
Certi�cate Revocation and Certi�cate Update

Moni Naor

�

Kobbi Nissim

Dept. of Applied Mathematics and Computer Science

Weizmann Institute of Science

Rehovot 76100, Israel

fnaor, kobbig@wisdom.weizmann.ac.il

Abstract

A new solution is suggested for the problem of cer-

ti�cate revocation. This solution represents Cer-

ti�cate Revocation Lists by an authenticated search

data structure. The process of verifying whether a

certi�cate is in the list or not, as well as updat-

ing the list, is made very e�cient. The suggested

solution gains in scalability, communication costs,

robustness to parameter changes and update rate.

Comparisons to the following solutions are included:

`traditional' CRLs (Certi�cate Revocation Lists),

Micali's Certi�cate Revocation System (CRS) and

Kocher's Certi�cate Revocation Trees (CRT).

Finally, a scenario in which certi�cates are not re-

voked, but frequently issued for short-term periods is

considered. Based on the authenticated search data

structure scheme, a certi�cate update scheme is pre-

sented in which all certi�cates are updated by a com-

mon message.

The suggested solutions for certi�cate revocation

and certi�cate update problems is better than cur-

rent solutions with respect to communication costs,

update rate, and robustness to changes in parame-

ters and is compatible e.g. with X.500 certi�cates.

1 Introduction

The wide use of public key cryptography requires

the ability to verify the authenticity of public keys.

This is achieved through the use of certi�cates (that

serve as a mean for transferring trust) in a Public

Key Infrastructure (PKI). A certi�cate is a message

signed by a publicly trusted authority (the certi�-

cation authority, whose public key authenticity may

be provided by other means) which includes a public

key and additional data, such as expiration date, se-

rial number and information regarding the key and

the subject entity.

�

Research supported by BSF grant no. 94-00032.

When a certi�cate is issued, its validity is limited

by an expiration date. However, there are circum-

stances (such as when a private key is revealed, or

when a key holder changes a�liation or position)

where a certi�cate must be revoked prior to its ex-

piration date. Thus, the existence of a certi�cate

is a necessary but not su�cient evidence for its va-

lidity, and a mechanism for determining whether a

certi�cate was revoked is needed.

A typical application is a credit card system where

the credit company may revoke a credit card, tem-

porarily or permanently, prior to its expiration, e.g.

when a card is reported stolen or according to its

user's bank account balance.

This work focuses on the problem of creating and

maintaining e�cient authenticated data structures

holding information about the validity of certi�-

cates. I.e. how to store, update and retrieve au-

thenticated information concerning certi�cates.

There are three main types of parties involved with

certi�cates:

1. Certi�cation authority (CA): A trusted

party, already having a certi�ed public key, re-

sponsible for establishing and vouching for the

authenticity of public keys, including the bind-

ing of public keys to users through certi�cates

and certi�cate revocation.

A CA does not provide on-line certi�cate infor-

mation services to users. Instead, It updates a

directory on a periodic basis.

A CA issues certi�cates for users by signing a

message containing the certi�cate serial num-

ber, relevant data and an expiration date. The

certi�cate is sent to a directory and/or given to

the user himself. The CA may revoke a certi�-

cate prior to its expiration date.

2. Directory: One or more non-trusted parties

that get updated certi�cate revocation infor-

mation from the CA and serve as a certi�cate

database accessible by the users.



3. User: A non-trusted party that receives its cer-

ti�cate from the CA, and issues queries for cer-

ti�cate information. A user may either query

the validity of other users' certi�cates (we de-

note users that query other users' certi�cates as

merchants) or, get a proof of the validity of his

certi�cate in order to present it with his certi�-

cate (for the latter, the proof must be transfer-

able).

The rest of this paper is organized as follows: In Sec-

tion 2 we brie
y review the solutions we are aware

of (CRL, CRS and CRT), memory checkers and in-

cremental cryptographic schemes. In Section 3 we

give some basic de�nitions and the theoretical back-

ground and restate the problem in terms of �nding

e�cient authenticated directories and, in particular,

authenticated search data structures. The proposed

scheme is described in detail in Section 4 and com-

pared with the other schemes in Section 5. Finally,

in Section 6, we consider a model in which a direc-

tory is not used for extracting certi�cates, and cer-

ti�cates are updated periodically. We show how a

simple modi�cation of our revocation scheme works

in this model.

2 Related work and background

In this section we review the solutions we are aware

of, namely Certi�cate Revocation List (CRL [20]),

Certi�cate Revocation System (CRS [18]) and Cer-

ti�cate Revocation Trees (CRT [16]). We con-

tinue by reviewing memory checkers, and incremen-

tal cryptographic schemes, relating these problems

to certi�cate revocation, these two sections are in-

cluded as theoretical background, and are not nec-

essary for understanding the rest of the paper.

2.1 Certi�cate Revocation List (CRL)

A CRL is a signed list issued by the CA identifying

all revoked certi�cates by their serial numbers. The

list is concatenated with a time stamp (as an indi-

cation of its freshness) and signed by the CA that

originally issued the certi�cates. The CRLs are sent

to the directory on a periodic basis, even if there are

no changes, to prevent the malicious replay of old

CRLs instead of new CRLs.

As an answer to a query, the directory supplies the

most updated CRL (the complete CRL is sent to

the merchant).

� The main advantage of the scheme is its sim-

plicity.

� The main disadvantage of the scheme is its high

directory-to-user communication costs (since

CRLs may get very long). Another disadvan-

tage is that a user may not hold a succinct proof

for the validity of his certi�cate.

A reasonable validity expiration period should be

chosen for certi�cates. If the expiration period is

short, resources are wasted reissuing certi�cates. If

the expiration period is long, the CRL may get long,

causing high communication costs and di�culties

in CRL management. Kaufman et al. [15, Section

7.7.3] suggested reissuing all certi�cates whenever

the CRL grows beyond some limit. In their pro-

posal, certi�cates are marked by a serial number

instead of an expiration date. (Serial numbers are

incremented for each issued certi�cate. Serial num-

bers are not reused even when all certi�cates are

reissued.) The CRL contains a �eld indicating the

�rst valid certi�cate. When all certi�cates are reis-

sued, the CRL �rst valid certi�cate �eld is updated

to contain the serial number of the �rst reissued cer-

ti�cate.

2.2 Certi�cate Revocation System

Micali [18] suggested the Certi�cate Revocation sys-

tem (CRS) in order to improve the CRL communi-

cation costs. The underlying idea is to sign a mes-

sage for every certi�cate stating whether it was re-

voked or not, and to use an o�-line/on-line signa-

ture scheme [11] to reduce the cost of periodically

updating these signatures.

To create a certi�cate, the CA associates with each

certi�cate two numbers (Y

365

and N ) that are signed

along with the `traditional' certi�cate data. For

each certi�cate, the CA chooses (pseudo)randomly

two numbers N

0

; Y

0

and computes (using a one-way

function f) Y

365

= f

365

(Y

0

) and N = f(N

0

). (Actu-

ally, a stronger assumption on f is required, e.g. that

f is one-way on its iterates, i.e. that given y = f

i

(x)

it is infeasible to �nd x

0

such that y = f(x

0

). This

is automatically guaranteed if f is a one-way per-

mutation.)

The directory is updated daily by the CA sending

it a number C for each certi�cate as follows:

1. For a non-revoked certi�cate the CA reveals one

application of f , i.e. C = Y

365�i

= f

365�i

(Y

0

),

where i is a daily incremented counter, i = 0

on the date of issue.

2. For a revoked certi�cate, C = N

0

.

Thus the most updated value for C serves as a short

proof (that certi�cate x was or was not revoked)



that the directory may present in reply to a user

query x.

� The advantage of CRS over CRL is in its query

communication costs. Based on Federal PKI

(Public Key Infrastructure) estimates, Micali

[18] showed that although the daily update of

the CRS is more expensive than a CRL update,

the cost of CRS querying is much lower. He

estimated the resulting in 900 fold improvement

in total communication costs over CRLs. The

exact parameters appear in Section 5.

Another advantage of CRS is that each user

may hold a succinct transferable proof of the

validity of his certi�cate. Directory accesses are

saved when users hold such proofs and presents

them along with their certi�cates.

� The main disadvantage of this system is the

increase in the CA-to-directory communication

(it is of the same magnitude as directory-to-

users communication, where the existence of a

directory is supposed to decrease the CA's com-

munication). Moreover, since the CA's com-

munication costs are proportional to the direc-

tory update rate, CA-to-directory communica-

tion costs limit the directory update rate.

The complexity of verifying that a certi�cate

was not revoked is also proportional to the up-

date rate. For example, for an update once an

hour, a user may have to apply the function, f ,

365� 24 = 8760 times in order to verify that a

certi�cate was not revoked, making it the dom-

inant factor in veri�cation.

The complexity of the Micali's method of verify-

ing a certi�cate may be improved as follows. Let h

be a collision intractable hash function. To issue a

certi�cate, the CA creates a binary hash tree as fol-

lows: The tree leaves are assigned (pseudo)random

values. Each internal node v is assigned the value

h(x

1

; x

2

) where x

1

; x

2

are the values assigned to v's

children. The CA signs the root value and gives it as

a part of the certi�cate, the other tree values (and

speci�cally the (pseudo)random values assigned to

its leaves are not revealed). To refresh a certi�cate

the ith time, the CA reveals values of the nodes on

the path from the root to leaf 2i and their children

(Thus, the veri�er can check that the nodes are as-

signed a correct. Note that it is not necessary to

explicitly give the values of the nodes on the path

since these values may be easily computed given the

other values). The path serves as a proof for the

certi�cate validity. Amortizing the number of tree

nodes the CA has to send the directory, we get that

four nodes are sent to update a user's certi�cate.

We make further use of the hash tree scheme in the

following sections.

2.3 Certi�cate Revocation Trees

Kocher [16] suggested the use of Certi�cate Revo-

cation Trees (CRT) in order to enable the veri�er

of a certi�cate to get a short proof that the certi�-

cate was not revoked. A CRT is a hash tree with

leaves corresponding to a set of statements about

certi�cate serial number X issued by a CA, CA

x

.

The set of statements is produced from the set of re-

voked certi�cates of every CA. It provides the infor-

mation whether a certi�cate X is revoked or not (or

whether its status is unknown to the CRT issuer).

There are two types of statements: specifying ranges

of unknown CAs, and, specifying certi�cates range

of which only the lower certi�cate is revoked. For

instance, if CA

1

revoked two certi�cates, X

1

< X

2

,

than one of the statements is:

if CA

x

= CA

1

and X

1

� X < X

2

then X is

revoked i� X = v

To produce the CRT, the CRT issuer builds a binary

hash tree [17] with leaves corresponding to the above

statements.

A proof for a certi�cate status is a path in the hash

tree, from the root to the appropriate leaf (state-

ment) specifying for each node on the path the val-

ues of its children.

� The main advantages of CRT over CRL are

that the entire CRL is not needed for verifying

a speci�c certi�cate and that a user may hold a

succinct proof of the validity of his certi�cate.

� The main disadvantage of CRT is in the compu-

tational work needed to update the CRT. Any

change in the set of revoked certi�cates may

result in re-computation of the entire CRT.

2.4 Checking the correctness of memo-

ries

Blum et al. [3] extended the notion of program

checking to programs which store and retrieve data

from unreliable memory. In their model, a data

structure resides in a large memory controlled by

an adversary. A program interacts with the data

structure via a checker. The checker may use only

a small reliable memory and is responsible for de-

tecting errors in the data structure behavior while



performing the requested operations. An error oc-

curs when a value returned by the data structure

does not agree with the corresponding value entered

into the data structure. Blum et al. showed how to

construct an online checker for RAMs using a vari-

ant of Merkle's hash-tree authentication scheme for

digital signatures [17]. They used universal one way

hash functions [19].

1

Certi�cate revocation may be regarded as a variant

of memory checking. As in memory checking, an

unreliable memory is used for storing and retriev-

ing data. The di�erence is that in memory check-

ing the same program writes into and reads from

memory via the checker, whereas in certi�cate revo-

cation there exist two distinct non-communicating

programs. One program (the CA) writes into an un-

reliable memory (the directory), the other (a user)

reads from the unreliable memory. The fact that the

two programs are disconnected raises the need for a

mechanism to prevent an adversary from replaying

old data.

Returning to memory checking, our solution may be

regarded as a checker for dictionaries.

2.5 Incremental cryptographic schemes

The high CA-to-directory communication in CRS is

due to the fact that the CA has to update values not

only for certi�cates whose status was changed since

the last update, but for all certi�cates. Since the

fraction of certi�cates that change status in every

update is expected to be small, it would be prefer-

able to use a scheme with communication (and com-

putational work) depending mostly on the number

of certi�cates that change status. Such issues are

addressed by incremental cryptography.

Incremental cryptography was introduced by Bel-

lare, Goldreich and Goldwasser [4, 5]. The goal of

incremental schemes is to quickly update the value

of a cryptographic primitive (e.g. hash function,

MAC etc.) when the underlying data is modi�ed.

Informally, for a given set of modi�cation operators

(e.g. insert, delete, replace), in an ideal incremental

scheme, the computational work needed for updat-

ing a value depends only on the number of data

modi�cations.

An ideal incremental authentication scheme based

on a 2-3 search tree was suggested in [5]. The

scheme is a modi�cation of a standard tree au-

thentication scheme [17] in order to allow e�cient

insert/delete block operations along with replace

1

Informally, U is a family of universal one way hash func-

tions if 8x, for f chosen at random from U , it is infeasible to

�nd y such that f(x) = f(y).

block operations. This scheme cannot be used di-

rectly for our problem, we modify it for our purposes

in Section 4.

3 Authenticated dictionaries

In this section we consider a more abstract version

of the problem and translate it to the problem of

�nding e�cient authenticated data structures. The

less theoretically inclined readers may skip directly

to Section 4 that presents a self-contained descrip-

tion of such a data structure.

Put in an abstract framework, the problem we

deal with is the following: �nd a protocol be-

tween a non-trusted prover, P , and a veri�er, V

for (non)membership in a set S, where S is some �-

nite set de�ned by a trusted party (the CA) but not

known to V . Given an input x, P should prove ei-

ther x 2 S or x 62 S, The trusted party may change

S dynamically, but it is assumed to be �xed while

P and V interact.

The prover has access to a data structure represent-

ing S along with some approved public information

about S, created by the trusted party prior to set-

ting x. The non-trusted prover should have an e�-

cient procedure for providing on-line a short proof

(e.g. of low order polynomial in jxj; log jSj) for the

appropriate claim for x.

3.1 De�nitions

Let U be a universe and S be a set such that S � U .

Let D

S

be a data structure representing S.

� A membership query is of the form hei. The

response to the query is a string hai where a 2

fYES,NOg, corresponding to e 2 S, e 62 S.

� An authenticated membership query is of the

form hei. The response to the query is a string

ha; pi where a 2 fYES,NOg and p is a proof for

a authenticated by a CA.

� Update operations are of the form

1. hInsert; ei where e is an element in U nS.

The resulting data structure D

S

0

repre-

sents the set S

0

= S [ feg.

2. hRemove; ei where e is an element in S.

The resulting data structure D

S

0

repre-

sents the set S

0

= S n feg.

De�nition 3.1 A dictionary is a data structure

D

S

representing S supporting membership queries

and update operations.



De�nition 3.2 An authenticated dictionary is a

data structure D

au

S

representing S supporting au-

thenticated membership queries and update opera-

tions.

In our model, the set S is known both to the CA

and the prover, P , but not to the veri�er, V . The

CA controls S and supplies P with the information

needed to create an authenticated dictionary repre-

senting S.

Since an authenticated dictionary is dynamic, a

mechanism for proving that an authenticated proof

is updated is needed. Otherwise, a dishonest direc-

tory may replay old proofs. In our model we may

assume either that CA updates occur at predeter-

mined times, or, that the user issuing a query knows

when the most recent update occurred. In any case,

the veri�er should be able to check the freshness of

a proof p.

The parameters we are interested in regarding au-

thenticated dictionaries are:

� Computational complexity:

1. The time and space needed to authenti-

cate the dictionary, i.e. creating and up-

dating it.

2. The time needed to perform an authenti-

cated membership query.

3. The time needed to verify the answer to

an authenticated membership query.

� Communication complexity:

1. The amount of communication (CA to

prover) needed to update the dictionary.

2. The length of a proof p for an authenti-

cated membership query.

3.2 Implementing authenticated dictio-

naries

For a small universe U , one can a�ord computa-

tional work proportional to jU j. There are two triv-

ial extremes with respect to the number of signed

messages, the computation needed in authentication

and veri�cation, and the prover to veri�er commu-

nication complexity:

� For every e 2 U the CA signs the appropriate

message e 2 U or e 62 U . To update D

s

, jU j

signatures are supplied, regardless the number

of changed elements in D

S

. An example of this

solution is the certi�cate revocation system re-

viewed in Section 2.2.

� The CA signs a message M = �

1

; �

2

; : : : ; �

jUj

where for every u

i

2 U , �

i

indicates whether

u

i

2 S.

If S is expected to be small, two simple solutions

are:

� The CA signs intervals of elements not in S.

Such an interval is a pair (s

1

; s

2

) satisfying s 62

S for all s

1

� s � s

2

.

� The CA signs a message M containing a list

of every s 2 S. An example is the certi�cate

revocation lists reviewed in Section 2.1.

In all the solutions above, the messages are signed

by the CA and include the time of update.

In the following we describe a generic method

for creating an authenticated dictionary D

au

S

from

a dictionary D

S

. The overhead in membership

queries and update operations is roughly a factor

of log jD

S

j. In this construction we use a collision

intractable hash function.

De�nition 3.3 A collision intractable hash func-

tion is a function h() such that it is computationally

infeasible to �nd y 6= x satisfying h(x) = h(y).

Let D

S

be a dictionary of size jD

S

j representing a

set S. Let T

q

; T

u

be the worst case time needed to a

compute membership query or an update operation

respectively.

Let h be a collision intractable hash function, and

T

h

be the time needed to compute h on instances of

U . Consider the representation D

S

= (�

1

; �

2

; : : :) of

S. This may be e.g. a list of all the variables' values

composingD

S

, or, the wayD

S

is represented in ran-

dom access memory. The authenticated dictionary

D

au

S

contains D

S

plus a hash tree [17] whose nodes

correspond to �

1

; �

2

; : : :, and a message signed by

the CA containing the tree root value and the time

of update.

The hash tree is constructed as follows: A balanced

binary tree is created whose leaves are assigned the

values �

1

; �

2

; : : :. Each internal node v is then as-

signed a value h(x

1

; x

2

) where x

1

; x

2

are the values

assigned to v's children.

� A membership query is translated to an au-

thenticated membership query by supplying a

proof for every item �

i

of D

S

accessed in the

computation. The proof consists of the values

of all the nodes on the path from the root to

position i and their children. The complexity

of an authenticated membership query is thus

O(T

q

� T

h

� log jD

S

j).



� After an update, the portion of the hash tree

corresponding to elements �

i

that were changed

is re-computed (i.e. all paths from a changed

element �

i

to the root). The complexity of an

update operation is thus O(T

u

� T

h

� log jD

S

j).

3.3 Authenticated search data struc-

tures

The general method of Section 3.2 for creating dic-

tionaries has a logarithmic (in jD

s

j) multiplicative

factor overhead. The reason is that the internal

structure of D

S

was not exploited in the authen-

tication/veri�cation processes.

Our goal is to create authenticated dictionaries

based on e�cient search data structures that save

the logarithmic factor overhead. We denote these

as authenticated search data structures.

CRTs reviewed in Section 2.3 save this logarithmic

factor in membership query complexity (but not in

update where the amount of computational work is

not a function of the number of changes but of the

size of the revocation list). In Section 4.1 we show

how to create authenticated search data structures

based on search trees. An interesting open ques-

tion is how to construct more e�cient authenticated

search data structures, e.g. based on hash tables,

where membership query is processed in roughly

O(1).

4 The proposed scheme

The proposed scheme is closer in spirit to CRL and

CRT than to CRS, since it maintains a list of only

the revoked certi�cates. It reduces the CA's com-

munication and actually makes it feasible to update

the directory periodically many times a day, achiev-

ing a very �ne update granularity. The revoked cer-

ti�cates list is maintained in an authenticated search

data structure. The bene�ts of this construction

are:

1. It is easy to check and prove whether a certain

certi�cate serial number is in the list or not,

without sending the complete list.

2. List update communication costs are low.

The underlying idea is to imitate a search in a data

structure constructing a proof for the result during

the search. For that, we combine a hash tree scheme

(as in [17]) with a sort tree, such that tree leaves cor-

respond to revoked certi�cates, sorted according to

their serial numbers. Both proving that a certi�-

cate is revoked and that a certi�cate is not revoked

reduce to proving the existence of certain leaves in

the tree:

� Proving that a certi�cate was revoked is equiv-

alent to proving the existence of a leaf corre-

sponding to it.

� Proving that a certi�cate was not revoked

is equivalent to proving the existence of two

certi�cates corresponding to two neighboring

leaves in the tree. One of these certi�cates has

a lower serial number than the queried certi�-

cate, and the other has a higher serial number.

(We modify this to a proof of the existence of

a single leaf at the end of this section.)

4.1 An authenticated search data struc-

ture

We maintain a 2-3 tree with leaves corresponding to

the revoked certi�cates' serial numbers in increasing

order. (In a 2-3 tree every interior node has two or

three children and the paths from root to leaves have

the same length. Testing membership, inserting and

deleting a single element are done in logarithmic

time, where the inserting and deleting of an element

a�ect only the nodes on the insertion/deletion path.

For a detailed presentation of 2-3 trees see [1, pp.

169-180].) The property of 2-3 trees that we use is

that membership queries, insertions and deletions

involve only changes to nodes on a search path. I.e.

every change is local and the number of a�ected

paths is small.

The tree may be created either by inserting the se-

rial numbers of the revoked certi�cates one by one

into an initially empty 2-3 tree, or, by sorting the list

of serial numbers and building a degree 2 tree with

leaves corresponding to the serial numbers in the

sorted list (because the communication complexity

is minimal when the tree is of degree 2).

Every tree node is assigned a value according to the

following procedure:

� Each leaf stores a revoked certi�cate serial num-

ber as its value.

� The value of an internal node is computed by

applying a collision intractable hash function

h() to the values of its children.

The tree update procedure is as follows:

1. Delete each expired certi�cate serial number

from the 2-3 tree, updating the values of the

nodes on the deletion path.



2. Insert each newly revoked certi�cate serial

number into the tree, updating the values of

the nodes on the insertion path.

During tree update some new nodes may be created

or some nodes may be deleted due to the balancing

of the 2-3 tree. These nodes occur only on the search

path for an inserted/deleted node.

The certi�cation authority vouches for the authen-

ticity of the data structure by signing a message

containing the tree root value and the tree height.

A proof that there exists a leaf in the tree with a

certain value consists of all node values on a path

(of length equal to the tree height) from the root to

a leaf, plus the values of these nodes children. The

proof is veri�ed by checking the values of the tree

nodes values on the given path and its length. Find-

ing a fallacious proof for the existence of a leaf in the

tree amounts to breaking the collision intractability

of h.

Remark 4.1 Possible choices for h include the

more e�cient MD4 [22], MD5 [23] or SHA [21]

(collisions for MD4 and for the compress function

of MD5 were found by Dobbertin [9, 10]) and func-

tions based on a computational hardness assumption

such as the hardness of discrete log [8, 7, 4]

2

and

subset-sum [14, 12] (these are much less e�cient).

Remark 4.2 Note that an explicit serial number is

not needed. Instead, any string that is easily com-

puted from the certi�cate (e.g. hash of the certi�-

cate) may be used.

Remark 4.3 It is possible to use a family of uni-

versal one-way hash functions, U , instead of colli-

sion intractable hash functions by letting every in-

ternal node, v, hold also an index of a function

h 2 U . The function h is randomly chosen when-

ever v lies in a deletion or insertion path. The value

of a node is computed by applying h to the values of

its children concatenated with their hash function

indices. A motivation for using universal one-way

hash functions instead of collision intractable hash

functions is the successful attacks on MD4 and MD5

[9, 10]. Since universal one-way hash functions are

not susceptible to birthday attacks, their application

may result in a smaller increase in communication

and storage costs with respect to collision intractable

functions. Bellare and Rogaway [6] discuss methods

for creating practical universal one-way hash func-

tions.

2

The function is h(x

1

; x

2

; x

3

) = g

x

1

1

g

x

2

2

g

x

3

3

(mod p). Let

g be a generator in ZZ

p

, the CA may generate g

i

= g

a

i

and compute h using a single exponentiation by h =

g

P

a

i

x

i

(mod p�1)

(mod p).

Remark 4.4 The scheme may be used also for on-

line revocation checking of certi�cates (where the la-

tency between certi�cate revocation and CRL update

is reduced). As the result of a query, the on-line

service is supposed to return the current certi�cate

status.

In general, on-line revocation checking requires the

certi�cate validator to be trusted (where in o�-line

checking, the directory could be a non-trusted party).

In practice, it is enough that the certi�cate valida-

tor honestly informs a user about the last time it

was updated by the CA (and may be dishonest with

respect to other information). then it is not needed

for the CA to update it only on predetermined times,

and the CA may update the directory whenever the

status of a certi�cate is changed. Even if such an

assumption is not plausible, the CA may use the au-

thenticated search data structure to reduce the num-

ber of signatures it has to compute, since a signature

has to be computed only when a certi�cate status is

changed and not for every query.

4.1.1 Other data structures

For a simpler implementation of the authenticated

data structure, random treaps [2] may be used in-

stead of 2-3 trees. Treaps are binary trees whose

nodes are associated with (key, priority) pairs. The

tree is a binary search tree with respect to node keys

(i.e. for every node the keys in its left (resp. right)

subtrees are small (resp. greater) than its key), and

a heap with respect to node priorities (i.e. for ev-

ery node its priority is higher than its descendents'

priorities). Every �nite set of (key, priority) pairs

has a unique representation as a treap. In random

treaps, priorities are drawn at random from a large

enough ordered set (thus, they are assumed to be

distinct).

Seidel and Aragon [2] present simple algorithms for

membership queries, insert and delete operations

with expected time complexity logarithmic in the

size of the set S stored in the treap. Random treaps

may be easily converted into authenticated search

data structures similarly to 2-3 trees. The commu-

nication costs of these schemes is similar since the

expected depth of a random treap is similar to its

2-3 tree counterpart.

� The main advantage of random treaps is that

their implementation is much more simple than

the implementation of 2-3 trees.

� A drawback of using random treaps is that their

performance is not guaranteed in worst case.



E.g. some users may (with low probability) get

long authentication paths.

� Another drawback is that a stronger assump-

tion is needed with respect to the directory.

The analysis of random treaps is based on the

fact that the adversary does not know the exact

representation of a treap. A dishonest directory

with ability to change the status of certi�cates

may increase the computational work and com-

munication costs of the system.

4.2 The scheme

We now give details for the operations of the three

parties in the system.

CA operations:

� Creating certi�cates: The CA produces a

certi�cate by signing a message containing cer-

ti�cate data (e.g. user name and public key),

certi�cate serial number and expiration date.

� Initialization: The CA creates the 2-3 tree,

as above, for the set of initially revoked certi�-

cates. It computes and stores the values of all

the tree nodes and sends to the directory the

(sorted) list of revoked certi�cates serial num-

bers along with a signed message containing

the tree root value, the tree height and a time

stamp.

� Updating: The CA updates the tree by in-

serting/deleting certi�cates from it. After each

insertion/deletion, all a�ected tree node values

are re-computed. To update the directory, the

CA sends a di�erence list (stating which cer-

ti�cates are to be added/deleted from the pre-

vious list) to the directory plus a signature on

the new root value, tree height and time stamp.

Directory operations:

� Initialization: Upon receiving the initial re-

voked certi�cates list, the directory computes

by itself the whole 2-3 tree, checks the root

value, tree height and time stamp, and veri�es

the CA's signature on these values.

� Response to CA's update: The directory

updates the tree according to the di�erence list

received from the CA. It re-computes the values

for all the a�ected nodes and checks the root

value, tree height and time stamp.

� Response to users' queries: To answer a

user query the directory supplies the user with

the signed root value, tree height and time

stamp.

1. If the queried certi�cate is revoked, for

each node in the path from the root to

the leaf corresponding to the queried cer-

ti�cate, the directory supplies the user its

value and its children values.

2. If the queried certi�cate is not revoked

(not in the list), the directory supplies the

user the paths to two neighboring leaves

`

1

; `

2

such that the value of `

1

(resp. `

2

)

is smaller (resp. larger) than the queried

serial number.

Note that to reduce the communication costs,

the directory need not send the node values on

the path from root, but only the values of the

siblings of these nodes, since the user may com-

pute them by itself.

User operations:

The user �rst veri�es the CA's signature on the cer-

ti�cate and checks the certi�cate expiration date.

Then, the user issues a query by sending the direc-

tory the certi�cate serial number s. Upon receiving

the directory's answer to a query, the user veri�es

the CA's signature on the root value, tree height

and time stamp.

1. If the directory claims the queried certi�cate is

revoked, the user checks the leaf to root path

supplied by the directory by applying the hash

function h.

2. If the directory claims the queried certi�cate

is not revoked, the user checks the two paths

supplied by the directory and checks that they

lead to two adjacent leaves in the 2-3 tree, with

values `

1

; `

2

The user checks that `

1

< s < `

2

.

In the above scheme, the communication costs of

verifying that a certi�cate was not revoked may be

twice the communication costs of verifying that a

certi�cate is in the list. To overcome this, the tree

may be built such that every node corresponds to

two consecutive serial numbers { thus having to send

only one path in either case. Since the number of

bits needed for holding the value of a tree node, i.e.

the hash function security parameter (`

hash

in the

notation below) is more than twice the bits needed

for holding a certi�cate serial number, this does not

in
uence the tree size.



5 Evaluation

The CA-to-directory communication costs of our

scheme are optimal (proportional to the number of

changes in the revocation list), enabling high up-

date rates. The proof supplied by the directory is

of length logarithmic in the number of revoked cer-

ti�cates. This allows the user to hold a short trans-

ferable proof of the validity of his certi�cate and

present it with his certi�cate (This proof may be

e�ciently updated, we will make use of this feature

in the certi�cate update scheme of Section 6).

In the following, we compare the communication

costs of CRL, CRS and our system (the commu-

nication costs of CRT are similar to ours). Basing

on this analysis, we show that the proposed system

is more robust to changes in parameters, and allows

higher update rates than the other.

Other advantages of the proposed scheme are:

� The CA has to keep a smaller secret than in

CRS.

� Since CA-to-directory communication is low,

the CA may communicate with the direc-

tory using a slow communication line secured

against breaking into the CA's computer (the

system security is based on the ability to pro-

tect the CA's secrets).

� Since we base our scheme on a 2-3 tree, there

is never a need to re-compute the entire tree to

update it. This allows higher update rates than

CRT.

� Another consequence of the low CA-to-

directory communication is that a CA may up-

date many directories, avoiding bottlenecks in

the communication network.

5.1 Communication costs

The parameters we consider are:

� n - Estimated total number of certi�cates (n =

3; 000; 000).

� k - Estimated average number of certi�cates

handled by a CA (k = 30; 000).

� p - Estimated fraction of certi�cates that will

be revoked prior to their expiration (p = 0:1).

(We assume that certi�cates are issued for one

year, thus, the number of certi�cates revoked

daily is

n�p

365

.)

� q - Estimated number of certi�cate status

queries issued per day (q = 3; 000; 000).

� T - Number of updates per day (T = 1).

� `

sn

- Number of bits needed to hold a certi�cate

serial number (`

sn

= 20).

� `

stat

- Number of bits needed to hold the cer-

ti�cate revocation status numbers Y

365�i

and

N

0

(`

stat

= 100).

� `

sig

- Length of signature (`

sig

= 1; 000).

� `

hash

- Security parameter for the hash function

(`

hash

= 128).

Values for n; k; p; q; T; `

sn

; `

stat

are taken from Mi-

cali [18], `

sig

and `

hash

are speci�c to our scheme.

CRL costs

� The CRL daily update cost is T �n�p�`

sn

since

each CA sends the whole CRL to the direc-

tory in each update. An alternative update

procedure where the CA sends to the direc-

tory only a di�erence list (which serial numbers

to add/remove from the previous CRL) costs

n�p�`

sn

365

.

� The CRL daily query cost is q�p�k�`

sn

since for

every query the directory sends the whole CRL

to the querying user.

CRS costs:

� The CRS daily update cost is T �n � (`

sn

+`

stat

)

since for every certi�cate the CA sends `

stat

bits of certi�cate revocation status.

� The CRS daily query cost is `

stat

� q.

The proposed scheme:

� To update the directory, the CA sends di�er-

ence lists of total daily length of

n�p�`

sn

365

+T �`

sig

.

� To answer a user's query, the directory sends

up to 2 � log

2

(p � k) numbers, each `

hash

bits

long, totaling 2�q �`

hash

�log

2

(p�k) bits.

The following table shows the estimated daily com-

munication costs (in bits) according to the three

schemes.

CRL CRS Proposed

costs costs scheme

Daily update 6 � 10

6

3:6 � 10

8

1:7 � 10

4

(CA-directory)

Daily queries 1:8 � 10

11

3 � 10

8

7 � 10

9

(Directory-users)



As shown in the table, the proposed scheme costs are

lower than CRL costs both in CA-to-directory and

in directory-to-users communication. The CA-to-

directory costs are much lower than the correspond-

ing CRS costs but, the directory-to-user (and thus

the over all) communication costs are increased.

Note that in practice, due to communication over-

heads, the di�erence between CRS and the proposed

method in Directory-to-users communication may

be insigni�cant.

5.2 Robustness to changes

Our scheme is more robust to changes in parame-

ters than CRL and CRS. Since these are bound to

change in time or due to the speci�c needs of dif-

ferent implementations, it is important to have a

system that is robust to such changes.

Changes will occur mainly in the total number of

certi�cates (n) and the update rate (T ). In the pro-

posed method, changes in n are moderated by a

factor of p. Changes in T are moderated by the fact

that the update communication costs are not pro-

portional to nT but to T . Figure 1 shows how the

CA-to-directory update communication costs of the

three methods depend on the update rate (all other

parameters are held constant). The update commu-

nication costs limit CRS to about one update a day

(Another factor that limits the update rate is the

amount of computation needed by a user in order

to verify that a certi�cate was not revoked). The

proposed method is much more robust, even allow-

ing once per hour updates.

CRL            

CRS            

proposed scheme

0 5 10 15 20 25
10

4

10
5

10
6

10
7

10
8

10
9

10
10

update rate [updates/day]

da
ily

 u
pd

at
e 

co
st

s 
[b

its
]

Figure 1: Daily CA-to-directory update costs vs.

update rate.

6 A certi�cate update scheme

Some protocols avoid the need for a revocation sys-

tem by using short-term certi�cates. (e.g. micropay-

ments protocols when a certi�cate owner may cause

a limited damage [13]). These certi�cates are issued

daily and expire at the end of the day of issue. Actu-

ally, even shorter periods are desired and the main

limit is due to the increase in the certi�cation au-

thority computation (certi�cates for all users have

to be computed daily) and communication (certi�-

cates should be sent to their owners) short-term cer-

ti�cates cause.

An on-line/o�-line digital signature scheme (like

CRS) will reduce the computation the CA has to

perform, but, it will not reduce signi�cantly the

communication costs, since the CA has to send dif-

ferent messages to di�erent users, making the CA a

communication bottleneck. This calls for a solution

where the CA performs a simple computation (say,

concerning only new users and users whose certi�-

cates are not renewed) and sends a common update

message to all users. Using this message, exactly all

users with non-revoked certi�cates should be able to

prove the validity of their certi�cates.

We suggest a simple modi�cation of our certi�cate

revocation scheme that yields an e�cient certi�cate

update scheme in which the CA sends the same up-

date message to all users. In this solution we do

not assume the existence of a directory with infor-

mation about all certi�cates, but of local directories

that may hold the latest messages that were sent by

the directory.

6.1 The scheme

As before, the scheme is based on a tree of revoked

certi�cates created by the certi�cation authority,

presented in Section 4.1. Since there is no way to

extract certi�cates from a directory, every user gets

an initial certi�cate that may be updated using the

CA's messages. Speci�cally, the CA augments every

issued certi�cate with the path proving its validity,

this is the only part of the certi�cate that is updated

periodically.

To update all certi�cates simultaneously, the CA

updates its copy of the tree, and publishes the tree

paths that where changed since the previous update.

Every user holding a non-revoked certi�cate locates

the lowest node, v, on a path that coincides with his

path, and updates his path by copying the new node

values from v up to the root. All users holding a

revoked certi�cate can not update their path, unless

a collision is found for the hash function h.



The information sent by the CA is optimal (up to a

factor of `

hash

). For r insertions/deletions since the

previous update, the CA has to publish a message

of length r`

hash

logn bits.

Since the CA communication is reduced, one may

use this update scheme for, say, updating certi�-

cates once every hour. This may cause some users

to lag in updating their certi�cates, and the local

directories should save several latest update mes-

sages, and some aggregate updates (combining up-

date messages of a day) enabling uses that lag sev-

eral days to update their certi�cates.

Acknowledgments

We thank Omer Reingold for many helpful discus-

sions and for his diligent reading of the paper. We

thank the anonymous referees for their helpful com-

ments.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman. \Data

Structures and Algorithms". Addison-Wesley,

1983.

[2] R.G. Seidel., C.R. Aragon \Randomized Search

Trees". Proc. 30th Annual IEEE Symp. on

Foundations of Computer Science, pp. 540-545,

1989.

[3] M. Blum, W. Evans, P. Gemmell, S. Kan-

nan, M. Naor. \Checking the Correctness of

Memories". Algorithmica Vol.12 pp. 225-244,

Springer-Verlag, 1994.

[4] M. Bellare, O. Goldreich, S. Goldwasser. \In-

cremental Cryptography: The Case of Hashing

and Signing". Advances in Cryptology - Crypto

94. Ed. Y. Desmedt. Lecture Notes in Com-

puter Science 839, Springer-Verlag, 1994.

[5] M. Bellare, O. Goldreich, S. Goldwasser. \In-

cremental Cryptography and Application to

Virus Protection". Proc. 27th ACS Symp. on

Theory of Computing, 1995.

[6] M. Bellare, P. Rogaway. \Collision-Resistant

Hashing: Towards Making UOWHFs Practi-

cal". Advances in Cryptology - CRYPTO '97,

Lecture Notes in Computer Science, Springer-

Verlag, 1997.

[7] S. Brands. \An e�cient o�-line electronic cash

system based on the representation problem".

CWI Technical Report, CS-R9323, 1993.

[8] D. Chaum, E. van Heijst and B. P�tzmann.

\Cryptographically strong undeniable signa-

tures, unconditionally secure for the signer".

Advances in Cryptology - CRYPTO '91, Lec-

ture Notes in Computer Science 576, Springer-

Verlag, 1992, pp. 470-484.

[9] H. Dobbertin. \Cryptanalysis of MD4". D.

Gollmannn, Ed. Fast Software Encryption, 3rd

international workshop. Lecture Notes in Com-

puter Science 1039, Springer-Verlag, pp. 53-69,

1996.

[10] H. Dobbertin. \Cryptanalysis of MD5". Rump

session, Eurocrypt 1996.

http://www.iacr.org/conferences/ec96

/rump/index.html

[11] S. Even, O. Goldreich, S. Micali. \On-Line/O�-

Line Digital Signatures". Journal of Cryptol-

ogy, Springer-Verlag, Vol. 9 pp. 35-67, 1996.

[12] O. Goldreich, S. Goldwasser, and S. Halevi.

\Collision-Free Hashing from Lattice Prob-

lems". ECCC, TR96-042, 1996.

http://www.eccc.uni-trier.de/eccc/

[13] A. Herzberg, H. Yochai. \Mini-Pay: Charging

per Click on the Web". Proc. 6th International

World Wide Web Conference, 1997.

http://www6.nttlabs.com/

[14] R. Impagliazzo, M. Naor. \E�cient Crypto-

graphic Schemes Provably as Secure as Subset

Sum". Journal of Cryptology, Springer-Verlag,

Vol. 9 pp. 199-216, 1996.

[15] C. Kaufman, R. Perlman, M. Speciner. \Net-

work Security. Private Communication in a

Public World". Prentice Hall series in network-

ing and distributed systems, 1995.

[16] P. Kocher. \A Quick Introduction to Certi�-

cate Revocation Trees (CRTs)".

http://www.valicert.com/company/crt.html

[17] R. C. Merkle. \A Certi�ed Digital Signa-

ture". Proc. Crypto '89, Lecture Notes in

Computer Science 435, pp. 234-246, Springer-

Verlag, 1989.

[18] S. Micali. \E�cient Certi�cate revocation".

Technical Memo MIT/LCS/TM-542b, 1996.



[19] M. Naor, M. Yung. \Universal one-way hash

functions and their cryptographic applica-

tions". Proc. 21st ACM Symp. on Theory of

Computing, pp. 33-43, 1989.

[20] U.S. National Institute of Standards and Tech-

nology. \A Public Key Infrastructure for U.S.

Government unclassi�ed but Sensitive Applica-

tions". September 1995.

[21] U.S. National Institute of Standards and Tech-

nology. \Secure Hash Standard". Federal Infor-

mation Processing Standards Publication 180,

1993.

[22] R. Rivest. \The MD4 message-digest algo-

rithm". Internet RFC 1320, 1992.

[23] R. Rivest \The MD5 message-digest algo-

rithm". Internet RFC 1321, 1992.


