N

i

� �

1

n

X

i

0

;js(i

0

;t)j>

3

�

2

h

(�� �

2

)�

s(i

0

;t)

� ��

j

i

� �

�

n

X

i

0

;js(i

0

;t)j>

3

�

2

�

s(i

0

;t)

:

Since �

�

(s(t)) > dn and d > 2�

3=�

2

,

P

i

0

;js(i

0

;t)j>3=�

2

�

s(i

0

;t)

> dn=2. Therefore, N

i

< �

�d

2

. Thus,

C

i

< �(1 + �)

3=�

2

+N

i

� �

�d

4

� ���

j

:

Case 2. j �

3

�

2

and

P

j

0

2[�j;

1

�

j]

p

j

0

�

9

10

.

The positive contribution to the change in � (due to the case s(i; t) = j) at most p

j

((�

j

��

j�1

)+

(�

j

� �

j+1

)) � p

j

(���

j

+ (�

2

� �)�

j

) = p

j

�

2

�

j

. In order to estimate the negative contribution,
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we ignore particles whose position is in the range [�j;

1

�

j]. They can only decrease the negative

contribution. Therefore, the negative contribution is bounded above by

�

1

n

X

i

0

;s(i

0

;t)>

1

�

j

�

�

�

s(i

0

;t)�1

� �

j

�

�

1

n

X

i

0

;0�s(i

0

;t)<�j

�

�

�

j�1

� �

s(i

0

;t)

�

�

1

n

X

i

0

;s(i

0

;t)<0

��

j�1

:

Recall that � <

3

2

. We use that for j �

3

�

2

, j

0

�

1

�

j, � � 3=2, it holds that

�

j

0

� �

j

>

1

2

�

j

;

since (1 + �)

3(1��)=�

3

� 2

3(1��)=�

2

>

3

2

. Also, for j; � as above, 0 � j

0

< �j, we have

�

j�1

� �

j

0

>

1

2

�

j

;

since

1

2

� + �

�3(1��)=�

2

<

3

4

+

1

4

= 1:

Obviously,

�

j�1

>

1

2

�

j

:

We conclude that

N

i

< �

X

i

0

;s(i

0

;t)=2[�j;

1

�

j]

�

2n

�

j

:

Since

P

j

0

2[�j;

1

�

j]

p

j

0

� 9=10, we get N

i

< �

1

20

��

j

, and therefore, since � �

1

40

, which gives p

j

�

2

�

j

�

1

40

��

j

, we get

C

i

< �

1

40

��

j

:

Case 3. j �

3

�

2

and

P

j

0

2[�j;

1

�

j]

p

j

0

>

9

10

.

The positive contribution to C

i

is again at most p

j

�

2

�

j

. In order to get an upper bound on the

negative contribution we consider two subcases:

Case 3.a.

P

i

0

;s(i

0

;t)2[�j;

1

�

j]

s(i

0

; t) �

2nj

10

.

According to the assumption

P

j

0

2[�j;

1

�

j]

p

j

0

>

9

10

, so the set Y = fi

0

js(i

0

; t) 2 [�j; j=�]g has

at least

9

10

n elements. Since the sum of the values of the function s on this set is at most

2

10

nj

there must be a Y

0

� Y , jY

0

j �

4

10

n so that for all i

0

2 Y

0

we have s(i

0

; t) �

j

2

. We consider the

contribution due to elements of Y

0

only.

The contribution of a pair i; i

0

where i

0

2 Y

0

is at most ��(�

j�1

��

s(i

0

;t)

). Since s(i

0

; t) �

j

2

and

j � 3=�

2

We have that �

s(i

0

;t)

�

1

2

�

j�1

(using �

j=2�1

> 2). Since �

j�1

>

2

3

�

j

, we conclude that

the contribution of the pair i; i

0

is at most �

1

3

��

j

. Since Y

0

has at least

4

10

n elements we get that

N

i

< �

4

30

��

j

< �

1

20

��

j

. We conclude as in case 2 that

C

i

< �

1

40

��

j

:

Case 3.b.

P

i

0

;s(i

0

;t)2[�j;j=�]

s(i

0

; t) >

2nj

10

.
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The negative contribution is at most

�

1

n

X

i

0

;s(i

0

;t)<0

�(�

j

+ �

js(i

0

;t)j

):

Since

P

i

0

s(i

0

; t) = 0, the assumption of case 3.b. implies that

K =

X

i

0

;s(i

0

;t)<0

js(i

0

; t)j �

X

i

0

;s(i

0

;t)2[�j;j=�]

s(i

0

; t) >

2nj

10

:

We will use the following fact.

Fact 4.13 If H is a �nite set with at most u elements and h is a nonnegative function on H and


 > 1, K > 0 and 


K=u

> 3, then

P

x2H




h(x)

has its minimum over all nonnegative functions h

and sets H with the conditions

P

x2H

h(x) = K, jH j � u if h is a constant and jH j = u.

Observe that since

P

j

0

2[�j;

1

�

j]

p

j

0

>

9

10

, the set Y = fi

0

js(i

0

; t) < 0g has at most

1

10

n elements.

Thus, we apply the above fact with H := fi

0

js(i

0

; t) < 0g, u := dn=10e and 
 := �. (Notice that

�

K=u

� �

2j

� �

6=�

2

> 3.) Since j �

3

�

2

, we get that the negative contribution is at most

�

1

10

n

1

n

��

2j

� �

1

10

��

j

;

and hence

C

i

< �

1

40

��

j

:

Next we can show:

Lemma 4.14 Let c > 0 such that � = �

1=8c

<

41

40

. (Notice that since � =

3

2

> 1 we have � > 1.)

Let d > 8�

3=(��1)

2

. Let � > 0 and n su�ciently large. Then

Pr

"

(8t 2 [t

1

; t

1

+ n

3

]; max(t) � c log

�

n)!

(9t 2 [t

1

; t

1

+ n

3

]; �

�

(s(t)) �

dn

2

)

#

� 1� n

�2�

:

Proof: For all t, let X

t

= �

�

(s(t + t

1

)). Let Y

t

be the indicator of

max(t + t

1

) � c log

�

n and X

t

> dn=2:

We de�ne random variables Z

t

recursively as follows. For t = 0, let Z

0

= minfX

0

; n

2

g. Notice

that if Y

0

= 1 then Z

0

= X

0

. For t > 0, if Y

j

= 1 for each j � t, then Z

t

= X

t

; otherwise,

Z

t

= Z

t�1

� 1= logn. In e�ect, Z

t

tracks X

t

until the condition above is violated, after which it

decays at the rate �1= logn.

For su�ciently large n, the Z's satisfy the conditions of Corollary A.2 with A = n

2

,B = O(n

1=8

),

and C = �1= logn. (Notice that if n is su�ciently large, �1= logn is larger than the negative drift

guaranteed by Lemma 4.12 in the case X

t

> dn=2.) Take � =

p

4� lnn. From Corollary A.2 we get

Pr[Z

n

3
< 0] > 1� n

�2�

:

(We can use here n= logn > 1 + 4

p

� lnn.) By Fact A.3 we may conclude that

Pr[9t 2 [t

1

; t

1

+ n

3

]; (max(t) > c log

�

n) _ (�

�

(s(t)) � dn=2)] � 1� n

�2�

:
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Lemma 4.15 Let c; d; � be as in the previous lemma and n su�ciently large. Then

Pr

2

6

4

[(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)^

(9t 2 [t

1

; t

1

+ n

3

]; �

�

(s(t)) �

dn

2

)]!

8t 2 [t

1

+ n

3

; t

1

+ n

�

]; �

�

(s(t)) � dn

3

7

5

� 1� n

�2�

:

Proof: Let t

2

be the smallest t 2 [t

1

; t

1

+ n

3

] such that �

�

(s(t)) � dn=2. If no such t exists, let

t

2

=1. (Notice that t

2

is a random variable.) We show that

Pr

"

((t

2

<1) ^ (8t 2 [t

2

; t

1

+ n

�

];max(t) � c log

�

n))!

(8t 2 [t

2

; t

1

+ n

�

]; �

�

(s(t)) � dn)

#

� 1� n

�2�

: (2)

Let X

t

= �

�

(s(t + t

2

)). Let Y

t

be the indicator of

t

2

<1 and max(t + t

2

) � c log

�

n:

De�ne random variables Z

t

as follows. If t

2

< 1, then Z

0

= X

0

; otherwise Z

0

= dn=2. For all

t > 0, if 8j � t, Y

j

= 1, then Z

t

= X

t

; otherwise Z

t

= Z

t�1

� 1= logn. The Z's satisfy the

conditions of Lemma A.5 with � := 2(�+ �), A;D := dn=2, B := n

1=8

, C := 1= logn. (We can use

here n

3=4

=(logn) � 8(�+ �)=d.) Therefore, we get that

Pr[8t 2 [0; n

�

]; Z

t

� dn] > 1� n

�2�

:

Using Fact A.4, inequality 2 follows.

Lemma 4.16 Let c > 0 such that � = �

1=8c

<

41

40

. Let d > 8�

3=(��1)

2

. Let

�

n

(t) � max(t) � c log

�

n;

�

n

(t) � �

�

(s(t)) � dn:

Then �

n

� �

n

.

Proof: Suppose that � > 0 is given. Let � = 3 and let � > 0 be arbitrary. We show that for

every su�ciently large n and for every �xed t

1

,

Pr

"

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)!

(8t 2 [t

1

+ n

�

; t

1

+ n

�

]; �

�

(s(t)) � dn)

#

� 1� n

��

:

This bound follows from

Pr

"

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)!

(8t 2 [t

1

+ n

3

; t

1

+ n

�

]; �

�

(s(t)) � dn)

#

� Pr

2

6

6

6

6

6

6

4

 

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)!

(9t 2 [t

1

; t

1

+ n

3

]; �

�

(s(t)) �

dn

2

)

!

^

0

B

@

((8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)^

(9t 2 [t

1

; t

1

+ n

3

]; �

�

(s(t)) �

dn

2

))!

(8t 2 [t

1

+ n

3

; t

1

+ n

�

]; �

�

(s(t)) � dn)

1

C

A

3

7

7

7

7

7

7

5

� 1� 2n

�2�

� 1� n

��

(we use here that n

2�

> 2n

�

);

where the inequality before the last follows from Lemmas 4.14 and 4.15.
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Corollary 4.17 Let c > 0 such that � = �

1=8c

<

41

40

. Let �; c

init

> 0 such that d = ��

c

init

>

8�

3=(��1)

2

. Let

�

n

(t) � max(t) � c log

�

n;

�

n

(t) � N

�c

init

(t) � �n

then � � �.

Proof: Suppose that � > 0 is given. Let � = 3 and let � > 0. Then for every su�ciently large n

and for each �xed t

1

, we have to show that

Pr

"

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)!

(8t 2 [t

1

+ n

�

; t

1

+ n

�

]; N

�c

init

(t) � �n)

#

� 1� n

��

:

Let d = ��

c

init

= ��

c

init

=8c

. By Lemma 4.16,

Pr

"

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)!

(8t 2 [t

1

+ n

�

; t

1

+ n

�

]; �

�

(s(t)) � dn)

#

� 1� n

��

:

Now, if �

�

� dn, then there are at most �n particles whose absolute position is � c

init

.

Corollary 4.17 completes the second step of our proof. We now proceed to the third step.

Lemma 4.18 Let � <

1

2

, t

1

2 Z

+

. For every su�ciently large n, for every positive integer k,

Pr

"

8t 2 [t

1

; t

1

+ n

5

]; N

�k

(t) � �n!

9t 2 [t

1

; t

1

+ n

5

]; N

�k+2

(t) � 100�

2

n

#

� 1� 2

�n+2

:

Proof: Let

U(t) =

X

i;js(i;t)j�k+2

(js(i; t)j � k � 1):

Let �U(t) = U(t + 1) � U(t). Notice that �U(t) 2 f�1; 0;+1g and that �U(t) = 1 if and only

if the time t transition is marked by a pair of particles in the same position k + 1 or �k � 1;

�U(t) = �1 if and only if the time t transition is marked by a pair of particles such that one is in

position � k+2 and the other in position � k or one in position � �k�2 and the other in position

� �k; �U(t) = 0 in all other cases. If N

�k

(t) � �n and N

�k+2

(t) > 100�

2

n then Pr[�U(t) = 1] �

�

=k+1

(t)�

�k+1

(t) � �

2

; and Pr[�U(t) = �1] � �

�k+2

(t) (1� �

�k+1

) � 100�

2

(1� �) � 50�

2

.

Let W be the set of all t > t

1

with �U(t) 6= 0 and let w

1

< w

2

< � � � be an enumeration of

W in increasing order. (Notice that the w's are random variables.) De�ne a sequence of random

variables X

i

= �U(w

i

). Notice that 8i,

P

j�i

X

j

� �n

2

, since 8t, 0 � U(t) � n

2

. Let Y

i

be the

indicator of

8t 2 [t

1

; t

1

+ n

5

]; N

�k

(t) � �n and N

�k+2

(w

i

) > 100�

2

n:

De�ne a sequence of random variables Z

i

as follows. If 8j � i, Y

j

= 1, then Z

i

= X

i

. Otherwise,

Z

i

2 f�1;+1g is distributed independently of other Z's with Pr[Z

i

= 1] = 1=50.

The Z's satisfy the conditions of Lemma A.6. Therefore,

Pr[

10n

2

X

j=1

Z

j

> �5n

2

] � 2

�

24

50

�

5

2

n

2

< 2

�n

:
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By Fact A.3,

Pr[(9t 2 [t

1

; t

1

+ n

5

]; N

�k

(t) > �n) _ (9i 2 [1; 10n

2

]; N

�k+2

(w

i

) � 100�

2

n)] > 1� 2

�n

:

Since Pr[w

10n

2
� n

5

] > 1�2

�n

, the event in the lemma fails to hold with probability at most 3 �2

�n

and the lemma follows.

Lemma 4.19 Let c > 0 such that � = �

1=8c

< 2. Let � > 0 such that �(1� �) > 1 and 700� � 2.

Let t

1

2 Z

+

, n su�ciently large, n

�1=10

< � <

�(1��)�1

3�(��1)

, � > 0, k 2 Z

+

, � > 0. Then

Pr

2

6

4

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n ^N

�k

(t) � �n)^

(9t 2 [t

1

; t

1

+ n

5

]; N

�k+2

(t) � 100�

2

n)!

(8t 2 [t

1

+ n

5

; t

1

+ n

�

]; N

�k+2

(t) � 1000�

2

n)

3

7

5

> 1� n

�2�

:

Proof: Let t

2

be the smallest t 2 [t

1

; t

1

+ n

5

] such that N

�k+2

(t) � 100�

2

n, or 1, if no such t

exists. (t

2

is a random variable.) We show that

Pr

2

6

6

6

4

(t

2

<1)^

(8t 2 [t

1

; t

1

+ n

�

]; max(t) � c log

�

n)^

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � �n)!

8t 2 [t

2

; t

1

+ n

�

]; N

�k+2

(t) � 1000�

2

n

3

7

7

7

5

> 1� n

�2�

; (3)

which proves the lemma.

In order to show inequality 3, consider the following potential function:

	(t) =

X

i;js(i;t

2

)j<k+2^js(i;t)j�k+2

�

(js(i;t)j�k�2)

: (4)

Notice that 	(t

2

) = 0. Since N

�k+2

(t

2

) � 100�

2

n, we have that if N

�k+2

(t) > 1000�

2

n, then

	(t) > 900�

2

n, so we would like to bound the probability that such an increase in 	 occurs. We

shall use the notation �	(t) = 	(t+ 1)� 	(t).

Suppose that at time t, max(t) � c log

�

n and N

�k

(t) � �n and 	(t) � 700�

2

n. Clearly,

�	(t) � n

1=8

. We need to estimate E[�	(t)] in this case. 	 may increase by 1 if a particle i

with js(i; t)j = k + 1 moves away from 0. Under our assumptions, this happens with probability

no greater than �

2

. Other contributions to the expected change in 	 come from particles i that

participate in the sum in equation 4. Consider such a particle i. The probability that it moves

away from 0 is bounded above by 2�=n. The probability that it moves towards 0 is bounded below

by (1� �)=n. The expected change due to this particle is therefore bounded above by

�

js(i;t)j

�

2�

n

(� � 1)�

1� �

n

�

1�

1

�

��

� ��

js(i;t)j

�

n

: (5)

Since we are guaranteed that 	(t) � 700�

2

n, therefore if we sum up the bound in 5 for all i that

contribute to 	 we get that the expected change due to these particles is at most �700��

2

� �2�

2

.

Thus, we may conclude that E[�	(t)] � �2�

2

+ �

2

� �n

�1=5

.

Now, de�ne random variables X

t

= 	(t + t

2

). Let Y

t

be the indicator of

t

2

<1 and max(t + t

2

) � c log

�

n and N

�k

(t + t

2

) � �n.

De�ne a sequence of random variables Z

0

; Z

1

; : : : as follows. Z

0

= X

0

. For t > 0, if 8j � t, Y

j

= 1,

then Z

t

= X

t

; otherwise, Z

t

= Z

t�1

� n

�1=5

. The Z's satisfy the conditions of Lemma A.5 with

� := 2(�+ �), A := 700�

2

n, B := n

1=8

, C := n

�1=5

, D := 200�

2

n. Therefore, Pr[9t 2 [n

�

]; Z

t

>

900�

2

n] < 1� n

�2�

. Fact A.4 gives the required inequality 3.
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Lemma 4.20 For each positive integer n, let I

n

be the set of all pairs hk; �i, where k is a positive

integer and � is as in the previous lemma. Let

�

hk;�i

n

(t) � N

�k

(t) � �n;

�

hk;�i

n

(t) � N

�k+2

(t) � 1000�

2

n;

for all hk; �i 2 I

n

: Then �

�

n

� �

�

n

uniformly in �

Proof: Take � = 5 and use Lemmas 4.18 and 4.19

Lemma 4.21 Let j be an arbitrary particle. Let t

1

2 Z

+

. Let n be su�ciently large and k a

positive integer. Then

Pr

"

(8t 2 [t

1

; t

1

+ n

4

]; N

�k

(t) � n

9=10

)!

(9t 2 [t

1

; t

1

+ n

4

]; js(j; t)j � k)

#

> 1� 2

�n=2

:

Proof: Let �(t) = js(j; t+ 1)j � js(j; t)j. �(t) 2 f�1; 0;+1g. Let W be the set of all t � t

1

such

that �(t) 6= 0 and let w

1

< w

2

< � � � be an enumeration of W in increasing order. Let X

i

= �(w

i

).

If w

i

� n

4

and js(j; w

i

)j > k, then Pr[X

i

= 1] � n

�1=10

, because the pair fj; j

0

g that marks the

time w

i

transition must have js(j

0

; w

i

)j � k. Notice also that for all i,

P

i

0

�i

X

i

0

� �n, because

js(j; w

1

)j = js(j; t

1

)j � n and js(j; w

i+1

)j � 0. Let Y

i

be the indicator of

8t 2 [t

1

; t

1

+ n

4

]; N

�k

(t) � n

9=10

and js(j;w

i

)j > k

De�ne a sequence of random variables Z

1

; Z

2

; : : : as follows. If 8i

0

� i, Y

i

0

= 1, then Z

i

= X

i

;

otherwise Z

i

2 f�1;+1g is distributed independently of other Z's with Pr[Z

i

= 1] = n

�1=10

. The

Z`s satisfy the conditions of Lemma A.6 with p := n

�1=10

. We get that

Pr[

10n

X

i=1

Z

i

> �5n] < 2(24n

�1=10

)

5

2

n

< 2

�n

:

By Fact A.3,

Pr[(9t 2 [t

1

; t

1

+ n

4

]; N

�k

(t) > n

9=10

) _ (9i 2 [1; 10n]; js(j; w

i

)j � k)] > 1� 2

�n

:

Since Pr[w

10n

� n

4

] > 1� 2

�n

, the lemma follows.

Lemma 4.22 Let j be an arbitrary particle. Let t

1

2 Z

+

. Let n be su�ciently large and k a

positive integer. Let � > 0. Then

Pr

2

6

4

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � n

9=10

)^

(9t 2 [t

1

; t

1

+ n

4

]; js(j; t)j � k)!

(8t 2 [t

1

+ n

4

; t

1

+ n

�

]; js(j; t)j � k + log logn)

3

7

5

> 1� n

�

1

100

log logn

:

Proof: Let t

2

be the smallest t 2 [t

1

; t

1

+ n

4

] such that js(j; t)j � k, or 1, if no such t exists. We

show that

Pr

2

6

4

(t

2

<1)^

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � n

9=10

)!

8t 2 [t

2

; t

1

+ n

�

]; js(j; t)j � k + log logn

3

7

5

> 1� n

�

1

100

log logn

; (6)

which proves the lemma.
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In order to prove inequality 6, we apply an argument similar to that used in the proof of

Lemma A.5 of considering at most n

2�

pairs t

3

; t

4

and showing the following bound:

Pr

2

6

6

6

4

(t

2

<1)^

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � n

9=10

)^

(js(j; t

3

)j � k)^

(8t 2 (t

3

; t

4

]; js(j; t)j > k)! js(j; t

4

)j > k + log logn

3

7

7

7

5

< n

�

1

100

log logn�2�

(7)

Using the same notation as in the previous lemma, let W be the set of t � t

3

such that �(t) 6= 0.

Let w

1

< w

2

< � � � be an enumeration of W in increasing order. De�ne X

i

= �(w

i

). If w

i

� t

1

+n

�

and 8t 2 [t

1

; t

1

+ n

�

], N

�k

(t) � n

9=10

, then Pr[X

i

= 1] � n

�1=10

. Let Y

i

be the indicator of

t

2

<1 and 8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � n

9=10

and

js(j; t

3

)j � k and 8t 2 (t

3

; t

4

]; js(j; t)j > k and w

i

� t

4

:

De�ne a sequence of random variables Z

1

; Z

2

; : : : as follows. If 8i

0

� i, Y

i

0

= 1, then Z

i

= X

i

;

otherwise, Z

i

2 f�1;+1g is distributed independently of the other Z's with Pr[Z

i

= 1] = n

�1=10

.

Let i be the largest such that w

i

� t

4

. If i � log log n, then

Pr

2

4

X

i

0

�i

Z

i

0

> log logn

3

5

= 0:

If i > log logn, we use Lemma A.6 with p := n

�1=10

to get

Pr

2

4

X

i

0

�i

Z

i

0

> log logn

3

5

< 2

�

24n

�1=10

�

i=4

< n

�

1

100

log logn�2�

:

(we use here that n is su�ciently large.)

The use of Fact A.4 completes the proof.

Lemma 4.23 Suppose that for every positive integer n, k

n

is a positive integer and

�

n

(t) � N

�k

n

(t) � n

9=10

;

�

n

(t) � max(t) � k

n

+ log logn

then �

n

� �

n

.

Proof: We use the same arguments that were used in the proofs of Lemmas 4.16 and 4.20. Fix

� > 0. Take � = 4. The probabilities of the bad events are given by Lemmas 4.21 and 4.22. Notice

that these lemmas consider a single particle, whereas here we have to consider all n particles (we

assume the worst case, that the bad events for the individual particles are mutually disjoint) We

get that

Pr

"

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � n

9=10

)!

(8t 2 [t

1

+ n

4

; t

1

+ n

�

]; max(t) � k

n

+ log log n)

#

> 1� n

�

2

�n=2

+ n

�

1

100

log logn

�

> 1� n

��

:
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Lemma 4.24 Let c

init

= 2� 10

5

. Let t

1

2

U

[0; T ]. Then,

Pr

h

8t 2 [t

1

+ n

6

; t

1

+ n

7

]; max(t) � c

init

+ 3 log logn

i

> 1� n

�1

:

Proof: Let c = 12, � = 10

�4

. Let j be the largest such that (1000�)

2

(j�1)

=1000 � n

�1=10

. Notice

that j < log logn. Let

�

0

n

(t) � max(t) � c log

�

n;

�

0

n

(t) = �

1

n

(t) � N

�c

init

(t) � �n;

�

1

n

(t) = �

2

n

(t) � N

�c

init

+2

(t) � 1000�

2

n;

�

2

n

(t) = �

3

n

(t) � N

�c

init

+4

(t) � (1000)

3

�

4

n;

.

.

.

�

j�1

n

(t) = �

j

n

(t) � N

�c

init

+2(j�1)

(t) � (1000�)

2

(j�1)

n=1000;

�

j

n

(t) � max(t) � c

init

+ 2(j � 1) + log logn

Then, for � 2 f0; 1; : : : ; jg, �

�

n

� �

�

n

uniformly in � with � = 5. (This follows by applying

Lemma 4.20 for each step in the chain but the last, which instead follows from Lemma 4.22 and

the choice of j.) Therefore, by Lemma 4.10, �

0

n

� �

j

n

with � = 6. Therefore, for su�ciently large

n,

Pr

"

(8t 2 [t

1

; t

1

+ n

7

]; max(t) � c log

�

n)!

(8t 2 [t

1

+ n

6

; t

1

+ n

7

]; max(t) � c

init

+ 2(j � 1) + log logn)

#

> 1� n

�2

: (8)

Let � = 7, � = 2. �, �, c satisfy the conditions of Lemma 4.11. Therefore,

Pr

h

8t 2 [t

1

; t

1

+ n

7

]; max(t) � c log

�

n

i

> 1� n

�2

: (9)

Combining inequalities 8 and 9 gives

Pr

h

8t 2 [t

1

+ n

6

; t

1

+ n

7

]; max(t) � c

init

+ 2(j � 1) + log logn

i

> 1� 2n

�2

> 1� n

�1

:

Since 2(j � 1) + log log n < 3 log logn, the lemma follows.

Theorem 4.25 For su�ciently large n,

E[max(t)] < 4 log log n:

Proof: Denote by E

a;b

the expectation of max(t) when t 2

U

[a; b]. We bound E

t

1

;t

1

+n

7 for t

1

2

U

[0; T ]. Using Lemma 4.24, E

t

1

;t

1

+n

7
� n

�1

E

t

1

;t

1

+n

6
+ (1� n

�1

)E

t

1

+n

6

;t

1

+n

7
. Clearly, E

t

1

;t

1

+n

6
� n.

Moreover, from Lemma 4.24 we deduce that for su�ciently large n, E

t

1

+n

6

;t

1

+n

7 � 4 log logn � 1,

which proves the claim.

4.4 Expected Maximal Unfairness is 
(log log n)

The proof of the log logn lower bound mirrors the proof of the log log n upper bound. Pick a time

interval whose length is �xed in advance and is polynomial in n, and whose starting point is any

point in the execution. Clearly, the number of people with unfairness � 0 throughout this interval is

n. Next we show that with high probability, for each k; � , any su�ciently long interval throughout

which the unfairness of at least �n people is at least k, contains an interval whose starting point is
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polynomially shifted by a polynomial with a smaller exponent that the original interval, and whose

ending point is the same as that of the original interval, and so that throughout the contained

interval the unfairness of at least �

2

n people is at least k + 1. The shift does not depend on k; � .

Thus, after log logn steps we are left with an interval whose length is close to the length of the

original interval we picked, and so that with high probability, throughout this resulting interval,

the maximal unfairness is at least log logn.

We proceed with the actual proof.

Lemma 4.26 Let � > n

�1=4

, t

1

2 Z

+

, � > 0. For every su�ciently large n, for every positive

integer k,

Pr

"

8t 2 [t

1

; t

1

+ n

4

]; N

�k

(t) � �n!

9t 2 [t

1

; t

1

+ n

4

]; N

�k+1

(t) �

1

16

�

2

n

#

� 1� n

�2�

:

Proof: Let X

i

= N

�k+1

(t

1

+ i). We wish to compute a lower bound on E[X

i

jX

i�1

]. Let us �rst

consider the contribution to the expected change due to decreases in N

�k+1

. This value can drop

only if one or both of the particles chosen is at �(k + 1). The probability that the �rst particle is

at �(k+ 1) is at most �

=k+1

(t

1

+ i� 1) and similarly the probability that the second particle is at

�(k + 1) is also at most �

=k+1

(t

1

+ i� 1). So the expected decrease due to particles moving from

�(k + 1) is bounded by 2�

=k+1

(t

1

+ i � 1). Next let us consider the contribution to the expected

change due to increase in N

�k+1

. One of position k or �k contains at least

1

2

N

=k

(t

1

+ i � 1)

particles. Thus two of these particles are paired with probability at least

 

1

2

N

=k

(t

1

+ i� 1)

2

!

=

 

n

2

!

which is bounded below by

�

�

=k

(t

1

+ i� 1)

2

�

2

�

1

4(n� 1)

:

Thus we have

E[X

i

jX

i�1

] � X

i�1

� 2�

=k+1

(t

1

+ i� 1) +

�

�

=k

(t

1

+ i� 1)

2

�

2

�

1

4(n� 1)

:

If N

�k

(t

1

+ i� 1) � �n and X

i�1

< �

2

n=16, we have that

�

=k

(t

1

+ i� 1) =

N

=k

(t

1

+ i� 1)

n

=

N

�k

(t

1

+ i� 1)�N

�k+1

(t

1

+ i� 1)

n

= �

�k

(t

1

+ i� 1)� �

�k+1

(t

1

+ i� 1)

� � �

1

8

�

2

�

7

8

�;

�

=k+1

(t

1

+ i� 1) � �

�k+1

(t

1

+ i� 1) <

1

16

�

2

;

and since � > n

�1=4

,

1

4(n� 1)

�

1

2n

�

1

256

p

n

�

1

256

�

2
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(assuming n is su�ciently large.)

Therefore,

E[X

i

�X

i�1

j X

i�1

] �

1

16

�

2

:

Let Y

i

be the indicator of

N

�k

(t

1

+ i) � �n and X

i

< �

2

n=16:

De�ne a sequence of random variables Z

i

as follows. If 8j < i, Y

j

= 1, then Z

i

= X

i

. Otherwise,

Z

i

= Z

i�1

+ �

2

=16. The Z's satisfy the conditions of Corollary A.7 with A := X

0

, B := 1,

C := �

2

=16. Therefore, taking � := 2

p

� lnn,

Pr[Z

n

4 < X

0

+

1

16

n

4

�

2

� 4n

2

p

� lnn] < n

�2�

:

Since X

0

� 0 and X

n

4 � n, the lemma follows from Fact A.3.

Lemma 4.27 Let t

1

2 Z

+

, n su�ciently large, � > n

�1=5

, � > 0, k 2 Z

+

, � > 0. Then

Pr

2

6

4

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � �n)^

(9t 2 [t

1

; t

1

+ n

4

]; N

�k+1

(t) �

1

16

�

2

n)!

(8t 2 [t

1

+ n

4

; t

1

+ n

�

]; N

�k+1

(t) �

1

32

�

2

n)

3

7

5

> 1� n

�2�

:

Proof: Let t

2

be the smallest t 2 [t

1

; t

1

+ n

4

] such that N

�k+1

(t) � �

2

n=16, or 1, if no such t

exists. We show that

Pr

2

6

4

(t

2

<1)^

(8t 2 [t

1

; t

1

+ n

�

]; N

�k

(t) � �n)!

8t 2 [t

2

; t

1

+ n

�

]; N

�k+1

(t) �

1

32

�

2

n

3

7

5

> 1� n

�2�

; (10)

which proves the lemma.

In order to show inequality 10, de�ne random variables X

i

= N

�k+1

(t

2

+ i). As in the previous

lemma, if N

�k

(t

2

+ i� 1) � �n and X

i�1

� �

2

n=16, we have that

E[X

i

�X

i�1

j X

i�1

] �

1

16

�

2

:

Let Y

i

be the indicator of

t

2

<1 and and N

�k

(t

2

+ i) � �n.

De�ne a sequence of random variables Z

0

; Z

1

; : : : as follows. Z

0

= X

0

. For i > 0, if 8j < i, Y

j

= 1,

then Z

i

= X

i

; otherwise, Z

i

= Z

i�1

+�

2

=16. The Z's satisfy the conditions of Lemma A.8 with � :=

2(�+�), A := �

2

n=16, B := 1, C := �

2

=16,D := �

2

n=32. (we may use here

5

p

n � 2048(�+�) lnn.)

Therefore, Pr[9i 2 [n

�

]; Z

i

< �

2

n=32] < n

�2�

. Fact A.4 gives the required inequality 10.

Lemma 4.28 For each positive integer n, let I

n

be the set of all pairs hk; �i, where k is a positive

integer and � > n

�1=5

. Let

�

hk;�i

n

(t) � N

�k

(t) � �n;

�

hk;�i

n

(t) � N

�k+1

(t) �

1

32

�

2

n;

for all hk; �i 2 I

n

: Then �

�

n

� �

�

n

uniformly in �
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Proof: Take � = 4 and use Lemmas 4.26 and 4.27.

Theorem 4.29 E[max(t)] > log log n�K, where K is an absolute constant.

Proof: Let j be the largest such that 32

�2

j

+1

> n

�1=5

. Notice that j � blog lognc � 5. Let

�

0

n

(t) � N

�0

(t) � n;

�

0

n

(t) = �

1

n

(t) � N

�1

(t) � 32

�1

n;

�

1

n

(t) = �

2

n

(t) � N

�2

(t) � 32

�3

n;

�

2

n

(t) = �

3

n

(t) � N

�3

(t) � 32

�7

n;

.

.

.

�

j�1

n

(t) = �

j

n

(t) � N

�j

(t) � 32

�2

j

+1

n;

Using Lemma 4.10, we conclude from Lemma 4.28 that �

0

n

� �

j

n

with � = 5. Since N

�0

(t) is always

n, and since N

�j

(t) � 32

�2

j

+1

n implies that N

�j

(t) > 0, we conclude that for every �; � > 0, for

every t

1

2 Z

+

, for every su�ciently large n,

Pr

h

8t 2 [t

1

+ n

5

; t

1

+ n

�

]; N

�blog lognc�5

(t) > 0

i

� 1� n

��

;

which proves the theorem.

4.5 Convergence to Low Maximal Unfairness

In the previous sections we showed that at a randomly-chosen time in a su�ciently long execution

the expected maximal unfairness is small. In this section we consider the question of how quickly

the process will converge to low maximal unfairness starting from an arbitrary con�guration (with

the constraint that this con�guration must be reachable from the initial state.) We show that

starting at any reachable con�guration at time t

1

, with high probability the maximal unfairness

goes below log n by time t

1

+ n

4

, and then stays below 2 logn for an interval of length at least

n

logn

. (This result in fact implies that the system will quickly converge to a maximum unfairness

of O(log logn), using the proof of Theorem 4.25 starting with Corollary 4.17.)

The basic idea of the proof is to show that the value of our usual potential function �

�

is likely

to drop when it is too large. We do this in the following technical lemma:

Lemma 4.30 For all su�ciently small � > 0, there exists a constant c > 0 such that for all

su�ciently large n and � = 1 + �, if �

�

=

P

i

�

js(i)j

> cn then the expected value of the change in

log �

�

is smaller than ��, where � is a constant greater than zero.

Proof: Observe that

log �(s(t+ 1))� log �(s(t)) = log

�(s(t+ 1))

�(s(t))

= log(1 +

�(s(t+ 1))� �(s(t))

�(s(t))

):

Thus, the proof of the lemma follows from Lemma 4.12 and the fact that ln(1 + z) < z for

0 < jzj < 1.
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Theorem 4.31 For all � > 0, there exists � > 0 such that for all su�ciently small �, all su�ciently

large n, and any point t

1

in the execution, we have

Pr(8t 2 [t

1

+ n

4

; t

1

+ n

� logn

];�

�

(s(t)) =

X

i

�

js(i;t)j

� cn) > 1� n

��

:

where � = 1 + � and c is a constant independent of n.

Proof: Let c be twice the constant from Lemma 4.30. We'll show that �

�

drops below cn=2 with

high probability by some t < t

1

+n

4

and that once below cn=2 it is unlikely to rise above cn for an

additional n

� logn

steps.

Lemma 4.30 implies that until �

�

is below cn=2, the expected change in log �

�

is less than ��.

Note that 2 is an upper bound on the change of log�. Since 0 < log �(s(t)) � n

2

, applying

Corollary A.2 we get that with probability at least 1 � n

�2�

, there is some t < t

1

+ n

4

, so that

�

�

(s(t)) � cn=2.

Let t

2

be the smallest t with this property.

For any �xed t we will denote the event \�

�

(s(t)) � cn=2 and �

�

(s(t)) < cn" by Q(t). It is

enough to show that for any �xed t

3

; t

4

2 [t

2

; t

1

+ n

� logn

] we have:

Pr((�

�

(s(t

3

)) =

cn

2

^ 8t 2 [t

3

; t

4

); Q(t))! (�

�

(s(t

4

)) < cn)) > 1� n

�2��2� logn

: (11)

If t

4

� t

3

+n

3=2

, it follows from Corollary A.2 that �

�

(s(t

4

)) is below

3

4

cn with high probability.

Thus to complete the proof it is enough to consider only the case t

4

> t

3

+ n

3=2

.

We will prove (11) in two steps. In the �rst step we show:

Pr((8t 2 [t

3

; t

4

); Q(t))! (8t 2 [t

3

+ n

3=2

; t

4

];max

i

js(i; t)j < 2 log

2

n)) > 1� n

�4��4� logn

: (12)

This will mean that on [t

3

; t

4

] we have a good upper bound on the changes of �

�

. In the second

step we use use this fact to prove (11) by another application of Corollary A.2.

The proof of (12) is similar to the proof of Lemma 4.22 in that we consider the behavior of each

particle individually. First we prove that for each �xed i, with a probability of at least 1� n

�n

1=4

,

s(i) drops from log

�

(cn) = �c logn at t

3

to log n in less than n

3=2

time units. The reason is that in

an interval of this length, i will be paired at least n

1=4

times with exponentially high probability.

As long as s(i) > log n, �

�

< cn implies that the number of people with unfairness at least log n

can be at most

cn

�

log

2

n

= n

1�c

3

, where c

3

> 0 depends only on c and �. Therefore the change of

s(i) will be �1 with a probability of at least 1� n

�c

3

. Applying Lemma A.6 we get that s(i) goes

down to logn.

Let t

5

be the �rst time where particle a goes below logn. We now show that it it is likely to

remain below 2 logn. Speci�cally:

Pr((s(i; t

5

) = logn ^ 8t 2 [t

3

; t

1

+ n

� logn

); Q(t))! (8t 2 [t

5

; t

1

+ n

� logn

]; js(i; t)j< 2 logn))

� 1� n

�4��4� logn�1

:

Let �

t

= js(i; t)j� js(i; t� 1)j. The value of �

t

can be �1; 0 or 1. Let W be the set of all t > t

1

with �

t

6= 0 and let w

j

be the j-th element ofW so that w

1

< w

2

< � � � are all of the elements of W

in increasing order. Let X

k

= �

w

k

. X

k

is a random variable which takes only the values �1; 1. We

de�ne a random variable Z

k

in the following way. If Q(w

k

� 1) holds then Z

k

= X

k

; if Q(w

k

� 1)

does not hold then the value of Z

k

is chosen at the w

k

-th step of the randomization independently

of earlier steps and Z

k

= 1 with a probability of n

�c

3

, and Z

k

= �1 with probability 1� n

�c

3

.
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Given k, We apply Lemma A.6 to the random variables Z

1

; : : : ; Z

k

with p = n

�c

3

. The fact

that p

1

� 1� n

�c

3

and the de�nition of each Z

j

implies that the conditions of the lemma are met

with p = n

�c

3

.

Clearly, if k < logn then P (

P

k

j=1

Z

j

> logn) = 0. If k > log n, then applying Lemma A.6 as

before we get that

P (

k

X

j=1

Z

j

> logn) < 2(24n

�c

3

)

i=4

� 2(24n

�c

3

)

log n

4

:

Therefore

P (9k;

k

X

j=1

Z

j

> log n) < n

� logn

2(24n

�c

3

)

k=4

� n

� logn

n

�c

0

logn

� n

�4� logn�4��1

:

Expanding out the de�nition of Z

k

and Q, this implies (12).

Corollary 4.32 There exists a constant a such that for all � > 0, there exists � > 0 such that for

all su�ciently large n, and any point t

1

in the execution,

Pr(8t 2 [t

1

+ n

4

; t

1

+ n

� logn

];max(t) � a logn) > 1� n

��

:

Proof: Immediate from the de�nition of �

�

.

5 Reducing Vector Rounding to the 2-Person Carpool Game

In this section we show that the general carpool problem can be reduced to one where each day

only two people arrive, or, equivalently, to the edge orientation game. This is done by a reduction

from the still more general vector rounding problem. The n-dimensional vector rounding problem

is this: the input is a list of vectors (V

1

; V

2

; : : :), where each V

t

= (v

1

t

; v

2

t

; : : :v

n

t

) is a vector of length

n over the reals. The output is a list of integer vectors (Z

1

; Z

2

; : : :) where Z

t

= (z

1

t

; z

2

t

; : : :z

n

t

) is a

rounding of V

t

that preserves the sum, i.e. for all 1 � i � n we have that z

i

t

2 fbv

i

t

c; dv

i

t

eg and that

n

X

i=1

z

i

t

2 fb

n

X

i=1

v

i

t

c; d

n

X

i=1

v

i

t

eg

The goal is to make the accumulated di�erence in each entry as small as possible, i.e. for every t

we want max

1�i�n

j

P

t

j=1

z

i

j

�

P

t

j=1

v

i

j

j to be as small as possible. For input vectors (V

1

; V

2

; : : :)

and output vectors (Z

1

; Z

2

; : : :) the associated cost at time t is

max

1�i�n

j

t

X

j=1

z

i

j

�

t

X

j=1

v

i

j

j:

As before, we can consider the o�-line problem where we are given the vectors (V

1

; V

2

; : : :) ahead

of time and the on-line problem where we are given the vectors (V

1

; V

2

; : : :) one at a time and have

to decide on the corresponding (Z

1

; Z

2

; : : :). As in the carpool problem, in the on-line version we

consider deterministic algorithms as well as randomized algorithms against the oblivious adversary.

Tijdeman [22] has considered the vector rounding problem and has shown that the o�-line

version has a solution of di�erence 1, i.e. for every sequence of real vectors (V

1

; V

2

; : : :) there exist

integer (Z

1

; Z

2

; : : :) such that for all t � 1 we have max

1�i�n

j

P

t

j=1

z

i

j

�

P

t

j=1

v

i

j

j � 1.

32



One can cast the carpool problem as a vector rounding problem: for a sequence (X

1

; X

2

; : : :)

create the vectors (V

1

; V

2

; : : :) where for all t � 1 and all 1 � i � n we have

v

i

t

=

(

1=jX

t

j if i 2 X

t

0 if i 62 X

t

.

Therefore if we can connect the performance of the 2-person carpool problem to the vector

rounding problem then we will have reduced the general carpool problem to the 2-person problem.

Before we show the reduction we will make some simplifying assumptions, which can be easily

justi�ed: We assume that for every t and 1 � i � n, v

i

t

is non-negative (since we can add the

absolute value of dv

i

t

e and then subtract it from z

i

t

) and that

P

n

i=1

v

i

t

is an integer (if not, then we

can add a "dummy" entry to the vector in order to make the sum an integer; this increases n to

n+1). Furthermore we assume an a priori bound T on the number of vectors, i.e. t < T (otherwise

we will increase T as we go along in multiples of 2).

Our reduction is applicable to both deterministic and randomized algorithms.

Theorem 5.1 The statement of the result di�ers slightly depending on the nature of the algorithm

used for the two-person carpool problem:

� Deterministic Algorithms: Suppose that we have a deterministic algorithm f for the n-

participant carpool problem where every day two people show up that maintains unfairness at

most �(n), then we can construct a deterministic algorithm f

0

to the vector rounding problem

that maintains an accumulated di�erence of at most 2�(n) for every sequence ' = (V

1

; V

2

; : : :).

� Randomized algorithms against the oblivious adversary: Suppose that we have a randomized

algorithm

~

f for the n-participant carpool problem where every day two people show up that

maintains unfairness �(n), then we can construct a randomized algorithm

~

f

0

for the vec-

tor rounding problem that maintains an accumulated di�erence of at most 2�(n), for every

sequence ' = (V

1

; V

2

; : : :).

Proof: The reduction is made by a \scaling" argument, similar in 
avor to the bit-by-bit rounding

of Beck and Fiala [9, 8]. The constructions of the deterministic and randomized algorithms for the

vector rounding problem from the corresponding algorithms for the 2-person carpool problem are

similar, only the analysis is a bit di�erent. Consider the binary representation of the v

i

t

's. We will

make it only ` = 2 logT bits long by ignoring the rest of the bits and adjusting one of the v

i

t

. This

can hardly a�ect the outcome (by a

1

T

additive term only, and this can be made arbitrarily small

by making ` larger). Run ` carpool instances simultaneously, one corresponding to each of the `

bit positions. For each instance apply the strategy for the carpool problem (f or

~

f depending on

the case). Each problem has n participants and the accounting and decisions (but not the inputs!)

of each instance are done independently.

We start by describing how the `-th instance is de�ned and then how the rest of the instances

follow. Consider the `-th bits of the entries of V

t

. Since

P

i

v

i

t

2 Z

+

, there must be an even number

of i's such that the `-th bit of v

i

t

is 1. Partition them into pairs arbitrarily and schedule those

pairs as requests. If v

i

t

and v

j

t

are paired, request fi; jg. Those i's that were chosen to drive by

the carpool strategy f or

~

f are rounded up, i.e. we add 2

�l

to v

i

t

. Those i's that were not chosen

as drivers are rounded down, i.e. we simply throw away (that is, replace with a 0) the `-th bit of

v

i

t

. It is easy to verify that this procedure preserves the sum of entries (i.e.

P

n

i=1

v

i

t

) and that the

modi�ed V

t

requires only `� 1 bits for its representation. The procedure is repeated now with the
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` � 1st instance and so on. After we do that for all the ` carpool instances we are left with an

integer V

t

which is our Z

t

.

How good is this reduction? Let C(t; j; i; V

1

; V

2

; : : :V

t

) denote the unfairness of the i-th partici-

pant at the j-th instance de�ned by inputs V

1

; V

2

; : : :V

t

. Let D(t; i; V

1

; V

2

; : : :V

t

) be

P

t

k=1

(z

i

k

� v

i

k

)

on input V

1

; V

2

; : : :V

t

. We claim that

D(t; i; V

1

; V

2

; : : :V

t

)

=

`

X

j=1

1

2

j�1

C(t; j; i; V

1

; V

2

; : : :V

t

)

This can be shown by induction on `. The contribution of the `-th instance is multiplied by

1=2

`�1

, since we have scaled the `-th instance by 2

`�1

.

We now turn to the analysis. In the deterministic case we know by assumption on f that

jC(t; j; i; V

1

; V

2

; : : :V

t

)j is bounded by �(n). Therefore,

jD(t; i; V

1

; V

2

; : : :V

t

)j

�

`

X

j=1

1

2

j�1

jC(t; j; i; V

1

; V

2

; : : :V

t

)j � 2�(n)

and therefore max

1�i�n

jD(t; i; V

1

; V

2

; : : :V

t

)j � 2�(n)

For the case of a randomized algorithm, we should �rst be convinced that the adversary's power

is no stronger than that of an oblivious adversary in each of the carpool instances that we have

de�ned. Observe that the inputs to the j instance are determined by (V

1

; V

2

; : : :) and the decisions

made by the carpool solver on instances j + 1 through `. The decisions made in instance k, for

1 � k � j at any point in time do not e�ect the inputs to instance j. Therefore, for instance j,

the adversary chooses a distribution on (V

1

; V

2

; : : :) and can even be given the power to make all

the decisions in instances j + 1 through ` and yet all that it would be doing cannot depend on the

decision at the j-th instance. Given that we know that

max

1�i�n

jD(t; i; V

1

; V

2

; : : :V

t

)j

�

`

X

j=1

1

2

j�1

max

1�k�n

jC(t; j; k; V

1

; V

2

; : : :V

t

)j

and the expectation of

max

1�k�n

jC(t; j; k; V

1

; V

2

; : : :V

t

)j

is bounded by �(n), we get that the expectation of max

1�i�n

jD(t; i; V

1

; V

2

; : : :V

t

)j is at most 2�(n).
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A Some Consequences of Hoe�ding's Inequality

This section describes several extensions of Hoe�ding's Inequality for martingales, that will be used

in the proofs in Section 4.

Start with Azuma's inequality:

Theorem A.1 (Azuma's inequality) Let 0 = X

0

; : : : ; X

m

be a martingale with jX

i

�X

i�1

j � 1

for all i 2 [m]. Let � > 0 be arbitrary. Then, for all i 2 [m],

Pr[X

i

> �

p

i] < e

�

�

2

2

:

From this it is not di�cult to obtain:

Corollary A.2 Let X

0

; X

1

; : : : ; X

m

be a sequence of random variables that has the following prop-

erties:

1. X

0

� A.

2. 8t 2 [m], jX

t

�X

t�1

j � B.

3. 8t 2 [m], E[X

t

�X

t�1

j X

0

; :::; X

t�1

] � �C.

Let � > 0. Then, for all i 2 [m],

Pr[X

i

> A� iC + 2B�

p

i] < e

�

�

2

2

:

Proof: De�ne

R

i

=

i

X

t=1

E[X

t

�X

t�1

j X

0

; :::; X

t�1

]:

Note that R

i

is a random variable whose value depends on the values of X

0

; X

1

; : : : ; X

i�1

. De�ne

a sequence Y

0

; Y

1

; : : : ; Y

m

as follows. Y

0

= X

0

and 8i 2 [m], Y

i

= X

i

� R

i

. We have that (taking

R

0

= 0)

jY

i

� Y

i�1

j = jX

i

� R

i

�X

i�1

+R

i�1

j � B + jE[X

i

�X

i�1

j X

0

; :::; X

i�1

]j � 2B;
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and

E[Y

i

j Y

0

; :::; Y

i�1

] = E[(Y

i

� Y

i�1

) + Y

i�1

j Y

0

; :::; Y

i�1

]

= Y

i�1

+E[(X

i

� R

i

�X

i�1

+R

i�1

) j Y

0

; :::; Y

i�1

]

= Y

i�1

+E[X

i

�X

i�1

j Y

0

; :::; Y

i�1

]�E[E[X

i

�X

i�1

j Y

i�1

] j Y

0

; :::; Y

i�1

]

= Y

i�1

:

Now de�ne Z

0

; Z

1

; : : : ; Z

m

as follows. 8i 2 f0g [ [m], Z

i

= (Y

i

� Y

0

)=2B. It is easy to verify that

the Z's are a martingale that satisfy the conditions of Azuma's inequality. Therefore, 8i 2 [m],

Pr[Z

i

> �

p

i] < e

�

�

2

2

:

Now, X

i

> A� iC + 2B�

p

i! Y

i

> A+ 2B�

p

i! Z

i

> �

p

i.

We will use the following proof paradigms. Let X

0

; X

1

; : : : ; X

m

be nonnegative real valued

random variables. Let Y

0

; Y

1

; : : : ; Y

m

be indicator variables. Let Z

0

; Z

1

; : : : ; Z

m

be real valued

random variables such that if 8j � i Y

j

= 1, then Z

i

= X

i

. Then, the following facts are trivial:

Fact A.3 For every predicate P , if not P (X

0

; : : : ; X

m

) and if Pr[P (Z

0

; : : : ; Z

m

)] > p, then

Pr[9j � m; Y

j

= 0] > p:

Fact A.4 For every predicate P , if Pr[P (Z

0

; : : : ; Z

m

)] > p then,

Pr[(8j � m; Y

j

= 1)! P (X

0

; : : : ; X

m

)] > p:

We will also make use of the following consequence of Corollary A.2

Lemma A.5 Let �; � > 0. Let A;B;C;D > 0 such that 2�B

2

lnn=C � D. Let X

0

; X

1

; : : : ; X

n

�

be a sequence of random variables with the following properties:

1. X

0

� A.

2. 8i 2 [n

�

], jX

i

�X

i�1

j � B.

3. If X

i�1

� A then E[X

i

�X

i�1

j X

0

; :::; X

i�1

] � �C.

Then,

Pr[9i 2 [n

�

]; X

i

> A+D] < n

��+2�

:

Proof: Consider i; j, 0 < i < j � n

�

. We show that

Pr[(X

i

� A ^ 8k 2 (i; j); X

k

� A)! (X

j

� A+D)] > 1� n

��

: (13)

This proves the lemma, since (X

t

> A+D) ! (9i; j; 0 � i < j � t; X

i

� A ^ X

j

> A+D ^ 8k 2

(i; j); X

k

� A), and there are at most n

2�

pairs i; j that might satisfy this condition for any t 2 [n

�

].

In order to prove inequality 13, let Y

t

be the indicator of the event

X

i+t

� A:
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De�ne a sequence of random variables Z

0

; Z

1

; : : : ; Z

j�i

as follows. Z

0

= X

i

. Let t 2 [1; j � i]. If

9` 2 [0; t], Y

`

= 0, then set Z

t

= Z

t�1

�C. Otherwise, set Z

t

= X

i+t

. The Z's satisfy the conditions

of Corollary A.2 with A := X

i

, B := B, C := C. Therefore, we get, for � =

p

2� ln n,

Pr[Z

j�i

< X

i

� (j � i)C + 2B�

p

j � i] > 1� n

��

:

Since X

i

� A, we have that

X

i

� (j � i)C + 2B�

p

j � i � A� (j � i)C + 2B

p

2� ln n

p

j � i:

The function f(t) = 2B

p

2� ln n

p

t � Ct achieves its maximum in the range [0;1) either at t = 0

or at t = 2�B

2

lnn=C

2

, which gives f(t) � D (using the condition stated in the lemma). This

proves inequality 13 because of Fact A.4.

We also use the following bound on large deviations.

Lemma A.6 Assume that i is su�ciently large, p � 1=50, Z

1

, : : : ,Z

i

are random variables with

values �1; 1 only, and for all j 2 f1; : : : ; ig[ f�

1

; : : : ; �

j�1

g we have Pr[Z

j

= 1jZ

1

= �

1

; : : : ; Z

j�1

=

�

j�1

] � p. Then

Pr[(

i

X

j=1

Z

j

) > �i=2] � 2(24p)

i=4

Proof: It is enough to prove the lemma in the case when Z

1

; :::; Z

i

are independent random

variables and Pr[Z

j

= 1] = p for j = 1; : : : ; i. If

P

i

j=1

Z

j

> �i=2 then among the variables

Z

1

; : : : ; Z

i

at least i=4 takes the value 1. Let p

r

be the probability that exactly r of them takes the

value 1.

p

r

= p

r

(1� p)

i�r

 

i

r

!

� p

r

 

i

r

!

:

However,

�

i

r

�

< i

r

=r!, therefore using the assumption r > i=4 and the Stirling formula (if r is

su�ciently large) we get

 

i

r

!

� i

r

=((1=r)(r=e)

r

) � i

r

=((r=2e)

r

) � (2ei=r)

r

� 24

r

:

That is, p

r

� (24p)

r

. The probability in question is

i

X

r=i=4

p

r

�

1

X

r=i=4

(24p)

r

� 2(24p)

i=4

:

By symmetry we have the following reverse versions of Corollary A.2 and Lemma A.5:

Corollary A.7 Let X

0

; X

1

; : : : ; X

m

be a sequence of random variables that has the following prop-

erties:

1. X

0

� A.

2. 8t 2 [m], jX

t

�X

t�1

j � B.
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3. 8t 2 [m], E[X

t

�X

t�1

j X

t�1

] � C.

Let � > 0. Then, for all i 2 [m],

Pr[X

i

< A+ iC � 2B�

p

i] < e

�

�

2

2

:

Lemma A.8 Let �; � > 0. Let A;B;C;D > 0 such that 2�B

2

lnn=C � D. Let X

0

; X

1

; : : : ; X

n

�

be a sequence of random variables with the following properties:

1. X

0

� A.

2. 8i 2 [n

�

], jX

i

�X

i�1

j � B.

3. If X

i�1

� A then E[X

i

�X

i�1

j X

i�1

] � C.

Then,

Pr[9i 2 [n

�

]; X

i

< A�D] < n

��+2�

:
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