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Abstract

We study compression that preserves thesolutionto an instance of a problem rather than preserving
the instance itself. Our focus is on the compressibility ofNP decision problems. We considerNP
problems that have long instances but relatively short witnesses. The question is, whether one can effi-
ciently compress an instance and store a shorter representation that maintains the information of whether
the original input is in the language or not. We want the length of the compressed instance to be polyno-
mial in the length of thewitnessand polylog in the length of original input. We discuss the differences
between this notion and similar notions from parameterized complexity. Such compression enables
succinctly storing instances until a future setting will allow solving them, either via a technological or
algorithmic breakthrough or simply until enough time has elapsed.

We give a new classification ofNP with respect to compression. This classification forms a strati-
fication ofNP that we call theVC hierarchy. The hierarchy is based on a new type of reduction called
W-reduction and there are compression-complete problems for each class.

Our motivation for studying this issue stems from the vast cryptographic implications of compress-
ibility. We describe these applications, for example, based on thecompressibility of SAT. We say that
SAT is compressible if there exists a polynomialp(·, ·) so that given a formula consisting ofm clauses
over n variables it is possible to come up with an equivalent (w.r.t satisfiability) formula of size at
mostp(n, log m). Then given a compression algorithm for SAT we provide a construction of collision-
resistant hash functions fromanyone-way function. This task was shown to be impossible via black-box
reductions [77], and indeed our construction is inherently non-black-box. A second application of a
compression algorithm for SAT is a construction of a one-way function from any samplable distribution
of NP instances that is hard on the average. Using the terminology of Impagliazzo [49], this would
imply thatPessiland=Minicrypt . Another application of SAT compressibility is a cryptanalytic
result concerning the limitation of everlasting security in the bounded storage model when mixed with
(time) complexity based cryptography. In addition, we study an approach to constructing an Oblivious
Transfer Protocol fromanyone-way function. This approach is based on compression for SAT that also
has a property that we callwitness-retrievability. However, we manage to prove severe limitations on
the ability to achieve witness-retrievable compression of SAT.

1 Introduction

In order to deal with difficult computational problems several well-established options were developed,
including: approximation algorithms, subexponential algorithms, parametric complexity and average-case
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complexity. In this paper we explore our favorite approach for dealing with problems:postponethem (hope-
fully without cluttering our desk or disk). We initiate the study of the compressibility ofNP problems for
their resolution in some future setting and in particular the cryptographic significance of such compres-
sion. Rather than solving a given instance, we ask whether a shorter instance with the same solution can be
found efficiently. We emphasize that we are not interested in maintaining the information about the original
instance (as is the case in typical notions of compression), but rather maintaining the solution only. The
solution can possibly be much shorter than the input (as short as a yes/no answer), thus the potential of such
a compression is high.

While the question of compressibility is interesting with respect to problems both inside and out ofNP,
our focus is mostly on a special case, that ofNP problems that have long instances but relatively short
witnesses. AnNP languageL is defined by an efficiently computable relationRL such that an input (or
instance)x is in L if and only if there exists a witnessw such thatRL(x, w) = 1. Throughout the paper,
anNP instance is characterized by two parametersm andn: The length of the instancex is denoted by
m and the length of the witnessw is denoted byn. The problems of interest are those having relatively
short witnesses, i.e.n � m, but not too short (m � 2n). Traditionally, the study ofNP languages evolves
around the ability or inability to efficiently decide if an instance is in the language or not, or to find a witness
w for an instancex ∈ L within polynomial time. We introduce the question of compressibility of such
instances.

Example of Compressing SAT Instances: To illustrate the relevant setting, we use the well known exam-
ple of SAT. An instanceΦ for SAT consists of a CNF formula overn variables and we define thatΦ ∈ SAT
if there exists an assignment to then variables that satisfies all the clauses ofΦ. We begin with compress-
ibility with respect to decision, and discuss the search variant of compressibility later in the paper. In this
example we consider the question of compressibility of SAT instances to shorter SAT instances1:

Example 1.1 (Compression of SAT instances)
Does there exist an efficient algorithm and a polynomialp(·, ·) with the following input and output?
Input: A CNF formulaΦ with m clauses overn variables.
Output: A formulaΨ of sizep(n, log m) such thatΨ is satisfiable if and only ifΦ is satisfiable.

The idea is that the length ofΨ should not be related to the original lengthm, but rather to the number
of variables (or in other words, to the size of the witness). Typically, we think of the parametersm andn as
related by some function, and it is instructive (but not essential) to think ofm as larger than any polynomial
in n. So potentially, the length ofΨ can be significantly shorter than that ofΦ.2

In general, one cannot expect to compress all the formulas, or else we would have an efficient algorithm
for all NP problems.3 However, once we restrict the attention to the case of a shorter witness, then com-
pression becomes plausible. Note that ifP = NP then compression becomes trivial, simply by solving the
satisfiability ofΦ and outputting1 if Φ ∈ SAT and0 otherwise.

Motivation for Compression: Compressing for the future is an appealing notion for various settings.
There are numerous plausible scenarios that will give us more power to solve problems in the future. We

1This example comes only as an illustration. We later consider the more general question of compression to instances that are
not necessarily of the same language.

2Note that since our requirement for compression is only relevant for problems wherem � n, anNP-complete problem such
as 3-SAT (where all clauses have exactly 3 literals) is irrelevant for compression asm is already at mostO(n3) in such formulas.

3Suppose that every formula can be compressed by a single bit, then sequentially reapplying compression to the input will result
in a very short formula that may be solved by brute enumeration.
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could potentially find out thatP = NP and solve all ourNP problems then. We may have faster com-
puters or better means of computing such as quantum computers or some other physical method for solving
problems (see Aaronson [1] for a list of suggestions). Above all, the future entails lots and lots of time, a
resource that is usually scarce in the present. Saving the problems of today as they are presented is wasteful,
and compression of problems will allow us to store a far greater number of problems for better days.

Our interest in studying the issue of compression stems from the vast cryptographic implications of
compressibility. We demonstrate three questions in cryptography that compression algorithms would re-
solve (see Section 1.3). We are confident that the notion of compressibility will be found to have further
applications both within and outside of cryptography. For example, in subsequent works, Dubrov and Ishai
[26] show the relevance of the notion of compression to derandomization and Dziembowski [28] shows that
compression is related to the study of forward-secure storage (see Section 1.4 on related work). We note
that a notion similar to compression has been useful (and well studied) in the context of parameterized com-
plexity (see a comparison and discussion in Section 1.4). The concept of compression of problems is also
interesting beyond the confines ofNP problems, and makes sense in any setting where the compression
requires much less resources than the actual solution of the problem.

1.1 Compression of NP instances

We define the notion of compression with respect to anNP languageL. We associate withL a specific
fixedNP relationRL that defines it (as mentioned above) as well as a functionn(x) that defines an upper
bound on the length of a potential witness for an instancex.4 At times, for simplicity, we abuse notations
and simply refer to the languageL and omit the reference to the underlying relationRL. In essence, a
compression algorithm is a specialized Karp-reduction that also reduces the length of the instance.

Definition 1.2 (Compression Algorithm forNP Instances) Let L = (RL, n(·)) be anNP language.
Denote bym andn the instance length and the witness length respectively. Acompression algorithmfor L
is a polynomial-time machineZ along with a languageL′ and a polynomialp(·, ·) such that for all large
enoughm:

1. For all x ∈ {0, 1}m with parametern the length ofZ(x) is at mostp(n, log m).

2. Z(x) ∈ L′ if and only ifx ∈ L

The above definition is of anerrorlesscompression. We also consider a probabilistic variant calledε-
compressionfor some real functionε : N → [0, 1]. The probabilistic definition is identical to the errorless
one except thatZ is a probabilistic polynomial-time machine and the second property is augmented to:

2’. For large enoughn, for all x ∈ {0, 1}m with parametern it holds that:

Pr[(Z(x) ∈ L′) ⇔ (x ∈ L)] ≥ 1− ε(n)

where probability is over the internal randomness ofZ. By default we requireε(·) to be negligible (i.e.,
ε(n) = n−ω(1)).5

The paper consists of two parts:Part I is a study of the concept of compression ofNP instances from a
complexity point of view.Part II introduces the cryptographic applications of compression algorithms.

4Typically, the lengthn is part of the description of the problem (e.g. for Clique, SAT, Vertex cover and others).
5Note that we can equivalently ask that the error be, say,ε = 1

3
. This is because the error can be reduced to negligible, albeit at

the price of a worst compression rate (the polynomialp(·, ·) grows). See Claim 2.24.
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How much to compress: Definition 1.2 (of compression algorithms) requires a very strong compression,
asking that the length of the compression be polynomial inn andlog m. For the purposes of part I of the
paper (the complexity study), it is essential that the length of the compression be at least sub-polynomial inm
in order to ensure that the reductions defined with respect to compressibility (See Section 2.2) do compose.
For clarity we choose a polynomial inlog m, although this may be replaced by any sub-polynomial function
m′(.) (i.e.,m′ = mo(1)). We note that in many natural cases one can assume thatn ≥ log m and then one
can replace the polynomialp(n, log m) in Definition 1.2 by a polynomial inn alone (in Sections 1.4 and 2.1
we compare this definition to the notion ofpolynomial kernelization). However, we choose not to restrict
the scope of our discussion by making this assumption. Moreover, for part II (the applications) Definition
1.2 may be significantly relaxed, where even a compression to lengthm1−ε for some constantε suffices for
some applications.

The Complexity of L′: In Definition 1.2 there is no restriction on the complexity of the languageL′. All
that is required is that there is enough information inZ(x) to determine whetherx ∈ L or not. However, it is
worth noting that if the compression is errorless then the languageL′ must be in a class of nondeterministic-
time poly(m) that we denoteNP(poly(m)). That is, languages that are verifiable in timepoly(m) when
given a non-deterministic hint (in order forpoly(m) to be well defined we assume that the parameterm is
also encoded in the instanceZ(x)). This fact follows simply from the definition of compression.6 In some
cases it is essential to restrictL′ to be inNP(poly(m)), such as when defining the witness-retrievability
property (Definition 1.6). Moreover, in some cases it is natural to further restrictL′ to actually be inNP
(that is inNP(poly(n, log m)). For instance, this is the case in the example for compression of SAT
(Example 1.1).

Paper organization: In the rest of the introduction we survey the results of this paper, including part I
(the complexity study) and part II (the cryptographic applications). In section 1.4 we discuss related and
subsequent works. The main complexity study of the compressibility ofNP problems appears in Section
2. The Cryptographic applications are in Sections 3,5 and 6. In Section 3 we describe the application of
compression to constructing collision-resistant hash functions (CRH) from any one-way function. Section 5
presents the implication to the hybrid bounded storage model, while Section 6 discusses witness-retrievable
compression and its application to the construction of oblivious transfer (OT) from any one-way function.
We conclude with a discussion and some open problems (Section 7).

1.2 Part I: ClassifyingNP Problems with Respect to Compression

We are interested in figuring out whichNP languages are compressible and, in particular, whether impor-
tant languages such as SAT and Clique are compressible. For starters, we demonstrate some non-trivial lan-
guages that do admit compression (Section 2.1): we show compression for the well-knownNP-complete
problem of vertex cover and for anotherNP-complete language known as minimum-fill-in. We show
a generic compression of sparse languages (languages containing relatively few words from all possible
instances). As specific examples we mention the language consisting of strings that are the output of a cryp-
tographic pseudorandom generator and also consider the sparse subset sum problem. In addition we show
compression for the promise problem GapSAT.7 However, these examples are limited and do not shed light

6Suppose that there exists an errorless compression algorithmZ for L then defineL′ to be the language of allZ(x) such that
x ∈ L. Then, for everyy ∈ L′ a verification algorithm takes as a nondeterministic witness a valuex along with a witness tox ∈ L
and verifies that indeedy = Z(x). ThusL′ is inNP(poly(m)).

7I.e. a promise problem were either the formula is satisfiable or every assignment does not satisfy a relatively large number of
clauses.
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on the general compression of otherNP problems. Moreover, it becomes clear that the traditional notions
of reductions and completeness inNP do not apply for the case of compression (i.e., the compression of
anNP-complete language does not immediately imply compression for all ofNP). This is not surprising,
since this is also the case with other approaches for dealing withNP-hardness such as approximation algo-
rithms or subexponential algorithms (see for example [76, 51]) and parameterized complexity (see [24] and
further discussion in Section 1.4 on related work). For each of these approaches, appropriate new reductions
were developed, none of which is directly relevant to our notion of compression.

We introduce W-reductions in order to study the possibility of compressing various problems inNP.
These are reductions that address the length of the witness in addition to membership in anNP language. W-
reductions have the desired property that ifL W-reduces toL′, then any compression algorithm forL′ yields
a compression algorithm forL. Following the definition of W-reductions we define also the corresponding
notion of compression-complete and compression-hard languages for a class.

The VC classification: We introduce a classification ofNP problems with respect to compression. The
classification presents a structured hierarchy ofNP problems, that is surprisingly different from the tradi-
tional view and closer in nature to theW hierarchy of parameterized complexity (see [24] and [34]). We call
our hierarchyVC, short for “verification classes”, since the classification is closely related to the verification
algorithm ofNP languages when allowed a preprocessing stage. We give here a very loose description
of the classes, just in order to convey the flavor of the classification. Formal definitions appear in Section
2.3. In the following definition, when we use the term “verification” we actually mean “verification with
preprocessing”:

• For k ≥ 2, the classVCk is the class of languages that have verification that can be presented as
a depthk circuit of unbounded fan-in and polynomial size (polynomial inn and m). For exam-
ple, the language SAT is compression-complete for the classVC2. Other examples include Integer-
Programming which resides inVClog n and Dominating-Set which is inVC3. Both of these are shown
to be compression-hard forVC2.

• VC1 is the class of languages that havelocal verification. That is, languages that can be verified by
testing only a small part (of sizepoly(n, log m)) of the instance. This class contains many natural
examples such as the Clique language or Long-path.

• VCOR is the class of languages that have verification that can be presented as the OR ofm small
instances of SAT (each of sizen). This class contains the languages that are relevant for the crypto-
graphic applications. The Clique language is compression-hard for this class (Claim 2.23).

• VC0 is the class of compressible languages. In particular it includes vertex cover, sparse languages
and GapSAT.

We show that the classes described form a hierarchy (see Lemma 2.17 and Claim 2.22). That is:

VC0 ⊆ VCOR ⊆ VC1 ⊆ VC2 ⊆ VC3 . . .

We discuss some of the more interesting classes in theVC hierarchy, classify some centralNP problems
and mention compression-complete problems for the classes. The existence of a compression algorithm for
a complete problem for some class entails the collapse of the hierarchy up to that class intoVC0.

In addition, we study the compression ofNP searchproblems. That is, compressing an instance in a
way that maintains all the information about a witness for the problem. We show that the compression of a
class of decision problems also implies compression for the corresponding search problems. Formally:
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Theorem 1.3 If a classVCk has a compression algorithm, then for anyL ∈ VCk there is a compression
algorithm for the corresponding search problem.

This theorem turns out to be useful for the cryptanalytic result regarding the bounded storage model we
present in Section 5.

1.3 Part II: Implications to Cryptography

As the main motivation for the study of compression, we provide some strong implications of compress-
ibility to cryptography. The implications described are of contrasting flavors. On the one hand we show
constructions of cryptographic primitives using compression algorithms, while on the other hand we show
a cryptanalysis using compression algorithms. Alternatively, this shows that the incompressibility of some
languages is necessary for some applications. For simplicity, we discuss the implications with respect to
the compression of SAT. We note however, that the same statements can actually be made with compression
of languages from the classVCOR (see Definition 2.20). This class is the lowest class in ourVC hierarchy,
and potentially easier to compress than SAT. Moreover, the instances that we need to compress for our ap-
plications are further limited in the sense that (i) the relevant instances have a witness to either being in the
language or to not being in the language and (ii) the (positive and negative) instances have a unique witness.

Basing Collision-Resistant Hash Functions on Any One-Way Function: Collision-Resistant Hash func-
tions (CRH) are important cryptographic primitives with a wide range of applications, e.g. [70, 18, 57, 19,
65, 5]. Loosely speaking, a CRH is a familyH of length-reducing functions, such that no efficient algo-
rithm can find collisions induced by a random hash function from the family. Currently there is no known
construction of CRH from general one-way functions or one-way permutations, and moreover, Simon [77]
showed that basing CRH on one-way permutations cannot be achieved using “black-box” reductions. We
show how a general compression algorithm may be used to bridge this gap.

Theorem 1.4 If there exists an errorless8 compression algorithm for SAT then there exists a construction of
collision-resistant hash functions based on any one-way function.

The construction of the CRH in Theorem 1.4 (if the hypothesis were true) would be inherently non-black-
box and uses the program of the one-way function via Cook’s Theorem [17]. This is essential to the validity
of this approach, in light of the black-box impossibility result [77].

An interesting corollary of this result is a construction of statistically hiding bit commitment from any
one-way function. Moreover, the construction would require only a single round of interaction. Such a
construction was recently shown by [71, 44] but requires a large number of rounds of interaction.

Basing One-Way Functions on Hard Instances: The next application shows that compression may be
used in order to prove, in the terminology of [49], thatPessiland does not exist. Impagliazzo [49]
summarizes five possibilities for how the world may look like based on different computational assumptions.
Pessiland is the option where it is easy to generate hard on the average instances yet no one-way functions
exist (or in other words one cannot efficiently generatesolvedhard instances). We show that compression
may be used to overrule this possibility and place us in the setting ofMinicrypt in which one-way
functions do exist. More precisely, given a language (not necessarily inNP) that is hard on the average for
non-uniform machines over a samplable distribution and a compression algorithm for a related language,

8The construction of CRH requires that the error probability of compression algorithm will be zero. This can be slightly relaxed
to an error that is exponentially small inm (rather thann).
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one can construct a one-way function. A clean statement in the case that the language is inNP is the
following:

Theorem 1.5 let L ∈ NP and letD be a samplable distribution such that any polynomial size circuit has
only negligible advantage in deciding membership inL of samples drawn fromD. If there exists a compres-
sion algorithm for SAT then there is a construction of a one-way function. If in addition the compression is
errorless then there is also a construction of collision resistant hash functions.

This result also employs non-black-box techniques which are essential as it was shown that there is no
black boxconstruction of a one-way function from any hard on the average language (over a samplable
distribution). This was shown initially by Impagliazzo and Rudich (in unpublished work) and formally by
Wee [83].

On Everlasting Security and the Hybrid Bounded Storage Model: Thebounded storage model(BSM)
of Maurer [62] provides the setting for the appealing notion ofeverlasting security[3, 22]. Loosely speaking,
two parties, Alice and Bob, that share a secret key in advance, may use the BSM to encrypt messages in a way
that the messages remain secure against an adversary which has storage limitations (yet is computationally
unbounded), even if the shared secret key is eventually revealed.

However, if the parties do not meet in advance to agree on a secret key then everlasting security requires
high storage requirements from Alice and Bob [29], rendering encryption in this model less appealing.
Hoping to overcome this, it was suggested to combine the BSM with computational assumptions; we refer to
this as thehybrid BSM. Specifically, the suggestion is to run a computational key agreement protocol in order
to agree on a shared secret key, and then run one of the existing BSM encryption schemes. Dziembowski
and Maurer [29] showed that this idea does not necessarily work in all cases, by showing an attack on a
protocol consisting of the combination of a specific (artificial) computational key agreement protocol with
a specific BSM encryption scheme.

We show that compression ofNP instances can be used to attackall hybrid BSM schemes. Or in other
words, if a compression of SAT exists (even one that allows errors), then the hybrid BSM is no more powerful
than the standard BSM. One interpretation of this result is that in order to prove everlasting security for a
hybrid BSM scheme without further conditions, one must prove that there exists no compression algorithm
for SAT or at least make a reasonable incompressibility assumption regarding the resulting formulae. Note
however that a straightforward assumption of the form “this distribution on SAT formulae is incompressible”
is not efficiently falsifiable, in the sense of Naor [68], that is, it is not clear how to set up a challenge that
can be solved in case the assumption is false.

On Random Oracles: The authors of this paper show in [45] that if all parties are given access to a random
oracle, then there actually exists everlasting security in the hybrid BSM without an initial key and with low
storage requirements from Alice and Bob9. Therefore, finding a compression algorithm for SAT would show
an example of a task that is achievable with random oracles but altogether impossible without them.10 This
would constitute an argument against relying (blindly) on random oracles to determine whether a task is
feasible at all. This is different than previous results such as [5, 12, 41, 64, 6], which show specific protocols
that becomes insecure if the random oracle is replaced by a function with a small representation. Model

9This does not contradict the compressibility of SAT, since the cryptanalytic result in the hybrid BSM model is not black-box
and thus is not preserved in the presence of a random oracle.

10Note that finding an algorithm that actually solves SAT would render more natural tasks (e.g., symmetric encryption) possible
in the random oracle model and impossible without it. Of course finding a compression algorithm seems more likely and does not
rule out (most of) cryptography.
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separation results were discussed by Nielsen [73, 74] (for non-interactive non-committing encryption) and
Wee [82] (for obfuscating point functions), but the separations there are between the programmable and
non-programmable random oracle models. In contrast, the hybrid BSM result in [45] holds also if the oracle
is non-programmable.

Witness-retrievable compression and the existence of Minicrypt: The two top worlds that Impagli-
azzo considers in his survey [49] areMinicrypt , where one-way functions exist but oblivious transfer
protocols do not exist (in this world some interesting cryptographic applications are possible, and in par-
ticular sharedkey cryptography exists) andCryptomania where Oblivious Transfer (OT) protocols do
exist (and hence also a wide range of cryptographic applications like secure computation andpublic key
cryptography). The last application we discuss is an attempt to use compression in order to prove that
Minicrypt=Cryptomania . Whether oblivious transfer can be constructed from any one-way function
is a major open problem in cryptography. Impagliazzo and Rudich [52] addressed this problem and proved
that key agreement protocols (and hence also oblivious transfer) cannot be constructed from any one-way
function using “black-box” reductions.

We explore an approach of using compression in order to bridge the gap between the two worlds. In
order to do so we introduce an additional requirement of a compression algorithm.

Definition 1.6 (Witness-retrievable Compression)Let Z,L andL′ define a compression algorithm as in
Definition 1.2 and letRL andRL′ beNP relations forL andL′ respectively. The compression is said to
be witness-retrievable with respect toRL andRL′ if there exists a probabilistic polynomial-time machine
W such for every inputx, if x ∈ L then for every witnesswx for x with respect toRL it holds that
wy = W (wx, Z(x)) is a witness forZ(x) ∈ L′ with respect toRL′ . We allow a negligible error in the
success ofW (where probability is over the internal randomness ofZ andW ).

Theorem 1.7 (Informal) If there exists a witness-retrievable compression algorithm for a certain type of
SAT formulas, then there exists an Oblivious Transfer protocol based onanyone-way function.

As in the CRH construction (Theorem 1.4), the conditional construction of oblivious transfer in Theorem
1.7 is inherently non-black-box. Unfortunately we show that this approach cannot work with a compression
algorithm for thegeneralSAT problem, due to the following theorem:11

Theorem 1.8 If one-way functions exist then there is no witness-retrievable compression of SAT.

Furthermore, we also rule out the possibility of other types of witness-retrievable compression that may be
sufficient for Theorem 1.7. More precisely, the impossibility of witness-retrievable compression does not
change when allowing an error in the retrieval, or when dealing with a case where there is a unique witness
(see Corollary 6.7). These developments rule out basing the approach of Theorem 1.7 on the compression
of a general and standard language. The approach may still work out with a witness-retrievable compression
algorithm for the specific CNF formulas as constructed in the proof of Theorem 1.7.

Finally, we point out that almost all of the examples of compression algorithms in this paper (in Sections
2.1 and 2.10) are in fact witness-retrievable. This demonstrates that these examples fall short of the general
compression that we are seeking. In fact a major obstacle in achieving compression for problems such as
SAT seems to be that most natural approaches would be witness-retrievable.

11The first version of this paper [46] (dated Feb 17, 2006) did not contain this theorem and was hence more optimistic on the
possibility of finding a witness preserving compression algorithm for SAT.
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1.4 Related Work

The relationship between compression and complexity in general is a topic that has been investigated since
the early days of Complexity Theory (i.e. Kolmogorov Complexity [60]). However, the feature that we are
studying in this work is compressibility with respect to thesolution(witness) rather than the instance. This
distinguishes our work from a line of seemingly related works about notions of compression ([27, 78, 81] to
name a few), all of which aim at eventually retrieving the input of the compression algorithm.

There are several examples of other relaxations of solvingNP problems in polynomial time. Each of
these relaxations yields a corresponding classifications ofNP. These classifications, like ours, are sub-
tle and usually turn out to be different than the traditionalNP classification. For example, Papadimitriou
and Yannakakis [75] introduce L-reductions and the classes MAX NP and MAX SNP, with respect to ap-
proximation algorithms. Impagliazzo, Paturi and Zane [51] define reductions with respect to solution in
sub-exponential time.

The classification most related to ours is that ofparameterized complexity(see the monographs on
this subject by Downey and Fellows [24], Niedermeier [72] and Flum and Grohe [34]). Parameterized
complexity studies the tractability of problems when one of the parameters is considered to be fixed or very
small (this is called fixed parameter tractability (FPT)). One of the basic techniques of acquiring efficient
algorithms in this context is the method of “kernelization” thatmayyield natural compression algorithms
(see examples in Section 2.1). The kernelization method first shrinks the instance to a smaller instance
whose size is only a function of the parameter and then solves it in brute force. However, in spite of
the similarities between kernelization and compression, there are important differences. At a high level,
kernelization is geared towards getting closer to a solution of the original instance. Our notion, on the
other hand, requires compression per se, disregarding whether it is much harder to solve the compressed
instance than the original one (in fact, in our main applications for constructing collision-resistant hashing
and one-way functions in Sections 3 and 4, the compressed instance never has to be solved). Indeed we
expect that new methods of compression that would resolve the problems we raise in this paper will utilize
this property (that the compressed instance is harder to solve). That being said, a version of this notion,
namelypolynomial kernelizationis equivalent to deterministic compression to sizepoly(n). The question
of polynomial kernelization has been raised independently from our work in the parameterized complexity
community (e.g. [34], Definition 9.1). See a further discussion on kernelization in Section 2.1. In addition,
due to the above mentioned similarities, theWefthierarchy of parameterized complexity is reminiscent of
theVC-hierarchy: both being defined by reductions to circuits of bounded depth. However, as discussed
above, our study of compression yields quite a different classification.

A related notion to parameterized complexity that is reminiscent of our work islimited non-determinism,
which started with the work of Kintala and Fischer [58], see the survey by Goldsmith, Levy and Mund-
heck [40]. This was further studied by Papadimitriou and Yannakakis [76] who defined a few syntactic
classes within the class of polylog non-determinism (LOGNP andLOGSNP ). The interesting point is
that several natural problems are complete for these classes. The notion of reduction used is the usual
polynomial reduction and hence the classifications arising from this study are very different from ourVC
hierarchy. A related classification is the EW-hierarchy defined by Flum, Grohe and Weyer [35]. This hierar-
chy is a similar to the Weft classification of parameterized complexity but limits the running time to be only
exponential in the witness length, thus being geared towards problems with polylogarithmic size parameters
(as inLOGNP ).

Subsequent Works: Dubrov and Ishai [26] discussed the compression of problems and showed that a
certain incompressibility assumption has an application to derandomization. Specifically they construct a
pseudorandom generator that fools procedures that use more randomness than their output length. Their
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work was mostly conducted independently of ours, following conversations regarding an early phase of our
work. In addition, inspired by our CRH construction, they prove that any one-way permutation can either
be used for the above mentioned derandomization, or else can be used to construct a weak version of CRH.

Dziembowski [28] shows the relevance of our notion of witness-retrievable compression to achieving
forward-secure storage. He shows a cryptanalytic result of such compression. Furthermore, following our
approach for construction of OT from one-way functions, he shows that for every one-way function either
a specific storage scheme is forward-secure, or there exists an (infinitely often) OT protocol based on this
one-way function.

Recently some strong negative results about compression were shown. Fortnow and Santhanam [36]
show that an errorless compression algorithm for SAT (or even for the classVCOR) entails the collapse of
the polynomial hierarchy. Chen and Müller [15] notice that this generalizes to compression with a one-sided
error. These results limit the application to constructing collision resistant hash functions (Theorem 3.1).
The application may still be valid given a relaxed compression algorithm. For example, it suffices if the
compression is successful only on instances that either have a witness to being satisfiable or have a witness
to not being satisfiable. Note that the applications in Sections 4 and 5 allow an error in the compression.

2 Part I: On the Compression ofNP Instances

Attempting to compressNP instances requires a different approach than solvingNP problems. Intuitively,
a solution for compression might arise while trying to solve the problem. While a full solution of anNP
problem may take exponential time, it is plausible that the first polynomial number of steps leaves us without
an explicit solution but with a smaller instance. Indeed, some algorithms in the parameterized complexity
world work like this (see some examples in the next section). On the other hand, we allow the possibility
that the compressed version is actually harder to solve (computational time-wise) than the original one (and
may require a somewhat longer witness altogether).

2.1 Examples of Compression Algorithms for some Hard Problems

We start by showing several examples of compression algorithms for problems that are conjectured not to
be inP. Two of these example areNP-complete problems, while the third is taken from cryptography.

Vertex Cover: The well studiedNP-complete problem of vertex cover receives as input a graphG =
(V,E) and asks whether there exists a subset of verticesS ⊆ V of size at mostk such that for every edge
(u, v) ∈ E eitheru or v are inS. The parameters are the instance lengthm, which is at mostO(|E| log |V |),
and the witness lengthn = k log |V |.

Claim 2.1 There exists a witness-retrievable compression algorithm for vertex cover.

Proof: We are following the parameterized complexity algorithm for vertex cover (presented in [24] and
attributed to S. Buss). If a vertex coverS of sizek exists, then any vertex of degree greater thank must be
inside the setS. The compression algorithm simply identifies all such vertices and lists them in the cover,
while removing all their outgoing edges (that do not need to be covered by other vertices). The graph left
after this process has maximal degreek, and furthermore all edges have at least one end in the cover. Thus,
if the original graph has ak vertex cover then the total number of edges left is at mostk2 (at mostk vertices
in the cover with at mostk edges each). If there are more thank2 edges then the answer to the problem
is NO, otherwise, such a graph can be represented by the list of all edges, which takesk2 log k bits. The
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compression can be made witness-retrievable since if we use the original labels of vertices to store the new
graph, then the original cover is also a cover for the new compressed graph.2

It is in fact possible to get the compressed instance to be a graph with2k edges, rather thank2 edges, as
shown in [14] and [16] (see [72] Chapter 7). It is interesting to note that we do not know of a compression
algorithm for the Clique problem or the Dominating Set problem, which are strongly linked to the vertex
cover problem in the traditional study ofNP, and in fact, in Theorems 3.1, 5.2 and 6.1 we show strong
implications of a compression algorithm for these languages.

On parameterized complexity and compression: The use of an algorithm from parameterized complex-
ity for compression is not a coincidence. The “problem kernel” or ”kernelization” method (see [24], Chapter
3 or [72] Chapter 7) is to first reduce the problem to a small sub-instance that, like compression, contains the
answer to the original problem. Then the algorithm runs in time that is a function only of the sub-instance,
e.g. exponential in this small instance size. As was discussed in Section 1.4, if the running time and output
size of the first reduction happens to be only polynomial in the parameter (a class formally defined in [8]),
then the first phase of the algorithm is a compression algorithm. Downey, Fellows and Stege [25] (Lemma
4.7) show that kernelization (with arbitrary functions of the witness) captures precisely fixed parameters
problems. Further restricting the attention topolynomial kernelization(e.g., [34], Definition 9.1) introduces
a question that is equivalent to deterministic compression to sizepoly(n).

In this context, it is important to note that a compression algorithm for a languagedoes notnecessarily
give a parameterized complexity algorithm for the same language. At first glance it seems that one can
first run the compression algorithm, and then solve the compressed problem by brute force, thus getting a
fixed parameter algorithm. However, such a strategy does not necessarily work, since in the compression
algorithm there is no restriction on the size of the witness of the compressed language, which may in fact
grow arbitrarily. Therefore solving the compressed problem by brute force may require a super-polynomial
time inm. The same holds also for definitions of polynomial kernelization in which one does not restrict the
witness size of the kernel(note that the witness can potentially be larger than the instance itself). Moreover,
even if the witness does not grow, in many cases the witness size depends on the instance size and not on the
parameter alone (e.g. in the Clique problem if the parameter is the clique sizek then the witness length is
n = k log m), in which case the above strategy is irrelevant with respect to the fixed parameter tractability
of such problems.

Chapter 7 of the monograph of Niedermeier [72] contains several examples of polynomial size kernel-
izations (e.g. for the languages 3-Hitting Set and Dominating Set on planar graphs). These algorithms yield
compression algorithms for the respective languages. We describe one additional example of a compression
algorithm that is derived in this manner.
Minimum Fill-In: The minimum fill-in problem is anNP-hard problem that takes as input a graphG and
a parameterk, and asks whether there exist at mostk edges that can be added to the graph that would turn it
into a chordal graph, i.e. one with no induced cycles of length more than 3. This problem has applications
in ordering a Gaussian elimination of a matrix.

Claim 2.2 The minimum fill-in problem with parameterk has witness-retrievable compression.

Proof: Kaplan, Shamir and Tarjan [54] prove that this problem is fixed-parameter tractable. Their algorithm
partitions the graph into two sets of nodesA andB whereA is of sizek3 and there are no chordless cycles
(i.e. an induced cycle of length greater than 3) inG that contain vertices inB. The complexity of this
partition isO(k2|V ||E|). They then prove thatG has ak edge fill-in if and only if the graph induced byA
has ak edge fill-in.
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Thus the compression algorithm follows the same partitioning and stores only the graph induced by
the small setA. The new graph has at mostk3 vertices and thus can be presented by onlypoly(k) log |k|
bits. The fill-in for the new instance is exactly that of the original instance and thus the compression can be
witness-retrievable if the original labels of the vertices are used for the compressed graph as well.2

2.1.1 Sparse languages

We call a languagesparseif the language contains only of a small fraction of the words of any given length.
More precisely:

Definition 2.3 (Sparse Language)LetL be anNP language with instance lengthm and parametern and
denoteLm,n = {x ∈ {0, 1}m | x ∈ L with witness of length≤ n}, thenL is sparse if there exists a
polynomialp(·) such that for all sufficiently largem (with correspondingn) it holds that|Lm,n| ≤ 2p(n).

We show that all sparse languages can be compressed to a size that is dominated by the number of words
that are actually in the language. This is shown by a generic compression algorithm for any sparse language.
The idea is to apply a random (pairwise independent) hash function to the instance where the output of
the hash is of length2p(n) and thus substantially smaller thanm. The new language contains all words
that are hashed values of a word in the original language. We note that the compressed languageL′ lies in
NP(poly(m)) (recall thatNP(poly(m)) stands for nondeterministic-timepoly(m)). In particular, it is not
necessarily witness-retrievable.

Rather than formally presenting the method for a general sparse language, we describe the method via a
sparse language that we call PRG-output. Note that for this language the method is witness-retrievable.

Example 2.4 (PRG-Output) Let G be a pseudorandom generator stretching ann bit seed to anm bit
output (withm an arbitrary polynomial inn). Define the languagePRG-outputover inputsy ∈ {0, 1}m as

LG = {y| there exists anx s.t.G(x) = y}

As long as the underlying PRG is secure then it is hard to decide whether an instance was taken randomly
fromL(G) or from{0, 1}m. Yet this language has a simple compression algorithm. Note that simply saving,
say, the first2n bits of the instancey is insufficient because ify only differs fromG(x) in one bit, then this
bit may be anywhere in them bits.

Claim 2.5 There exists a witness-retrievable compression algorithm for PRG-output.

Proof: Let H be a family of almost pairwise independent hash functions fromm bits to 2n bits. The
compression algorithm simply chooses a randomh ∈ H and outputs(h(y), h). The new language isL′G =
{(z, h)| there exists anx s.t.h(G(x)) = z}.

Naturally, ify ∈ LG then also(h(y), h) ∈ L′G with the same witness (and thus the witness-retrievability).
On the other hand, ify /∈ LG then by the properties ofH, for every seedx we have thatPrh[h(G(x)) =
h(y)] < O(2−2n), and by a union bound over allx ∈ {0, 1}n, we getPrh[h(y) ∈ L′G] < O(2−n). Finally,
since there are almost pairwise independent hash functions whose description is of lengthO(n)+log m (for
example see [66]), then the algorithm is indeed compressing. Note that the compression algorithm described
above is probabilistic and carries an error probability of2−Ω(n) and also that the compressed languageL′ in
this case is inNP(poly(m)). 2
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Sparse subset sum: We show another example of a compressible language called sparse subset sum that
is sparse in a different sense than that of Definition 2.3. While the generic compression for sparse languages
does not work for this language, it is compressible in its own right. Moreover, the compression algorithm
for sparse subset sum is better than the generic algorithm in the sense that the compressed language in the
specialized algorithm is inNP(poly(n, log m)) (or actually inNP) rather than inNP(poly(m)).

Example 2.6 (Sparse Subset Sum)The languagesparse subset sumtakes as inputn valuesx1, . . . xn each
in {0, 1}m (with m >> n) and a target valueT ∈ {0, 1}m. An input is in the language if there is a subset
S ⊆ [n] where

∑
i∈S xi = T (the sum is taken modulo2m).

Claim 2.7 There exists a witness-retrievable compression algorithm for sparse subset sum.

Proof: To compress an instance of sparse subset sum simply pick a large random prime2n < P <
22n+log m and store the numbersyi = xi mod P (for every i ∈ [n]), the targetTP = T mod P and
P (the idea of picking a primeP and working moduloP has been useful various applications, e.g. in the
Karp-Rabin string matching algorithm [56]). The compressed instance is of lengthO(n(n + log m)) and
the compressed language is also subset sum (moduloP ). If there exists a setS for which

∑
i∈S xi = T

then also
∑

i∈S yi = TP mod P (hence the witness-retrievability). On the other hand, we want that if the
original instance was not in the language then for any subsetS it will hold that

∑
i∈S yi 6= TP . In order to

get
∑

i∈S yi = TP it is required thatP is a divisor ofD =
∑

i∈S xi−T . HoweverD has at mostm/n prime
divisors that are greater than2n, while the primeP is taken from a range containingO(22nm/n) primes (we
assumen ≥ log m in the calculations). Therefore, for everyS it holds thatPrP [

∑
i∈S yi = TP ] ≤ 2−2n

and by a union bound over all setsS, the probability of an error is bounded by2−n. 2

2.2 W-Reductions and Compression-Completeness

The few examples of compression that we have showed clearly indicate that the study ofNP problems with
respect to compression gives a distinct perspective, different from the traditional study ofNP. The reason
is that the typical Karp-reduction betweenNP problems does not distinguish between the length of the
witness and the length of the instance. For example, when reducing SAT to the Clique problem, one builds
a large graph from a CNF formula and asks whether or not it has a Clique of sizek. However, in this new
instance, the witness size12 is a polynomial inm (the length of the SAT formula) rather thann (the number
of variables in the formula). Thus, it is not clear how to use a compression algorithm for Clique to get a
compression algorithm for SAT.

W-reductions and compression-completeness:In order to show that a compression algorithm forL′

implies a compression algorithm forL, a more restricted type of reduction is needed. We call this aW-
reductionand it is similar to a Karp-reduction but imposes an extra property on the length of the witness.

Definition 2.8 (W-Reduction) For twoNP languagesL and L′ we say thatL W-reducesto L′ if there
exist polynomialsp1 andp2 and a polynomial-time computable functionf that takes an instancex for L
and outputs an instancef(x) for L′ such that:

1. f(x) ∈ L′ if and only ifx ∈ L.

2. If x is of lengthm with witness lengthn, thenf(x) is of length at mostp1(m) with witness length at
mostp2(n, log m).

12The witness for Clique is a choice ofk vertices from the graph.

13



We first note that this reduction composes, that is:

Claim 2.9 If L W-reduces toL′ andL′ W-reduces toL′′ thenL W-reduces toL′′.

We next claim that W-reduction indeed fulfills its goal with respect to compression:

Claim 2.10 Let L and L′ beNP languages such thatL′ W-reduces toL. Then given a compression
algorithm forL, one can obtain a compression algorithm forL′.

Proof: Suppose thatx is an instance for languageL′ of lengthm with witness lengthn. The compression
algorithm forL′ runs as follows: First use the W-reduction toL and get an instancef(x) for L, and then
run the compression algorithm forL on f(x). By the properties of the reductionf(x) is of lengthm′ ≤
p1(n, m) with witness lengthn′ ≤ p2(n, log m). The outcomeZ(f(x)) of the compression is therefore of
lengthpoly(n′, log m′) = poly(n, log m). Furthermore, ifL′′ is the language thatZ compresses to, then
Z(f(x)) ∈ L′′ if and only if f(x) ∈ L which in turn happens if and only ifx ∈ L′. Thus the combined
process gives a compression algorithm for instances ofL′. 2

We remark that in the complexity discussion of compression we choose to ignore the issue of witness-
retrievability. Nevertheless, in order for the W-reduction to relay this property, the reduction itself must also
have a witness-retrievability property. That is, given a witnessw for x ∈ L then one can efficiently compute
w′ for f(x) ∈ L′ (without the knowledge ofx). We define complete problems with respect to compression:
these are defined similarly to the standard notion, but with respect to W-reductions.

Definition 2.11 (Compression-Complete)A problemL is compression-complete for classC if:

1. L ∈ C

2. For everyL′ ∈ C the languageL′ W-reduces toL.

A language is calledcompression-hardfor classC if requirement 2 holds (requirement 1 may or may not
hold).

The relevance of compression-complete problems is stated in the following simple claim.

Claim 2.12 LetL be compression-complete for classC, then given a compression algorithm forL, one can
obtain a compression algorithm for anyL′ ∈ C.

The proof follows directly from the definition of completeness and Claim 2.10.

2.3 TheVC Classification

We now introduce the new classification arising from the study of compressibility ofNP problems. For this
we define a series ofNP languages. Some notation: by acircuit of depth k we mean a depthk alternating
AND-OR circuit where the fan-in of the gates is bounded only by the size of the circuit and negations are
only on the input variables (no NOT gates).

Definition 2.13 (DepthkCircuitSAT)
For anyk ≥ 2 consider theNP problem calledDepthkCircuitSAT:
Input: a circuit C of sizem and depth at mostk overn variables.
Membership: C ∈ DepthkCircuitSAT if there exists a satisfying assignment toC.
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The next language, LocalCircuitSAT, is a less natural one. It is designed to capture computations that
do not need to access the whole input, but can rather check only a sub-linear fraction of the input (a good
example is verifying that a set of vertices in a graph is indeed a Clique). Letx be a string of lengthm. If
I = (i1, . . . , in) is a list ofn locations inx then we denote byx(I) the values ofx at these locations.

Definition 2.14 (LocalCircuitSAT)
Input: A stringx of lengthm and a circuitC overn + n · log m variables and of size(n + n · log m).13

Membership: (x,C) ∈ LocalCircuitSAT if there exists a listI of n locations inx such thatC(x(I), I) = 1.

We can now introduce our classification ofNP problems:

Definition 2.15 (TheVC classification ofNP problems) ConsiderNP problems wherem denotes the
instance size andn denotes the witness size. We define the classVCk for everyk ≥ 0. The definition is
divided into three cases:

• k = 0: The classVC0 is the class of all languages that admit compression algorithms. There are two
possible versions here, one considering errorless compression and the other allowing probabilistic
compression with errors. We typically refer to the later, depending on the context.

• k = 1: The classVC1 is the class of all languages that W-reduce to LocalCircuitSAT.

• k ≥ 2: The classVCk is the class of all languages that W-reduce to DepthkCircuitSAT.

For any functionk(m, n) (wherek(m,n) ≤ m) also defineVCk(m,n) as the class of all languages that
W-reduce to Depthk(m,n)CircuitSAT. Finally, defineVC = VCm (the class fork(m,n) = m).

A first observation is that simply by definition, the languages LocalCircuitSAT and DepthkCircuitSAT are
compression-complete for their respective classes. The most notable example of a complete language is for
the classVC = NP where the complete problem is CircuitSAT (satisfiability of a polynomial size circuit).

When discussing a W-reduction to a depthk circuit, we can actually assume without loss of generality
that the top gate of this circuit is an AND gate (as we will show in the next claim). An immediate corollary
is that SAT (that is, satisfiability of CNF formulas) is compression complete for the classVC2. Formally,
let DepthkCircuitSATAND denote the language DepthkCircuitSAT when restricted to circuits where the top
gate is an AND gate.

Claim 2.16 For anyk ≥ 2, we have that a languageL ∈ VCk if and only ifL W-reduces to the language
DepthkCircuitSATAND.

Proof: We show that any instance that contains a circuit where the top gate is an OR W-reduces to an
instance with top gate AND. We prove this first fork ≥ 3. Denote the input circuit byC =

∨
j

∧
t Cj,t

where eachCj,t is a top OR depth(k−2) circuit. If C is satisfiable then
∧

t Cj,t is satisfiable for at least one
choice ofj. Add to the witness the indexi of this satisfiable sub-circuit (i is given by the boolean variables
i1, ..., i` where` is logarithmic inpoly(m,n)). For eachj, denoteC ′j,t = Cj,t ∨ ij̄11 ∨ ... ∨ ij̄`

` , whereij̄

denotesi ⊕ j. Notice thatC ′j,t is always satisfied forj 6= i, and forj = i is satisfied if and only ifCi,t is
satisfied. Thus the circuit can now be written asC ′ =

∧
j,t C ′j,t that is satisfiable if and only if the original

circuit was. The top OR gate ofC is therefore removed in the new instanceC ′ while adding only a small
number of variables, thus the input to the circuit witness remains of orderpoly(n, log m) as required.

13The choice of the circuit to be of sizen′ (over n′ variables) is arbitrary and other polynomial functions suffice as well.
Furthermore, such a circuit of small size may be meaningful since not all the variables have to be used and some might be just
dummy variables.
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In the casek ≥ 3, the depth of the new instance becomesk− 1. In the case thatk = 2, the bottom level
that included only variables is transformed into an OR of variables, thus the new circuit is simply a CNF
formula (and the depth remainsk = 2). 2

The VC Hierarchy: TheVC classification indeed defines a hierarchical structure. That is:

VC0 ⊆ VC1 ⊆ VC2 ⊆ VC3 · · · ⊆ VC.

And in general, for every two polynomially bounded functionsk(n, m), `(n, m) such that for alln, m we
havek(n, m) ≤ `(n, m) thenVCk(m,n) ⊆ VC`(m, n). Furthermore,VC = NP by the definition of
NP. These observations follow trivially by the definitions, the only non-trivial part being the fact that
VC1 ⊆ VC2, that is proved next.

Lemma 2.17 VC1 ⊆ VC2

Proof: We need to show a W-reduction from LocalCircuitSAT to SAT. The input is therefore a long string
x and small circuitC on n + n log m variables. Leti1, ...in denote the potential locations in the string
that the circuitC receives as inputs. Also define the variablesy1, ..., yn to indicate the values ofx in the
corresponding locations (that isyt = xit for t ∈ [n]). Thus the circuitC runs on the variablesy1, ..., yn and
the bits ofi1, ..., in.

We first note thatC is of sizep(n, log m) = (n + n log m) and may be reduced (via Cook’s Theorem
[17]) to a CNF formulaΦC overO(p(n, log m)) variables and of sizeO(p(n, log m)) that is satisfiable if
and only ifC is satisfiable.

Thus we have a CNF formula over the variablesy1, ..., yn, i1, ...in and some extra variables. This for-
mula’s satisfiability will be equivalent to the membership of the LocalCircuitSAT instance if we manage to
force the variables ofy to take the valuesyt = xit . This is done by adding additional clauses to the CNF
in the following manner: For simplicity we describe this only fory1, where the same is repeated for every
otheryt for t ∈ [n]. Define for eachj ∈ [m] a formulaΦj = (y1 = xj) ∨ (i1 6= j). Notice thatΦi1 = 1 if
and only ify1 = xi1 . Denote the bits ofi1 by i1,1, ..., i1,d whered = dlog me. An alternative way to write
Φj is as the following CNF (recall thatij̄ denotesi⊕ j):

Φj = (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d
1,d) ∧ (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d

1,d)

Finally, to forcey1 = xi1 we simply take the new CNF to beΦC ∧
∧

j∈[m] Φj . The same is repeated to force
yt = xit for all t ∈ [n]. 2

2.4 TheVC Classification and Verification with Preprocessing

We now discuss theVC hierarchy from a different angle, that of the verification complexity of a language.
This approach, though slightly more cumbersome than the definition via W-reductions, gives more intuition
as to what it means to be in a classVCk. The new view defines theVC hierarchy with respect to the
verification algorithm forL, that is, the efficient procedure that takes a witnessw for x ∈ L and verifies that
it is indeed a true witness. We point out that the nature of verification algorithms may vary when discussing
differentNP problems. For example, in thek-Clique problem the verification algorithm needs to check
only O(k2) edges in the graph, and thus can read only a sub-linear part of the instance. In SAT, on the other
hand, all the clauses in the formula must be checked when verifying a witness.

Simply looking at the verification algorithm of a language is not sufficient. For starters, classification
according to verification does not distinguish between problems inP that are trivially compressible and
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NP-complete languages. Instead, we consider the notion of verification with preprocessing. This is the
process for verifying thatx ∈ L when given a witness, that also allows a preprocessing stage to the instance.
Formally:

Definition 2.18 (Verification with Preprocessing) Let L be anNP language with instances of lengthm
and witness lengthn. A pair of polynomial-timealgorithms(P, V ) are called averification with prepro-
cessingfor L if the following two step verification holds:

1. Preprocessing:P gets an instancex and outputs a new instanceP (x).

2. Verification: There exists a polynomialp(·, ·) such thatx ∈ L if and only if there exists a witnessw
of length at mostp(n, log m) such thatV (P (x), w) = 1.

Notice that when allowing for preprocessing, then all problems inP have a pair(P, V ) whereP solves the
problem and stores the answer whileV simply relays this answer. Thus when considering the complexity
of V in this definition, then easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and equivalent way to view
the classes in theVC hierarchy is based on the verification algorithmV in a verification with preprocessing
pair (P, V ). The problems are divided into two families:

• The classVC1 is the set of the languages that have very efficient verification (i.e.poly(n, log m) rather
thanpoly(n, m)). We assume random access to the instance (suppose that the verification algorithm
is a RAM), thus such a verification algorithm only accesses a sub-linear fraction of the instance.

• The languages whose verification is not very efficient (run in timepoly(n, m)). This family is further
classified into sub categories. The classVCk is the class of languages where the verification algorithm
V has a representation as a depthk polynomial size circuit (polynomial inn andm).

This definition is equivalent to the definition via W-reductions since the W-reduction to the complete
problem can simply be viewed as the preprocessing stage. In the other direction, every preprocessing stage
is actually a W-reduction to the language defined byV .

It is interesting to note that Buss and Islam [9] give an alternative view with similar flavor to theWeft
hierarchy of parameterized complexity. They call it “prepare, guess and check” in which they essentially
add a preprocessing phase to a previous approach of Cai and Chen [11].

2.5 Within VC1 - The ClassVCOR

Arguably, the most interesting class in the hierarchy is the bottom classVC1. It contains many natural
problems such as Clique or small subset-sum14 that only test local properties of the input. Furthermore, it is
presumably the easiest to find compression algorithms for. We further refine our hierarchy within the class
VC1 by introducing another class, the classVCOR. Consider the languageOR(L) that take a large OR of
small instances of a languageL. Formally:

Definition 2.19 (OR(L))
LetL be anNP language. Define the languageOR(L) as follows
Input: m instancesx1, ..., xm to the languageL, each of lengthn.

14This problem takesm values and a target value and asks if there is a small (sizen) subset of the values that adds up to the
target.
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Membership: (x1, ..., xm) ∈ OR(L) if there existsi ∈ [m] such thatxi ∈ L.

Specifically the languageOR(CircuitSAT ) is defined as:
Input: m circuitsC1, . . . , Cn where each circuit is of sizen.
Membership: (C1, ..., Cm) ∈ OR(CircuitSAT ) if at least one of them circuits is satisfiable.

This language is used to define the following class:

Definition 2.20 The classVCOR is the class of all languages that W-reduce toOR(CircuitSAT ).

We first note that in each of them small instances, the instance length and witness length are polyno-
mially related. So unlike the general case where we focused only on short witness languages, when talking
aboutOR(L), any languageL ∈ NP \ P is interesting. For example, the languageOR(3 − SAT ) is not
trivially compressible. Moreover, it is compression-complete forVCOR.

Claim 2.21 LetL be anyNP-complete language, thenOR(L) is compression-complete forVCOR.

Proof: The W-reduction fromOR(CircuitSAT ) to OR(L) simply runs the standard Karp reduction from
CircuitSAT toL for each of them circuits independently. The witness for each circuit was of length at most
n and is now of sizep(n) for some polynomialp. In addition the witness contains an index of the instance
of L that is satisfied, thus the total witness length isp(n) + log m. 2

For example, the problemOR(Clique) that getsm small graphs (overn vertices) and asks whether at
least one of the graphs hask sized clique (wherek = O(n)) is also compression-complete forVCOR.

Claim 2.22 VCOR ⊆ VC1

Proof: This is best seen by W-reducingOR(Clique) to LocalCircuitSAT. Given graphsG1, ..., Gm for
OR(Clique), generate the instancex = G1, ..., Gm and a circuitC that receives the locations of a clique in
one of the graphs and checks whether they are indeed the edges in these locations form a clique (all belong
to the same graph and are the edges induced byk vertices). The size of the circuit isp(n, log m) for some
polynomialp since it checks only locations inx that belong to one graph (of sizen). Finally, addp(n, log m)
dummy variables to the circuit so that the circuitC has size equal to the number of input variables (this is a
technical requirement in the definition of LocalCircuitSAT).2

Furthermore,VC0 ⊆ VCOR, since any compressible language can be W-reduced by the compression
algorithm to a language with instance sizep(n, log m) and this instance can be reduced to CircuitSAT and
viewed as an OR of a single small circuit and hence is inVCOR. Note that here too, one may need to add
dummy variables to make the circuit of the same size as its input. Altogether we have that:

VC0 ⊆ VCOR ⊆ VC1.

Finally, we show a language that is compression-hard forVCOR. This claim is also relevant to our
cryptographic applications (in Sections 3, 4, 5 and 6):

Claim 2.23 Clique is compression-hard forVCOR.

Proof: The languageOR(Clique) W-reduces to Clique simply by taking one graph that is the union of all
the small graphs in theOR(Clique) instance. Clearly there is a clique in the union if and only if there is a
clique in at least one sub-graph.2
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A similar claim is true for all problems involving searching for a connected subgraph of sizen in a
graph of sizem as long as the problem of deciding whether a graph of sizep(n) contains such a subgraph
is NP-Hard for some polynomialp(·). This is true, for instance, for the problem of whether there is a path
of lengthn.15

2.6 TheVC Classification and someNP Problems

In general, most of theVC classification focuses on W-reductions to depthk circuits. The reasoning for this
is that there is a certain tradeoff between depth and the number of variables. More precisely, we can reduce
the depth of a verification circuit, but only at the price of adding additional variables (this is done using
methods from Cook’s Theorem [17] and requires adding a variable for each gate in one intermediate level
of the circuit). Since the number of variables is the focal point when discussing compression (as it coincides
with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible views of the world. The twoendpoint
scenarios are (i) there is compression for every language inNP (as would be implied by a compression
algorithm for CircuitSAT), (ii) there is only compression for a few select problems, such as the examples in
section 2.1. A third option is that there is a compression algorithm for some compression-complete problem
in the hierarchy (say forVCk), which would imply the collapse of all the classes belowVCk to VC0.

We will briefly go over a few key classes in the hierarchy and a few examples of naturalNP problems
and their classification (as we know it) within theVC hierarchy. We note that all the statements in this
section apply also to compression with possible error (negligible inn).

The classVC0: Currently we know that this class contains all the languages inP, languages that are already
compressed by definition (such as3-SAT), and the languages that we showed compression algorithms
to (Vertex cover, PRG-output and Minimum-fill-in).

The classVCOR: This class contains all languagesOR(L) for anNP languageL. One natural example is
theOR(SAT ) problem which is actually a depth 3 circuit where the fan-in at the two bottom levels
is bounded byn and only the top gate is allowed to be of greater fan-in. Some important languages in
this class are those that need to be compressed in the cryptographic applications in Sections 3, 5 and
6.

The classVC1: Since we are only interested in problems where the witness sizen is much smaller than
the instance sizem, then many natural problems with this restriction are inVC1. For example, graph
problems that ask whether a small graph can be embedded in a large graph are all inVC1. The Clique
problem (with a clique of sizen), or Long-Path (a path of lengthn that does not hit any vertex twice)
are such small graph embedding problems. Small Subset-Sum is another natural language inVC1.
This language receives a set ofm values and a target sum and asks whether there is a small (sizen)
subset for which the values add up exactly to the target sum (see also footnote in Section 2.5).

Dominating Set: The problem asks, given a graph, whether there is a set ofk vertices such that all the graph
is in its neighbor set. Dominating set is in the classVC3 as implied by the following verification: the
witness is a setS and the algorithm tests that∀ vertexv ∃ vertexu ∈ S such that(u, v) is in the
graph. The∀ translates to and AND gate and the∃ translates to an OR gate. Finally, testing that an
edge is in the graph requires an AND over theO(log m) bits representing this edge. In total, this is a

15It is interesting to note that whereas the problem of finding a path of lengthn is fixed parameter tractable [2], Feige and
Kilian [32] give indications that the Clique problem is hard for smalln (via subexponential simulations). This illustrates that such
differences in parameterized complexity are not necessarily preserved in the classification of compression.
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depth 3 circuit. Note that a straightforward verification of vertex cover will also yield a depth 3 circuit.
However, while vertex cover is compressible and inVC0, for dominating set we are unaware of a better
method. In addition, dominating set iscompression-hard forVC2. This is seen by a standard reduction
of SAT to dominating set in which a SAT formula withn variables andm clauses is transformed into
a graph withm + 3n vertices with the property that the graph has a dominating set of sizen iff the
SAT formula is satisfiable.16

Weighted-SAT: Given a CNF formula of lengthm the problem asks if it has a satisfying assignment of
weight at mostk (at mostk variables are assigned the value1). Unlike our previous discussions
of SAT, the number of variables here is only bounded bym and the short witness simply consists
of the list of all variables that receive the value1 (that is, the witness is of lengthn = k log m).
This problem, with constant clause size, serves as the basic complete problem for the parameterized
complexity classW [2], which is at the bottom of the W-hierarchy (see [24]). However, with regards
to compressibility, we only know how to place it in the classVC4. This is shown by the following
verification procedure (using the same logic as with Dominating-Set): For every witness (list)L, the
algorithm tests that∀ clausesC either∃ a variablex ∈ C such thatx ∈ L or ∃ a negated variable
x̄ ∈ C such thatx 6∈ L. The verification ofx ∈ L adds up to total depth3 by testing that∃y ∈ L
such thatx = y (wherex = y is tested by an AND over the bits ofx andy). On the other hand,
verifying thatx 6∈ L requires total depth4 as it runs∀y ∈ L we havex 6= y. The overall depth is thus
dominated by the negated variables and is thus4.

OR of (large) instances: Consider the Or of CNF formulas over few variables (each CNF formula may be
large, unlike in the languageOR(SAT ) where the CNF formulas are considerably smaller than the
fan-in of the OR gate). In other words, instances of this language are depth three circuits where the
top gate is an Or gate. Yet the language is actually inVC2, as implied by Claim 2.16.

Integer Programming (IP): An instance of integer programming consists of a list ofm linear constraints
on n integer variables with the goal of maximizing a linear target function over thesen variables
(under the list of constraints). Unlike its counterpart of linear programming, where the variables may
take real values and is polynomial-time solvable, integer programming isNP-hard even when the
variables are restricted to taking only the values0 and1 (one of Karp’s original problems [55]). Thus,
the decision variant of integer programming, where the number of constraints is much larger than the
number of variables, is interesting with respect to compression. First, compressing it is at least as hard
as compressing SAT: given a SAT instance withn variables andm constraints it is simple to come up
with a corresponding IP instance with2n variables andm constraints, i.e. IP isVC2-hard. On the other
hand, a straightforward verification of a witness for this problem takes the proposed assignment for
then variables and checks if it satisfies each of the constraints. The verification of a linear constraint
can be achieved in logarithmic depth (inn), placing IP inVCk(n) for k(n) = Ω(log n). We are
unaware of a (significantly) better classification (of lower depth) for integer programming.

2.7 On Reducing the Error in Compression Algorithms

The error of a compression algorithm can be reduced substantially at the expense of a worse compression
rate (the output length of the compression algorithm will be longer). The idea is simply to run and store the

16In a nutshell, the reduction creates a triangle for each variablexi of the formula. One of the nodes of the triangle is identified
with the positive variable and another with its negation while the third is connected only to the other two. In addition, a vertex is
created for each clause in the formula. Now, each literal is connected with all of the clauses that it appears in. The generated graph
has a dominating set of sizen iff the formula is satisfiable.
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outcome of many executions of the compression, each time with a fresh and independent randomness. For
example, by storingn independent executions and using a Chernoff bound we arrive at the following claim:

Claim 2.24 LetZ be a compression algorithm for languageL with outcome lengthp(n, log m) andq, δ > 0
be such that (i) ifx ∈ L thenZ(x) ∈ L′ with probabilityq, and (ii) if x /∈ L thenZ(x) /∈ L′ with probability
q + δ. Then there is a compression algorithmZ ′ with error 2−Ω(δ2n) and outcome lengthnp(n, log m).

Note that this technique is limited by the growth of the output and, in particular, one cannot use this
method to achieve an error that is exponentially small inm (rather thann).

2.8 On Compression of Search Problems

So far, theNP problems that we discussed were all decision problems, that is, they ask ifx ∈ L, and are
answered by YES or NO. When considering a specificNP relationRL associatedwithL, then the above
decision problem has a natural search problem associated with it, which is to actually find a witness tox ∈ L
with respect to the relationRL. A solution to such a problem is ann bit string rather than just a single bit.

Loosely speaking, a compression algorithm for the search instance should produce a shorter output that
contains enough information about some witness for the original problem.

Definition 2.25 (Compression for search problem)A compression algorithm for anNP search problem
L (with respect toRL) is a pair of algorithms(Z,E) with a polynomialp(·, ·), whereZ is a polynomial-
time compression algorithm andE is an unbounded extraction algorithm. Given an instancex with witness
parametern we should have that:

1. Z(x) is of length at mostp(n, log m).

2. If x ∈ L and there is a witness of lengthn, thenE(Z(x)) = w wherew is a witness tox ∈ L with
respect toRL.

It is natural to consider the relationship between the difficulty of decision and search for a given problem, as
was done in other settings such as average-case complexity by Ben-David et al. [7]. We show that for any
problem a compression for the decision variant also yields a compression for the search variant,without an
increase in theV C hierarchy.

Theorem 2.26 For anyk ≤ 1, if the classVCk has a compression algorithm, then there is a compression
algorithm for the search problem of a relationRL of L ∈ VCk. This is true also forVCOR.

Note that Theorem 2.26 holds also when a small error in the compression is allowed. The error in the
resulting compression for search algorithm grows by a polynomial factor (by factorn3) with respect to the
error of the underlying compression for decision algorithm. This follows in a straightforward manner from
the proof (by a union bound).

The technique of the proof below also comes in handy in proving Theorem 5.4, regarding the application
of the ability to compress, say SAT, to cryptanalysis in hybrid bounded storage model. In the following
proof, a witness tox ∈ L refers to a witness according to the specific relationRL associated withL.

Proof: Given an instancex to a languageL, for anyi ∈ [n], consider theNP problemLi that asks whether
there exists ann bit witnessw to x ∈ L such thatwi = 1 (theith bit of w is 1). The languageLi is also in
VCk since its verification circuit is the same as the one forL with an additional AND to the variablewi (this
AND gate is incorporated into the top level AND of the circuit thus the depth remainsk).
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Our first attempt is to compress the instancex for everyi ∈ [n] with respect to the languageLi (denote
such a compression byZLi(x)). Thus we storeZLi(x) for all i ∈ [n], which amounts ton · p(n, log m) bits,
for some polynomialp(n, log m) (this is also inpoly(n, log m)). Now suppose that there is only asingle
witnessw to x; then one can extractw bit by bit, by solving the compressed instance of each bit. However,
this fails whenw is not the only witness, and we might obtain inconsistent answers for the different bits.

The natural idea now is to use the reduction of Valiant and Vazirani [80] to a unique witness, as was
done by Ben-David et al. [7] for showing that average NP being in BPP implies also a randomized search
algorithm for average NP. The idea is to choose a pairwise-independent hash functionh that is appropriately
shrinking, and add to the language the requirement thath(w) = 0. We use the following lemma:

Lemma 2.27 ([80]) Let L be anNP language and for everyx denote byWx the set of all witnesses to
x ∈ L. Let ` be such that2` ≤ |W | ≤ 2`+1. LetH`+2 be a family of pairwise independent hash functions
with h : {0, 1}n → {0, 1}`+2 for all h ∈ H`+2. Then

Prh∈H`+2
[|{w : w ∈ Wx andh(w) = 0}| = 1] ≥ 1

8

LetH be a family of pairwise independent hash functions. Consider theNP languageLH whose elements
are of the form(x, h) whereh ∈ H maps strings of lengthn to some shorter length. We have that(x, h) ∈
LH if there is a witnessw for x ∈ L andh(w) = 0. We note that this language is also inVCk, since
the additional requirement thath(w) = 0 can be verified efficiently overn variables (the hash functionh
computation is efficient). By Cook’s theorem this computation may be represented as a CNF formulaφh

over these variables plus onlypoly(n) additional variables. Thus adding the requirement of the hash does
not add to the depth of the verification circuit forL. This is easy to forVCk, and forVCOR note that we can
add (conjunction) the CNF formulaφh to each instance of CircuitSAT, while keeping the problem inVCOR.

Now, if we enumerate on all values of`, then with probability at least18 , for the correct̀ we will get that
LH has a unique witness; storingZLH

i
(x, h) for all i suffices to maintain the information about this witness.

This can be repeated sufficiently many times (sayO(n) times), so that with overwhelming probability one
of the attempts will indeed give a unique witness. However, this solution is also insufficient, since we have
stored a list ofO(n2) compressed values (O(n) repetitions for each value of` ∈ [n]) with the guarantee that
with overwhelming probability one of them is a witness forx, but we do not known which one (recall that
we cannot store the original instance and thus cannot verify that a witness is correct).

Our final attempt succeeds in reducing the list of potential witnesses into a unique and true witness. This
compression is as follows: Denote byLī the language that asks whether there exists ann bit witnessw to
x ∈ L such thatwi = 0 (similar toLi but withwi negated). The compression of an instancex to the search
problemL goes as follows:
For everỳ ∈ [n] repeat the followingn times:

• Chooseh ∈R H`+2.

• For all i ∈ [n] storeZLH
i

(x, h) andZLH
ī

(x, h).

The extraction procedure is as follows: For all` andh ∈ H`+2, solve all the compressed instance pairs.
For every pairZLH

i
(x, h) andZLH

ī
(x, h), if both are negative or both are positive, then ignore all values that

are compressed with thish. Only if for all i we have that exactly one of the instances being correct, then
output theith bit of w according to the result.

The above algorithm indeed compresses, since it only adds a factor ofn3 to the overall storage. With
probability at least1 − 2−Ω(n) at least one of the chosenh’s is successful in leaving exactly one witness to
x ∈ Lh, and this witness will be extracted. Finally, ifh did not leave exactly one witness, then this will be
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identified: If there are no witnesses thenZLH
i

(x, h) andZLH
ī

(x, h) will both be negative for alli. If there is

more than one witness, then for at least one choice ofi bothZLH
i

(x, h) andZLH
ī

(x,h) will be positive. 2

2.9 On Maintaining Other Information

We have seen that compression may maintain much more than just a yes/no answer. A natural question to
ask is what other types of information may be maintained through compression algorithms. The following
are some examples:

Number of witnesses:The compression described above actually maintains an approximation of the num-
ber of witnesses tox ∈ L (with respect toRL). Once the chosenk is too large, there will be a sharp
drop in the probability of having a witness and this can be observed when extracting the witnesses
and indicate what is the rightk.

An almost random witness: The compression above also outputs a witness that is almost uniformly
distributed overWx. Or more accurately, the probability of getting each witness is bounded by a
constant times1/|Wx|.

On maintaining all witnesses: As opposed to maintaining a single witness or the number of witnesses,
a compressed instance cannot always maintain the information aboutall of the witnesses of an input
instance. This is shown by the following simple information theoretic argument: encode anm bit
string s with a DNF circuitC by constructing for each positionj ∈ [m] a formulaCj on log m
variables. Ifs[j] = 1 then takeCj to be circuit that is satisfied iff the variables encode the index
j. If s[j] = 0 thenCj is the non-satisfiable circuitCj = 0. The circuitC is formed by taking an
OR of all these circuits (C =

∨
j∈[m] Cj). The satisfying assignments ofC correspond exactly to

the 1’s in s. ConsiderC as an input to the language as CircuitSAT17. Suppose that there exists a
compression algorithm that maintains all of the witnesses of a circuitC. In particular, this means that
them bit strings may also be extracted from the compressed instance. But this is clearly impossible
information theoretically, sincem random bits may not be represented bypoly(n, log m) < m bits.
So we conclude that if our goal is come up with a compression algorithm for SAT then we must come
up with a way of losing information about the witnesses.

In the examples of compression that we have seen in Section 2.1, the compression algorithms for
vertex cover, PRG-output and Minimum fill-in actually maintain all the witnesses. On the other hand,
the compression for GapSAT (which we will see in Section 2.10) does not necessarily maintain this
information, as it is based on sampling.

2.10 Speculation on Compression

We give two arguments that may be viewed as evidence to the existence and non-existence of compression
respectively.

An Optimistic View - Compression of a promise problem and the PCP Theorem: Consider the promise
problem GapSAT that takes as input a CNF formulaΦ of sizem over n variables and the guarantee that
eitherΦ is satisfiable or it is at most(1− 1

2n)-satisfiable (no assignment satisfies more than(1− 1
2n) of its

clauses). The task is to decide ifΦ is satisfiable or far from satisfiable.

17The circuitC is actually an instance for the languageOR(CircuitSAT ).
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Such a problem has a simple and witness-retrievable compression. The idea is to chooseO(n2) random
clauses fromΦ and take the AND of these clauses to be the compressed formulaΨ. This compression works
because ifΦ is far from satisfiable then for every assignment the formulaΨ is satisfied with probability
at most2−2n (Ψ does not contain one of the12nm unsatisfied clauses). Taking a union bound over all
assignments, we get that with probability(1 − 2−n) the formulaΨ has no satisfying assignment. On the
other hand, ifΦ is satisfiable then the same assignment also satisfiesΨ (and hence the witness-retrievability).
Note that our definition of GapSAT is robust in the sense that GapSAT is compressible whenever the gap is
(1− 1

p(n)) for every choice of a polynomialp(·).
The above simple compression algorithm is especially interesting in light of the PCP Theorem. One way

to view the PCP Theorem is as an efficient reduction from an instance of SAT to an instance of GapSAT.
Thus one can hope to combine the PCP reduction with the above compression and get a compression for
general SAT. However, reducing general SAT to GapSAT via the PCP is not a W-reduction as the witness
size grows to the order of the instance size. For starters, the PCP Theorem is typically defined over 3-CNF
formulas, and the reduction of a general sizem CNF to a 3-CNF addsO(m) variables. In order for this
approach to achieve compression for SAT, we require a new PCP Theorem that is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. For instance, one can consider
the promise problem GapClique where a graph of sizem either has a Clique of sizem/n or contains no
Clique of sizen. As in the case of GapSAT, GapClique is compressible by sampling a subset of its vertices.
Thus, coming up with a W-reduction from a general(n′,m′)-Clique problem (the graph of sizem′ either
contains a clique of sizen′ or not) to(n, m)-GapClique would enable the compression of Clique. We view
finding PCPs that are also W-reductions as a major research direction, especially in light of the recent new
proof to the PCP Theorem of Dinur [23].

This connection to succinct PCPs was subsequently studied by Fortnow and Santhanam [36]. They
derive negative results on PCPs from the negative results on compression.

A Pessimistic View - On Oblivious Compression: We have seen in Section 2.9 that it is impossible to
maintain all of the information in an instance when compressing it and some information is necessarily lost
(for example the list of all witnesses cannot be kept). On the other hand, we show that if compression exists
then it is not likely to lose too much information about the original instance. Such a result would entail the
collapse of the polynomial hierarchy to its second level. More formally:

Let Z be a compression algorithm for SAT. We consider it as a two input algorithm taking a formula
Φ and local randomnessr ∈ {0, 1}`. Denote byZ(Φ, U`) the random variable taking the output ofZ
with fixed inputΦ and randomr ∈R {0, 1}`. Let X be a distribution over formulas. The random variable
Z(X, U`) denotes the output ofZ under a choice of randomr and a randomΦ from the distributionX.

The compressionZ is said to beε-oblivious if for every m,n there exists a samplable distributionX
over satisfiable formulas of lengthm and withn variables, such that for every satisfiable instanceΦ (with
parametersm andn) the distributionZ(Φ, U`) and the distributionZ(X, U`) areε-statistically close.

Claim 2.28 If there exists anε-oblivious compression for SAT (withε ≤ 1
3 ), then the polynomial hierarchy

collapses to its second level.

Proof: We show that if oblivious compression of SAT instances exists then Co-SAT∈ AM. Consider
the following interactive proof that an instanceΦ 6∈ SAT. The verifier chooses a random satisfiable formula
Ψ ∈ X randomnessr ∈ U` and flips a random coinc. If c = 0 then the verifier sendsξ = Z(Φ, r) to the
prover, if c = 1 he sendsξ = Z(Ψ, r). The prover then answers1 if the compressed instance is satisfiable
and0 otherwise. The verifier accepts if the prover’s answer equals his bitc and rejects otherwise.
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Completeness:If indeedΦ 6∈ SAT, then the prover will be able to tell whether the verifier used a coinc = 0
or c = 1, simply by testing the satisfiability ofξ and replying correctly.
Soundness:Suppose thatΦ ∈ SAT, then by the obliviousness property ofZ the messageξ is from nearly
the same distribution whetherc = 0 or c = 1 and the prover is bound to error with probability1

2 + ε.
It should be noted also that the above impossibility result does not rely on the fact that the algorithmZ

actually compresses but rather on the obliviousness property.2

We note that the negative result of Fortnow and Santhanam [36] regarding deterministic compression of
SAT can be viewed as a further development of these ideas.

Part II: Cryptographic Applications

3 Basing Collision-Resistant Hash Functions on Any One-Way Function

Loosely speaking, a family of length-reducing functionsH is called collision-resistant hash functions (CRH)
if no efficient algorithm can find collisions induced by a random member of the family. That is, no PPTM
can find for a randomly chosenh ∈R H, a pair of input stringsx andx′ such thatx 6= x′ buth(x) = h(x′).
In addition we want (i) An efficient algorithm forsamplingfromH using (possibly secret) randomness (the
secret coins approach is potentially more powerful than when only public coins are used [48]) and (ii) An
efficient evaluation algorithm that given the description ofh ∈ H andx producesh(x). As mentioned
in the introduction, CRHs have wide cryptographic applications, see discussion and formal definitions in,
for example, [53]. We are interested in basing CRH on as general assumption as possible. There is no
known construction of CRH from general one-way functions or one-way permutations. Moreover, Simon
[77] showed that basing CRH on one-way permutations cannot be achieved using black-box reductions18.
We show that compression can be used to bridge this gap.

Theorem 3.1 If there exists an errorless compression algorithm for SAT, or for any problem that is compression-
hard for VCOR, then there exists a construction of a family of Collision-Resistant Hash functions (CRH)
based on any one-way function.

Proof: Let (COMMIT , VERIFY) be a statistically binding computationally hiding commitment scheme
based on the one-way functionf (see, for instance, [37] for formal definitions of commitments). Recall
that the protocol COMMIT takes from the sender a stringS and randomnessr and after an interaction the
receiver gets a commitmentσ. The polynomial-time algorithm VERIFY takes the commitmentσ and a
possible opening to valueS′ with randomnessr′ and verifies thatS′, r′ are consistent withσ. One could
take for example the commitment scheme of Naor [67] based on the one-way functionf .19 In our setting
we can work under the assumption that the sender (in the commitment) is honest, and in such a case, the
commitment may be achieved without interaction at all20.

The CRH construction is inspired by the approach of Ishai, Kushilevitz and Ostrovsky [53] for construct-
ing collision-resistant hash functions from Private Information Retrieval (PIR). A high level description is:

18Simon’s black-box impossibility result [77] is actually stated for thepublic coins version of CRH rather than thesecretcoins
variant that we discuss. However this separation also holds for the case of secret coins (as pointed out in [48]).

19To be more exact, the commitment of [67] can be based on the pseudorandom generator of Håstad et al. [47] which in turn can
be based on the functionf .

20In the scheme of Naor [67], the receiver is required to provide the sender with a (public) random string. Certainly, an honest
sender can generate this string by himself without harming the properties of the commitment. Thus in such a setting, the sender can
generate the commitment without interaction.
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choose a hash function from a naive hash family with no computational hardness guarantees; in the con-
struction below we use the selection function, i.e. a random positioni. The new hash function is defined by
a computationally hiding commitment to the naive hash function, and the output of the new hash function is
a compression maintaining the information of the committed naive hash function when applied to the input
(i.e. compression of the formula that checks that the value is what it claimed to be). Intuitively, finding a
collision would require guessing with non-negligible advantage the naive hash function (the positioni). The
actual construction is given in Figure 1.

CRH family Hf :

Description of the hash function: Let Z be a compression algorithm for SAT. A function in the
CRH collection is denotedhσ,rZ and defined by a commitmentσ to a valuei ∈ [m], and
randomnessrZ for Z. The commitment uses security parametern.

Input to hσ,rZ : a stringx ∈ {0, 1}m

The CNF formula Φσ,x is defined as follows:

• Denote by VERIFYσ the algorithm VERIFY with the inputσ fixed. That is, VERIFYσ

takes as inputsy andr and accepts if and only if they form a legal opening of the
commitmentσ (and in particular this means thaty = i).

• Translate VERIFYσ into a CNF formulaΦσ (using Cook’s reduction) over the variables
y1, ..., y` of y, the bits ofr and dummy variables added in the reduction.

• For everyj ∈ [m] define the clauseCj,x = (yj̄1
1 ∨ yj̄2

2 ∨ ....∨ yj̄`
` ) if xj = 0 (wherey0

denotes̄y andy1 denotesy) andCj,x = 1 if xj = 1.

• Set
Φσ,x = Φσ ∧

∧
j∈[m]

Cj,x

The hash function:
hσ,rZ (x) = Z(Φσ,x, rZ)

Figure 1: The construction of Collision-Resistant Hash from any one-way function.

By the compressing properties ofZ we get thathσ,rZ indeed shrinks its input (note that shrinkage by a
single bit allows further shrinking by composition). We also have that samplinghσ,rZ fromH can be done
efficiently (with secret coins).

As for collisions, letx 6= x′ be two strings in{0, 1}m that form a collision, i.e.,hσ,rZ (x) = hσ,rZ (x′).
This equality implies, by the property of the compression, thatΦσ,x is satisfiable iffΦσ,x′ is satisfiable (here
we use the fact that the compression is errorless). Due to the binding property of the commitment we have
that any assignment satisfyingΦσ must havey = i (recall thati is the index thatσ is a commitment to).
Thus the first part ofΦσ,x is only satisfied wheny = i. But the second part is only satisfied ifxy = 1,
thusΦσ,x is satisfied if and only ifxi = 1. We get thatΦσ,x is satisfiable if and only ifxi = 1 andΦσ,x′ is
satisfiable if and only ifx′i = 1. Therefore it must be the case thatxi = x′i, since otherwise one of them is
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0 and the other one is1 and the satisfiability ofΦσ,x is different than that ofΦσ,x′ . But for somej we have
xj 6= x′j and for thatj we deduce thatσ is not a commitment toj.

Suppose now that we have an efficient procedure that finds a collisionx andx′ for a given(σ, rZ) with
relatively high probability (an inverse polynomial inn). Whenever the procedure indeed finds a collision,
pick anyj such thatxj 6= x′j . For thisj we can deduce thatσ is not a commitment toj. This procedure
can be used to break the hiding properties of the commitment scheme, since it yields an efficient method
that distinguishes the commitment value from random with advantage1/m: given (the real)i and a random
onei′ ∈ [m] in a random order, run the above procedure to obtainj. If j equals one of the two valuesi
or i′, then guess this one as the random one and otherwise flip a coin. This contradicts our assumptions on
building blocks (namely, the one-way function).

To prove the result when using compression for any language that is compression-hard forVCOR, a
similar construction is defined based on the OR of small circuits rather than CNF formulas: For every
j ∈ [m] let Cσ,j be the circuit that outputs one if and only if there exists randomnessr such thatσ is
consistent with(j, r) (that isσ is a possible commitment to the valuej using randomnessr). LetCσ,x be the
circuit that takes the OR of allCσ,j such thatxj = 1 and letZ be a compression algorithm for the language
OR(CircuitSAT ). We definehσ,rZ (x) = Z(Cσ,x, rZ). The proof is identical to the case of SAT.2

Note that instead of an errorless compression we can do away with an error probability slightly smaller than
2−m. That is, for allx we want the probability thatZ(Φσ,x, rZ) preserves the satisfiability ofΦσ,x to be at
least1 − 2−m+u where the probability is overσ andrZ andu ≈ log m. In this case we can argue (using a
union bound) that with probability at least1− 2−u nox exists violating the preservation of satisfiability.

We also note that the construction is inherently non-black box as it uses the code of the one-way function
(via the commitment) in the application of Cook’s Theorem. This is essential for the validity of the whole
approach in light of the black-box impossibility of Simon [77]. Theorem 3.1 implies the following corollary:

Corollary 3.2 If there exists an errorless compression algorithm for SAT or for any problem that is compression-
hard forVCOR, then there existstatistically hiding, computationally binding commitmentschemes based on
any one-way function. The scheme requires two rounds of interaction.

The corollary follows since CRH imply statistically hiding bit commitment, see Naor and Yung [70] (and
Damg̊ard, Pedereson and Pfitzman [19] for commitment to many bits). Until recently, the known minimal
assumptions for constructing statistically hiding bit commitments were the existence of one-way permuta-
tions [69] and the more general one-way functions with known pre-image size [43]. Since the publication
of the earlier version of this paper statistically hiding bit commitments based on any one-way function were
shown to exist [71, 44]. However, all of these protocols [69, 43, 44] require many rounds of interaction – at
least linear in the security parameter (this was shown to be an inherent limitation of the technique [33, 42]).
The commitments based on CRHs, on the other hand, are non-interactive, at least after the initial phase
where the functionh ∈ H is chosen. Such a non-interactive CRH also allows for commitment schemes with
very low communication [57].

4 Basing One-Way Functions on Hard Instances

In this section we consider a method for constructing one-way functions from problems that are hard on the
average over a samplable distribution. We start by defining the notion of hardness that we discuss. Denote
by (x ∈ L) the boolean value which corresponds to whetherx is in L or not.
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Definition 4.1 A languageL is hard for polynomial-size circuits over a distributionD if for every family of
polynomial-size circuits{Cn}, for every polynomialp(·) and for all large enoughn, it holds that:

Prx←D(1n)[Cn(x) = (x ∈ L)] ≤ 1
2

+
1

p(n)

Let L be a language (not necessarily inNP). Recall that the languageOR(L) with parametersm and
n is defined as follows:

OR(L)m,n = {(x1, . . . , xm) | ∀i|xi| ≤ n and∃i such thatxi ∈ L}.

The following theorem demonstrates how compression ofOR(L) can be used to construct one-way
functions.

Theorem 4.2 Given a languageL that is hard for polynomial size circuits over a samplable distributionD
and a compression algorithmZ for OR(L),

1. If Z is errorlessthen there is a construction of collision resistant hash functions.

2. If Z allows a negligible error (negligible inn) there is a construction of a one-way function.

Note that there is no restriction on the complexity of recognizingL, other than it being hard for circuits over
a samplable distribution. In particularL need not be inNP at all. If L does happen to be inNP, then the
above statement can use a general compression of aVCOR-complete language.

Corollary 4.3 let L ∈ NP be hard for polynomial size circuits over a samplable distributionD (as in
Definition 4.1). If there exists a compression algorithm for SAT, or for any problem that is compression-
hard forVCOR, then there is a construction of a one-way function. If the compression is errorless then there
is also a construction of collision resistant hash functions.

Proof: (of Theorem 4.2) The proof follows by defining a family of hash functionshS based on a compression
algorithm. The claim is that, in the errorless case,hS is a family of collision resistant hash functions (see
Section 3). IfZ is error prone then we define a modified hashh′S and prove that it is a family ofdistributional
collisions resistant hash functions. That is, it is hard to find arandomcollision for h′S . This implies that
h′S naturally defines a distributional one-way function, which, in turn, implies the existence of one-way
functions.

We begin by proving the statement in the case of errorless compression. Define a family of hash func-
tionshS as follows. Each hash function is defined byS = (σ0

1, σ
1
1, . . . , σ

0
m, σ1

m), a2m-tuple of instances of
lengthn from the domain of the distributionD. LetZ be a compression algorithm for the languageOR(L).
Define the hash functionhS(x) = Z(σx1

1 , . . . , σxn
n ). Suppose there exists an efficient procedureA that

finds collisions forhS over randomS ∈ D2m. More precisely, there exists a polynomialp(·) such that for
infinitely manyn,

PrS∈D2m [A(S) = (x, x′) such thatx 6= x′ andhS(x) = hS(x′)] ≥ 1
p(n)

.

Denote byD0 the restriction of the distributionD to instancesσ 6∈ L. Note thatD0 is not necessarily
samplable. We show that if there exists a procedureA that finds collisions overS ∈ D2m

0 (rather thanD2m)
thenA can be used to break the hardness of the languageL overD. To complete the proof we then show
that if A is successful overD2m then it is also successful overD2m

0 .
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Lemma 4.4 LetA be an efficient algorithm andp(·) be a polynomial such that for infinitely manyn,

PrS∈D2m
0

[A(S) = (x, x′) such thatx 6= x′ andhS(x) = hS(x′)] ≥ 1
p(n)

,

then there exists a family of polynomial-size circuitsCA such that for infinitely manyn,

Prσ∈D[CA(σ) = (σ ∈ L)] ≥ 1
2

+
1

2np(n)
.

Proof: (of lemma 4.4) By the assumption the procedureA finds a collision with probability at least1p(n)

(overD2m
0 ). Therefore, there exists an indexi ∈ [m] such thatA finds a collisionx, x′ such thatxi 6= x′i (x

andx′ differed on theith bit) with probability at least 1
np(n) (since every collision must differ in at least one

bit). This indexi is used in the reduction described next.
The strategy ofCA for determining membership inL is as follows: Given an inputσ drawn from the

distributionD, create a2m-tupleS by puttingσ in the ith pair in S (for example, defineσ1
i = σ) and fill

the other entries by random instances from the distributionD0. The non-uniform hint is used to determinei
and to supply the random samples fromD0. Now run the algorithmA on the tupleS and retrieve a collision
x, x′ (if A was successful). Ifxi 6= x′i. then answerσ /∈ L. Otherwise, answer according to a random coin
flip.

Under the restriction thatσ /∈ L, the tupleS is distributed precisely as the distributionD2m
0 . Therefore,

with probability at least 1
np(n) the algorithmA returns a collision withxi 6= x′i andCA answers correctly

thatσ /∈ L.
On the other hand, under the restriction thatσ ∈ L, the algorithmA cannot return a collision with

xi 6= x′i. This is due to the fact that the outcome ofhS(x) corresponds to whether(σx1
1 , . . . σxn

n ) is in
OR(L) or not (by the correctness of the compression algorithm). But membership inOR(L) is determined
solely by theith pair (all of the other pairs are not inL), and more precisely by the value of the bitxi.
Therefore, a collision can only occur if theith bit is the same inx andx′. Thus, in this case the procedure
CA answers “not in L” with probability exactly12 .

Altogether, the procedureCA answers correctly wheneverxi 6= x′i (happens with probability 1
np(n) ) and

with probability 1
2 otherwise. This amounts to a success probability of1

2 + 1
2np(n) . 2

It is left to show thatA is as successful onD2m as it is onD2m
0 . For this we define an event under which

A is considered successful. In our case it is the cases thatA running onS returns a collision underhS (i.e.,
A(S) = (x, x′) such thatx 6= x′ andhS(x) = hS(x′)). We say that an algorithm’s success can beefficiently
verifiedif there exists a polynomial-time computable relationR such thatR(A(S), S) = 1 if and only if A
was successful onS. This is clearly the case with collision finding since one can verify efficiently whether
the two outputs ofA are distinct and collide underhS . We conclude the first part of the theorem using the
following claim:

Claim 4.5 LetA be a polynomial time algorithm whose success can be verified efficiently and letD andD0

be defined as above. Then for every polynomialp(·) and all large enoughn:

|PrS←D2m [A succeeds onS]− PrS←D2m
0

[A succeeds onS]| < 1
p(n)

Proof Sketch: Claim 4.5 is proved by a standard hybrid argument (see e.g., [37], Section 3.2.3 ). Namely,
one can use a distinguisher betweenD2m andD2m

0 in order to distinguish betweenD andD0. This in
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turn is enough to break the hardness ofL overD. Note that non-uniformity is used in the reduction (for
constructing hybrid distributions) and so this only achieves a contradiction ifL is hard againstnon-uniform
adversaries (circuits) even if the distinguisher betweenD2m andD2m

0 is actually uniform. 2

This concludes the proof for the errorless case. We now turn to the case of error-prone compression. In
this case we also incorporate the stringr of random coins used byZ into the hash. Define

h′S(x, r) = (Zr(σx1
1 , . . . σxn

n ), r).

Unlike the errorless case, we do not know thath′S forms a CRH family (since the errors may form
collisions that are easy to find). Rather, we first show thath′S is a family ofdistributionalcollision resistant
hash functions (DCRH) (a similar primitive was defined in [26]). Loosely speaking, this is a family such
that for a randomly chosen hash in the family, no efficient algorithm can find arandomcollision of the hash.
A DCRH is useful since such a family translates to acollection of distributional one-way functionswhich
in turn imply the existence of standard full-fledged one-way functions. A distributional one-way function
is a function for which it is hard to find arandominverse of an output element (rather than just a single
pre-image as in standard one-way functions). This notion was defined by Impagliazzo and Luby [50], who
showed that the existence of distributional one-way functions implies the existence of standard one-way
functions. We use a straightforward generalization of distributional one-way functions to collections rather
than a single function.

Note, however, that we only show thath′S is a DCRH whenS is sampled according to the distribution
D2m

0 . In particular, the key to the hash function cannot necessarily be sampled in an efficient manner.
This eventually translates to a one-way function over a domain that might not be efficiently samplable.
Unfortunately, one cannot apply Claim 4.5 to show thath′S forms a DCRH also whenS is taken fromD2m,
since the property of finding arandomcollision is not efficiently verifiable. Instead, we first construct a
collection of one-way functions (via distributional one-way functions) in which the keys are chosen from
D2m

0 , and then apply Claim 4.5 to show that the one-wayness holds also for a collection chosen fromD2m

(using the fact that finding a single inverse is an efficiently verifiable property).
More formally, as in the case of CRH, a collection of functions consists of algorithms for sampling a

key S and evaluating a hash functionh′S over the generated key (in our context we only require that the
evaluation algorithm be efficient). For a fixed keyS, suppose thath′S takes inputs of length̀. For every
such keyS define the distributionCS over pairs(y, y′) such thaty ∈ U`(n) andy′ is taken uniformly from
the collection of the siblings ofy (that is, from the set{y′ | h′S(y) = h′S(y′)}). A collection is said to
be adistributional collision resistant hash family (DCRH) if for every efficient algorithmA and every
negligible functionε(·) the probability over the keysPrS [A(S) is ε(n)-close toCS ] is negligibly small (i.e.,
n−o(1)). We will first show thath′S as defined above is a DCRH whenS is sampled fromD2m

0 . This is
implied directly from the following lemma (proof appears after the proof of Theorem 4.2):

Lemma 4.6 Let A be an efficient algorithm,εA(·) be a negligible function andp(·) be a polynomial such
that for infinitely manyn:

PrS∈D2m
0

[A(S) is εA(n)-close toCS ] ≥ 1
p(n)

,

then there exists an efficient circuitCA such that for infinitely manyn,

Prσ∈D[CA(σ) = (σ ∈ L)] ≥ 1
2

+
1

3np(n)
.
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We now show that a DCRH implies a collection of distributional one-way functions and start by defining
this notion. As before, a collection of functions consists of algorithms for sampling a keyS (given security
parameter) and evaluating a keyed functionfS over the generated key (where the sampling algorithm is
not necessarily efficient in our case). A collection is said to bedistributional one-way if the probability
PrS [(A(fS(U`), S), fS(U`)) is ε(n)-close to(U`, fS(U`))] is negligibly small (i.e.,n−o(1)). The distribu-
tions are taken over the choice of the input inU` and the random coins ofA.

Claim 4.7 Any DCRH also forms a collection of distributional one-way functions.

Proof Sketch: This is shown by demonstrating that a procedureA for breaking the distributional one-
wayness offS can be used to break the distributional collision-resistance of this function. Define the proce-
dureBA as follows: (i) choose a randomx ∈ U` (ii) computex′ = A(fS(x), S) and (iii) if x 6= x′ then out-
put (x, x′), otherwise repeat from (i). If, for a givenS, the procedureA is such that(A(fS(U`), S), fS(U`))
is ε-close to(U`, fS(U`)) then the output ofBA is ε-close toCS . 2

We now use the result of [50] that constructs standard one-way function from a distributional one-way
function. The same transformation holds also for collections of functions (the notion that we use), since
the proof holds separately for each function in the family. Thus we derive standard collections of one-way
functions (for definition, see e.g., [37]).

Lemma 4.8 (From [50], Lemma 1) If there is a collection of distributional one-way functions then there is
a collection of one-way functions.

At this point we have a collection of one-way functionsfS in which the keyS is sampled from the
distributionD2m

0 , (which is not necessary efficiently samplable). We can now apply Claim 4.5 to show
that this holds also whenS is sampled from the distributionD2m (which is efficiently samplable). We use
the fact that the success of an adversary in finding an inverse offS(x) is efficiently verifiable (unlike the
success in finding arandominverse). The final step is a standard transformation from a collection of one-
way function to a single one-way function (e.g., see [37], Section 2.7.4, Exercise 18). This concludes the
proof of Theorem 4.2 2

Proof: (of Lemma 4.6) The proof resembles that of the errorless case (Lemma 4.4) and in fact the circuit
CA is essentially the same circuit (barring the minor technicality of ignoring ther part of the inputs).

Recall that the construction in Lemma 4.4 identifies an indexi for which a collision withxi 6= x′i is
found with probability at least 1

np(n) . Given an instanceσ ∈ D it generates a2m-tupleS with σ in the ith

pair and the rest filled with random instances fromD0. In Lemma 4.4 when one was given a collision with
xi 6= x′i we could immediately deduce thatσ /∈ L. This is not the case when an error is allowed, since for
all we know, the algorithmA might always return anx, x′, r such thatZ with randomnessr errs on eitherx
or x′. What we show is that ifA returns a collision according to the required distributionCS , then with all
but negligible probability this collision is a “good” collision (good in the sense thatZr errs on neither), in
which case we can safely deduce that ifxi 6= x′i thenσ /∈ L.

Claim 4.9 LetZ be a compression algorithm forOR(L) with error probabilityεZ then for anyS ∈ D2m,
Pr(x,x′,r)←CS [Zr errs on eitherx or x′] < 2εZ .

By the assumption onA we get that with probability at least 1
np(n) the algorithmA returns a collision

with xi 6= x′i and by Claim 4.9 we have that with all but probability2εZ + εA (a negligible probability) this
collision implies thatσ /∈ L (recallεA is the statistical distance of the output of a successfulA from CS).
Thus the circuitCA distinguishes betweenσ ∈ L andσ /∈ L with advantage at least 1

2np(n) − εZ − εA
2 (and

in particular with advantage 1
3np(n) ). This concludes the proof of Lemma 4.6.2
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Proof: (of Claim 4.9) When sampling fromCS , the first value(x, r) in the collision is simply taken ac-
cording to the uniform distribution. In particularr is sampled independently ofx and by the definition of
compression, for everyx, at most anεZ fraction of ther’s yield an error. Moreover, when ignoring the first
pair, the second value(x′, r) is also uniformly distributed. This is because the probability of getting a value
(x′, r) as the second element in a collision is the probability of hitting a sibling of(x′, r) (according toh′S)
as the first element and then the probability of choosing it out of all siblings. Denote the sibling set of(x′, r)

by Sib(x′,r) and the combined length|x′| + |r| by `. Then the probability of getting(x′, r) is
|Sib(x′,r)|

2` for
hitting Sib(x′,r) times 1

|Sib(x′,r)|
for hitting (x′, r) within the set. Thus each element appears as the second

element with probability1
2` . Therefore, the probability ofZr having an error on at least one of the values in

the collision is at most2εZ (by a union bound). 2

5 On Everlasting Security and the Hybrid Bounded Storage Model

The bounded storage model, introduced by Maurer [62], bounds thespace(memory size) of dishonest
players rather than their running time. The model is based on a long random stringR of lengthm that is
publicly transmitted and accessible to all parties. Security relies on the assumption that an adversary cannot
possibly store all of the stringR in his memory. The requirement is that the honest parties Alice and Bob
can interact using a small local storage of sizen (wheren is significantly smaller thanm) while security is
guaranteed against an eavesdropper Eve with a much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key encryption. It has been shown that Alice
and Bob who share a short private key can exchange messages secretly using only a very small amount
of storage21, while an eavesdropper who can store up to a constant fraction ofR (e.g. 1

2m bits) learns
essentially nothing about the messages (this was shown initially by Aumann and Rabin [4] and improved in
[3, 22, 30, 61] and ultimately in Vadhan [79]). These encryption schemes have the important property called
everlasting security(put forward in [3, 22]). Once the broadcast is over andR is no longer accessible then
the message remains secure even if the private key is exposed and Eve gains larger storage capacity.

In contrast, the situation is less desirable when Alice and Bob do not share any secret information in
advance. The solution of Cachin and Maurer [10] for this task requires Alice and Bob to use storage of size
at leastn = Ω(

√
m), which is not so appealing in this setting. Dziembowski and Maurer [29] proved that

this is also the best one can do.

The Hybrid Bounded Storage Model: The inability to achieve secure encryption in the bounded storage
model with memory requirements smaller thann =

√
m has lead to the following suggestion that we call

thehybrid BSM: Let Alice and Bob agree on their secret key using a computationally secure key agreement
protocol (e.g. the Diffie-Hellman protocol [21]). The rationale being that while an unbounded eavesdropper
will eventually break the key, if this happens after the broadcast had already occurred, then the knowledge
of the shared key would be useless by then (this should be expected from the everlasting security property
where getting the shared key after the broadcast has ended is useless). This hybrid model is very appealing
as it attempts to achieve everlasting security by adding assumptions on the ability of an adversary that has a
strict time limit. Assumptions of this sort are generally very reasonable since all that we require is that the
computational protocol is not broken in the short time period between its execution and the transmission of
R. For instance, an assumption such as the Diffie Hellman key agreement [21] cannot be broken within half
an hour, can be made with far greater degree of trust than actually assuming the long term security of this
protocol.

21Alice and Bob only requiren = O(` + log m + log 1
ε
) bits of memory to exchange an` bit message with errorε.
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Somewhat surprisingly, Dziembowski and Maurer [29] showed that this rationale may fail. They in-
troduce a specific computationally secure key agreement protocol (containing a non-natural modification
based on private information retrieval (PIR) protocols). If this key agreement protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdropper can completely decrypt the encrypted
message. However, their result does not rule out the possibility that the hybrid idea will work with some
other key agreement protocol. For instance, using the plain Diffie Hellman key agreement may still work.

In this work we show that if compression of SAT exists then there exists an attack on the everlasting
security ofanyhybrid BSM scheme.

5.1 Two Possible Models

The notation we use for the storage bounds of the honest parties isnA andnB (respectively) and for Eve’s
bound it ismE . For simplicity we takenA = nB = n and use an abuse of notations by settingmE = m
(where actually it should be thatmE = 1

2m).
We define the hybrid BSM22 as a setting where the running time of the eavesdropper Eve is polynomially

bounded up until and during the broadcast ofR, and unbounded after that. We discuss two variants of a
BSM scheme. We first discuss these in the standard BSM where the eavesdropper is unbounded over time,
and then compare them to the hybrid setting where computational restrictions are imposed:

• The Basic BSM Scheme:The basic scheme allows interaction only up to the start of the broadcast
of R (after that only the encrypted message is sent). Thus the key is fully determined by the time the
broadcast has ended. Such a scheme is fully breakable in the standard (non-hybrid) BSM (without an
initial secret key) since the unbounded adversary can find some randomness consistent with Alice’s
view, and simulates Alice’s actions and thus recover the encryption key23. Basic schemes in the hybrid
BSM are interesting as they include any combination of a key agreement protocol with a private key
scheme (such as the one described by [29] and [45]). We show that if sufficiently strong compression
exists then there exist attacks on any such scheme.

• The General BSM Scheme:Alice and Bob interact both beforeandafter the broadcast ofR. Dziem-
bowski and Maurer [29] show that such a scheme is breakable unlessn > Ω(

√
m) (without initial

secret keys). For the hybrid BSM, we show that if compression exists then there exists an attack on any
such scheme as long asn > Ω(

√
m/p(n, log m)), for some polynomialp (related to the polynomial

of the compression algorithm and to the running time of the protocol that Alice and Bob use).

Thus we prove that if compression of SAT (or of anyVCOR-hard language) is feasible then the hybrid BSM
is essentially no more powerful than the standard BSM.

5.2 The Basic Hybrid BSM

Definition 5.1 (Basic hybrid BSM scheme)A basic hybrid BSM scheme consists of the following: Alice
and Bob with storage boundn run a protocolΠ that is polynomial inn (this could be a key agreement
scheme with security parametern). Denote byT the transcript of this protocol. Alice and Bob use their
respective views of the protocolΠ (i.e. the transcriptT and their local randomness) to agree on at mostn
locations of bits from the broadcast stringR that they should store. They store these bits and then use the
stored bits to generate an encryption keyK (the scheme requires that they agree on the same key).24

22The hybrid BSM model and notions of everlasting security in this model are formally defined in [45].
23Since Alice must be able to decrypt the message then simulating Alice with any randomness that is consistent with the transcript

must output the same key.
24The discussion is also valid if the parties are required to reach an agreement with all but negligible probability.
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We show that sufficiently strong compression of SAT can be used to break any hybrid BSM scheme. For
such a scheme to be secure it is required that the keyK remains secret in presence of an eavesdropper that
runs in polynomial time up until and during the broadcast, but is unbounded after it. We refer the reader to
[46] for rigorous definitions of security (the attack presented below is not sensitive to the actual definition).

For the discussion here takeK to be a one bit key. The general idea is that while the eavesdropper may
not figure out in time what locations to store, he can use this transcript to save a relatively short (compressed)
CNF formula whose satisfiability coincides with the value of the keyK. Later, when he is given unbounded
computational power, he will be able to extract this bit from the compressed formula.

Theorem 5.2 If there exists a compression algorithm for SAT or for any compression-hard language for
VCOR, with polynomialp1, then any basic hybrid BSM scheme can be broken using memoryp2(n, log m)
(wherep2 is a polynomial related top1 and the running time of the protocolΠ).

Proof: Denote the locations of the bits that Alice and Bob store byi1, ..., in. Consider the algorithmV
that takes the transcriptTΠ and the broadcast stringR as inputs and Alice’s local randomness, and locations
i1, ..., in as a witness. The algorithm should check if the witness and inputs are indeed consistent with one
another (for example,V should verify that a key agreement with the randomness of Alice, the transcriptT
indeed chooses the indicesi1, ..., in to store) and output1 if and only if they are consistent and generate an
encryption keyK = 1. The main observation is that theNP language defined by this relationV is in VC1.
Thus, if SAT has a compression algorithm then there is also a compression algorithm for all ofVC1 (from
Lemma 2.17) including the language defined byV .

The attack of the eavesdropper Eve is as follows: Eve generates the verification programV and feeds
the instance(T,R) to the compression algorithm for the languageV . By the properties of the compression,
the output is a CNF formula that is satisfiable if and only ifK = 1. The length of the output is of some
polynomial lengthp2(n, log m). If the polynomialp2 is sufficiently small then the compressed instance is
shorter than Eve’s space bound1

2m, and he stores this output. Finally, at a later stage, Eve can use her
unbounded powers to solve the compressed problem and retrieve the bitK.

We note that a slightly more involved argument works also with compression forVCOR. The idea is to
use independent compression for the bitR(ij) for everyj ∈ [n]. Every suchR(ij) may be presented as the
OR ofm circuits of sizep(n) each, for some polynomialp. 2

5.3 The General Hybrid BSM

The general scheme is like the basic one but the encryption keyK is not necessarily fully defined by the end
of the broadcast. In addition, the parties are allowed to interact after the broadcast is over. We note that the
bounded storage key exchange scheme of Cachin and Maurer [10] requires such late interaction.

Definition 5.3 (General hybrid BSM scheme)The general hybrid BSM scheme consist of the following:
Alice and Bob with storage boundn engage in a protocolΠ1 that runs in time polynomial inn. Denote
by T1 the transcript of this protocol. Each of the two parties Alice and Bob uses its respective view of the
protocolΠ1 to determine at mostn locations in the broadcast stringR and stores the bits in these locations.
After the broadcast they interact in a second protocolΠ2 (with transcriptT2) at the end of which they both
agree on encryption keyK (with all but negligible error probability).

Theorem 5.4 If there exists a compression algorithm for SAT or for any compression-hard language for
VCOR with compressionp1(n, log m), then there exists an attack on any general hybrid BSM scheme where
n2 > m/p2(n, log m) (wherep2 is a polynomial related top1 and the running time of the protocolΠ1).
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Proof: Denote byAT1 the set of all possible random stringsrA of Alice that are consistent with the transcript
T1 (recall thatT1 is executed in full before the stringR is broadcast and thereforeAT1 is fully determined by
T1). Let sA = SA(T1,R, rA) denote the bits that Alice stores at the end of the broadcast when running with
randomnessrA, transcriptT1 and broadcast stringR. Finally, denote bySA(T1,R) the random variable
that isSA(T1,R, rA) for a uniform choice ofrA ∈ AT1 . That is,SA(T1,R) is distributed over all possible
sA’s that Alice may store when running with transcriptT1 and broadcast stringR. Similarly we denote by
SB(T1,R) the corresponding possible view of Bob.

The proposed strategy for Eve is to storen independent samples from the random variableSA(T1,R).
For this purpose we denote bySE(T1,R) (for anyR andT1) the random variable that consists ofn inde-
pendent samples ofSA(T1,R). An important observation due to Maurer [63] is that the uncertainty of Eve
regarding the underlying key is upper bounded by the mutual information between the views of Alice and
Bob given Eve’s view. Formally, the relevant quantity isI(SA(T1,R);SB(T1,R) | SE(T1,R)). The suc-
cess of Eve’s strategy follows from the two lemmata below, the first due to Dziembowski and Maurer [29]
and the second due to Maurer [63]: .

Lemma 5.5 ([29]) LetSA(T1,R),SB(T1,R) andSE(T1,R) be defined as above. Then:

I(SA(T1,R);SB(T1,R) | SE(T1,R)) ≤ n2/m

.

Lemma 5.6 ([63], Theorem 3)LetVA,VB andVE be random variables denoting the respective views of
Alice, Bob and Eve. LetKA = KA(VA) andKB = KB(VB) be procedures of Alice and Bob to extract a
mutual secret key from their respective views, such thatK = KA = KB with all but negligible probability.
ThenH(K) ≤ I(VA;VB | VE).

A strategy for an eavesdropper is therefore to storen independent samples of the random variable
SA(T1,R). Lemmata 5.5 and 5.6 assert that Eve’s entropy of the encryption keyK is at mostn2/m in
such a case. A crucial point is that an encryption key that has entropy significantly lower than1 (from Eve’s
point of view) can be predicted with high probability by an unbounded Eve, rendering the scheme insecure.
Thus if an eavesdropper hasO(m) storage capacity then the scheme is insecure as long asn2 = O(m).25

Lemma 5.5 was used in [29] in a setting where the eavesdropper is unbounded and can hence sample the
random variableSA(T1,R). However, in our setting the eavesdropper is computationally bounded and does
not have the power to generate this distribution. Instead, we use compression to store information about
samples ofSA(T1,R) to be extractedafter the broadcast is over (when the eavesdropper is computationally
unbounded).

The main idea is to use compression for search problems, as was discussed in Section 2.8. Define the
NP languageLA as follows:

LA = {(T1,R)|∃ witnessw = (rA, sA) such thatrA ∈ AT1 andsA = SA(T1,R, rA)}

The first thing to note is thatLA is in VCOR. This is shown once more by the same argument as in
Theorems 5.2 or 3.1, and based on the fact that the protocolΠ1 is polynomial-time inn. Once this is
established, then given a compression algorithm forVCOR we invoke Theorem 2.26 to get a compression
algorithm to the search problem associated withLA. Running this compression once, allows us to extract
a witness toLA and in particular to get one samplesA of a consistent view of Alice. Running thisn times
supposedly givesn samples of such a view, which suffices to break the scheme by Lemma 5.5.

25When consideringnA andnB that are not necessarily identical, the actual requirement is for Eve to storenB samples of
SA(T1,R) (each sample is of lengthnA). Subsequently the scheme is insecure as long asnA · nB < O(mE).
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However, in order to invoke Lemma 5.5, we need the samples to be taken according to the distribution
SA(T1,R), which is defined by a uniform distribution overrA ∈ AT1 . We will show that while sampling
via the compression of search problems does not give the desired distribution exactly, it is still sufficiently
close to be useful.

A closer inspection of our compression for search technique from Section 2.8 shows that we do not
necessarily sample uniformly fromAT1 . However, we do sample close to uniformly, in the sense that no
element inAT1 gets more than double the probability of another element inAT1 . We then show that taking
a constant times many samples as was originally needed guarantees that amongst the stored bits we haven
random samples of the random variableSA(T1,R), and thus we have stored enough bits fromR to break
the scheme.

Recall from Section 2.8 that the compression algorithm for search problems chooses a random pairwise-
independent hash functionh and saves only a witness(rA, sA) that isuniquelyhashed to the value0 by h.
SincerA fully determinessA (when givenT1 andR), then without loss of generality we view the witness
simply asrA. Furthermore, assume w.l.o.g. thatrA is of lengthn. Suppose that̀ ∈ [n] is such that2` <
|AT1 | ≤ 2`+1. LetH`+2 be a family of pairwise independent hash functions withh : {0, 1}n → {0, 1}`+2

for all h ∈ H`+2. Then for everyrA ∈ AT1 the probability that a randomh ∈ H`+2 uniquely mapsrA to
zero is at most2−(`+2) (sincePrh∈H`+2

[h(rA) = 0] = 2−(`+2)). By the pairwise independence ofH it holds
that for all otherr′A ∈ AT1 with r′A 6= rA we have thatPrh∈H`+2

[h(r′A) 6= 0|h(rA) = 0] = 1− 2−(`+2). By
a union bound over allr′A ∈ AT1 with r′A 6= rA, combined with the probability thath(rA) = 0, we get:

Prh∈H`+2
[h uniquely mapsrA to 0] ≥ 2−(`+2) · 1

2
= 2−(`+3).

Altogether, for allrA ∈ AT1 it holds that

2−(`+2) ≥ Prh∈H`+2
[h uniquely mapsrA to 0] ≥ 2−(`+3).

Thus whenever the output ofh is indeed of length̀ + 2, the probability of samplingrA ∈ AT1 is almost
uniform (up to a factor of2 for each element).26 is no Since we repeat the compression for every choice of
` ∈ [n], then in particular samples are stored for the correct`.

By Lemma 2.27 we know that at least1
8 of the repeated compressions indeed store information about a

valid witness (a sample ofrA ∈ AT1). Thus, choosing, say,9n independenth ∈ H`+2 guarantees at least
n samples (by a Chernoff bound, as the choices are independent). But as mentioned above, these samples
are just close to uniform overAT1 rather than truly uniform. The solution is to simply run more instances of
this process, say, for25n independent choices ofh ∈ H`+2. This would guarantee that with overwhelming
probability, at least3n of these choices have a valid witness. We show that from these slightly biased
samples we can extractn truly uniform samples of witnesses.

This last argument follows by a method for generating uniformly distributed samples fromAT1 . At a
first stage,3n samples are taken using the unique hashing method. Now a diluting second stage is in order
run to extract the actual samples: Suppose that the least likely element to be sampled gets probabilitypmin.
For any elementrA that is sampled with probabilityprA , keep the sample with probabilitypmin

prA
and delete

it otherwise. Thus every element is eventually chosen with the same probabilitypmin, and sincepmin

prA
≥ 1

2

then at leastn samples are eventually chosen (with overwhelming probability). Note that the diluting stage is
not necessarily efficiently computable. However, the probabilityprA can be computed using the adversaries
unbounded running time, since these probabilities are fully defined by the transcriptT1 which can be stored

26Note that the almost uniformity of the samples actually holds for every choice of the parameter`. Therefore, this property can
be relied on even if the correct choice of` is unknown.
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in its entirety (as it is of length polynomial inn). Therefore an unbounded eavesdropper may indeed extract
n uniform samples from her view.2

Note: In the two models that we consider we limit the honest parties to access and store at mostn actual
bits from the broadcast stringR. This is in contrast to storing some function ofR with a bound on the
function’s output length (an ability that the adversary is entitled to). This is a legitimate requirement as the
honest parties should run algorithms that are considerably more efficient than the adversary’s. It should be
noted, however, that our Theorems (5.2 and 5.4) hold also if the honest players can store functions, albeit
they then call for a compression algorithm for all ofNP (rather than just for the lowest classVCOR).

6 On Witness Retrievable Compression and Public Key Cryptography Based
on Any One-Way Function

6.1 On Oblivious Transfer from any One-Way Function

As mentioned in the introduction, whether one-way functions are sufficient for public key cryptography
is a long standing open problem. In fact, many researchers view the black-box impossibility result of
Impagliazzo and Rudich [52] as an indication that general one-way functions are insufficient for public
key cryptography. We now describe an approach to bridging this gap using witness-retrievable compression
of a specific language. More precisely, we demonstrate a construction of an oblivious transfer protocol (see
definition in, for instance [38]) from any one-way function using such a compression algorithm.

Theorem 6.1 There exists a distributionD over CNF formulas such that given a witness-retrievable com-
pression algorithm for formulas from the distributionD one can construct an Oblivious Transfer (OT) from
any one-way function.

Proof: The construction actually builds a Private Information Retrieval (PIR) protocol, and then uses the
construction of Di Crescenzo, Malkin and Ostrovsky [20] to build an OT protocol from the PIR protocol.
Recall that a PIR protocol has a sender with a database of sizem and a receiver that chooses to learn one
entry from the database (see precise definition in, e.g [20]). It is required that the receiver learns the bit of
his choice, but a computationally bounded sender learns essentially nothing about this choice. In addition,
the total communication should be strictly smaller thanm.

Let f be a one-way function and take(COMMIT , VERIFY) to be a commitment based on the one-way
functionf (as in Section 3). In this proof we work under the assumption that the parties are semi-honest
(that is, the parties follow the protocol as prescribed and are only allowed to try and infer extra information
from the transcript of the protocol). The semi-honest assumption is justified by the compiler of Goldreich,
Micali and Wigderson [39] that showed how to transform a semi-honest protocol into one against malicious
parties (again, the only needed cryptographic assumption is the existence of a one-way function). Consider
the protocol in Figure 2.
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Protocol PIRf :
Alice’s input: databaseD of m bits. LetD[i] denote theith bit in D.
Bob’s input: indexi ∈ [m]. Denote the bits ofi by i1, ..., i`.

1. Bob commits to i: Bob commits to i with randomnessrB, Alice receivesσ =
COMMIT(i, rB).

2. Alice computesΦ: The CNF formulaΦ is defined as follows:

• Denote by VERIFYσ the algorithm VERIFY with the inputσ fixed. That is, VERIFYσ

takes as inputsx andr and accepts if and only if they form a legal opening of the
commitmentσ (and in particular this means thatx = i).

• Translate VERIFYσ into a CNF formulaΦσ (using Cook’s reduction) over the variables
x1, ..., x` of x, the bits ofr and dummy variables added in the reduction.

• For everyj ∈ [m] define the clauseCj = (xj̄1
1 ∨ xj̄2

2 ∨ .... ∨ xj̄`
` ) if D[j] = 0 (where

x0 denotes̄x andx1 denotesx) andCj = 1 if D[j] = 1.

• Set
Φ = Φσ ∧

∧
j∈[m]

Cj

3. Alice CompressesΦ: Let (Z,W ) be a witness-retrievable compression algorithm for CNF
formulas of the form ofΦ. Alice runsΨ = Z(Φ) and sendsΨ to Bob.

4. Bob checks witness:Note that Bob knows the witness to VERIFYσ and can compute a
witnessw for Φσ. Bob checks ifW (w,Ψ) is a satisfying assignment forΨ. If it is Bob
outputs1, otherwise he outputs0.

Figure 2: The construction of a PIR protocol from any one-way function.

It remains to show that the protocolPIRf is indeed a PIR protocol. Due to the fact that the commitment
is binding (up to a negligible error), an assignment satisfyingΦσ must havex = i (recall thati is the
index that Bob committed to). Thus the first part ofΦ is only satisfied whenx = i. But the second
part is only satisfied ifD[x] = 1, thusΦ is satisfied if and only ifD[i] = 1. By the property of the
compression algorithm, alsoΨ is satisfiable iffD[i] = 1. Hence, using the witness-retrievable properties of
the compression, Bob figures out whether or notΨ is satisfiable, and learns the bitD[i] (up to a negligible
error).

The second property is that the sender Alice learns no computational information about Bob’s choice.
This follows directly from the guarantees of the commitment scheme (note that Bob does not send any
information outside of the commitment). The third and final requirement regards the length of the commu-
nication. But the length of the communication is a fixed polynomial inp(n) (depending on the commitment
protocol and the parameter of the compression algorithm). So choosing a large enough databases with
m > p(n) guarantees a non trivial PIR protocol and hence an OT protocol.2

Note that the OT protocol derived in Theorem 6.1 is a one-round protocol (that is, one message sent
from the receiver followed by one message from the sender). This follows from the construction of the PIR
protocol and the construction of [20] that preserves the number of rounds. One implication of this fact is that
such an OT protocol may be used to construct a two round key agreement scheme, that in turn maybe used
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to construct a public key encryption. In general, this is achieved by fixing the first message of the protocol
to be as the public key. Formally:

Corollary 6.2 If there exists a witness-retrievable compression algorithm for a specific type of SAT in-
stances, then based on any one-way function one can construct a public key encryption scheme (PKE) that
is semantically secure against chosen plaintext attacks.

6.2 On the Limitation of the Witness Retrievability Property

Witness-retrievable compression is defined (Definition 1.6) as a compression with an additional PPT algo-
rithm W such that for every witnesswx for RL it holds thatwy = W (wx, Z(x)) is a witness forZ(x) ∈ L′.
Recall that nearly all of the examples of compression algorithms (in Sections 2.1 and 2.10) are in fact
witness-retrievable (the exception being compression of general sparse languages, Definition 2.3). This
property is essential to the success of the construction of the OT protocol in Theorem 6.1 (without it the
receiver would have to run in time that is super-polynomial). In this section we show that if one-way func-
tions exist then a compression algorithm for SAT cannot be witness-retrievable (this regards the general
language SAT rather than a specific distribution of instances as generated in Theorem 6.1). Moreover, this
statement also holds for other general languages mentioned in Theorem 6.1 (that are potentially easier to
compress than SAT). In particular, there is no witness-retrievable compression for the Clique language or
for the languageOR(SAT ) (that is complete forVCOR). We give the formal statements below with respect
to the languageOR(SAT ) and deduce the statements for SAT and Clique as corollaries.

We also rule out other natural definitions of witness-retrievability that would have been sufficient for
the proof of Theorem 6.1 to go through. Suppose we relax the witness-retrievability requirement to hold
only with some probabilityε, then we show that if one-way functions exist then this probabilityε has to be
very low, at most an inverse polynomial inm. Such a low probability of success isnot sufficient for the
OT construction in Theorem 6.1 to follow (we note though, that witness-retrievability with this low success
probability is still sufficient for the cryptanalytic result in [28]). We then show that the same situation also
holds for languages that are guaranteed to haveunique witnesses(i.e. unique-SAT and unique-OR(SAT )).
This is of relevance since the instances being compressed in the proof of Theorem 6.1 all have at most a
single witness.27

We emphasize again that the OT construction may still be successful under the compression of formulas
of the specific type that are generated in the proof. However, we cannot generalize this method to work with
compression of a more standard language.

On the Impossibility of Perfect Witness Retrieval: Recall that the languageOR(SAT ) takes as an
input a list ofm CNF formulas (each of lengthn) and accepts if at least one of the formulas is satisfiable.
Consider the following way of generating an instance ofOR(SAT ). Takem bit commitmentsσ1, . . . , σm,
each with security parametern (see proof of Theorem 3.1 for definition and discussion of commitments in
our context). For each commitmentσi, generate using Cook’s Theorem a CNF formulaφσi that is satisfiable
if and only if σi is a commitment to1. As an instance ofOR(SAT ) we take the OR of them CNF formulas
φσ1 , ..., φσm . We denote this instance byφ(σ1, . . . , σm). Denote bywσi a satisfying assignment forφσi

(such an assignment can be generated by an opening ofσi to the value1). The assignmentwσi also serves as
a witness forφ(σ1, . . . , σm) ∈ OR(SAT ). Our first impossibility result is for compression ofOR(SAT )
with errorless witness-retrievability.

27The relevant instances in Theorem 6.1 actually have a unique witness only if there exists a commitment scheme that has only
a unique opening. As this is not necessarily the case when given any one-way function, we consider for simplicity the case of
one-way permutations (that guarantee a unique opening commitment scheme).
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Lemma 6.3 If one-way functions exist then there is no witness-retrievable compression forOR(SAT ) with
perfect witness-retrieval.

Proof: The proof follows by showing that a witness-retrievable compressionZ for OR(SAT ) can be
used to transmit anm bit string between two parties with sub-linear communication. As a setup stage, the
receiver generatesm random commitments to1 andm random commitments to0 and sends them to the
sender. Denoted these by(σ1

1, . . . , σ
1
m) and(σ0

1, . . . , σ
0
m) respectively.

For every stringx ∈ {0, 1}m denoteφx = φ(σx1
1 , . . . , σxm

m ) (wherexi denotes theith bit of x). In order
to send stringx ∈ {0, 1}m the sender sendsZ(φx) to the receiver. We claim that the receiver can, with
overwhelming probability, learn the stringx, thus contradicting the fact that the message sent is significantly
shorter thanm. Note that the receiver knows witnesseswσ1

i
for all i and that a witness forφx ∈ OR(SAT )

consists of a witnesswσ1
i

of aφσ1
i

that is included inφx. The receiver extractsx as follows:

ProcedureRec on input Z(φx):

• For everyi ∈ [m]:

1. Runw = W (Z(φx), wσ1
i
)

2. If w is a witness forZ(φx) then setyi = 1, otherwise, setyi = 0.

• Outputy = y1, ..., ym.

Denote byXi the random variable of theith bit of x and byYi the random variable of the corresponding
output ofRec. We view the process as a channel between a sender who holds the random variablesX =
X1, ..., Xm to a receiver who gets the random variablesY = Y1, ..., Ym and claim that with overwhelming
probabilityY = X.

If Xi = 1 then the opening ofσ1
i should yield a witness forZ(φx), from the perfect witness-retrievability,

and thusYi = 1. We should show that ifXi = 0, then indeedYi = 0 (up to a negligible error). Note that
X is uniformly distributed over{0, 1}m, whereasY is determined by the random choice of commitments
(σ1

1, . . . , σ
1
m) and(σ0

1, . . . , σ
0
m), the random coins ofZ andW and the random variableX.

Claim 6.4 LetX andY be the random variables described above. Then for everyi ∈ [m] (possibly related
to m, n) and every polynomialq(·) and all sufficiently largen,

Pr[Yi = 1|Xi = 0] <
1

q(n)
.

Note that the Claim 6.4 holds also if the underlying witness-retrieval algorithm is non-perfect. This will be
used in the proof of Lemma 6.5.

Proof: Suppose that the claim is false, that is, for someq(·), for infinitely manyn and somei (possibly
related ton), Pr[Yi = 1|Xi = 0] ≥ 1/q(n). For simplicity we first deal with the case thatPr[Yi = 1|Xi =
0] = 1. In other words,W (Z(φx), wσ1

i
) always outputs a witness forZ(φx). Consider the two distributions

L0 andL1 on lists ofm− 1 commitments:

• DistributionL0 is defined by a random and independent choice ofm− 1 commitments to0.

• DistributionL1 is defined by first choosing at random a stringV1, V2, . . . , Vm−1 ∈ {0, 1}m−1 and
then generatingm− 1 independent commitments toV1, V2, . . . , Vm−1.

40



¿From the hiding property of commitment schemes it holds that these two distributions are indistinguishable,
i.e. given a listL of m − 1 commitments, no computationally bounded distinguisher can tell with non-
negligible bias whetherL was generated byL0 or L1. We will show that if the premise of the claim is
false, it is possible to distinguish the two distributions (without knowledge of the openings to any of the
commitments in the list).

Given a listL of m − 1 commitments, the distinguisher generatesσ0
i andσ1

i and the corresponding
witnesses. He then generates a formulaφ by addingσ0

i to the ith position in the listL, and runs the
compression onφ. The distinguisher then runsw = W (Z(φ), wσ1

i
) and checks whetherw is a witness to

Z(φ). By the assumption,w will indeed be a witness every time thatφ is satisfiable. On the other hand,w
cannot be a witness ifφ is not satisfiable, simply by the properties of the compression. Thus ifw is indeed
a witness forZ(φ) then it must be thatφ ∈ OR(SAT ) and there is some commitment to1 in the list and
thusL was generated fromL1. Otherwise, it means thatφ 6∈ OR(SAT ) and the original list was fromL0

(ignoring the negligible probability thatL1 generates a list containing only commitments to0).
Now if Pr[Yi = 1|Xi = 0] ≥ 1

q(n) for some polynomialq(·), then the distinguisher follows the same
procedure with the difference that:

• If w = W (Z(φ), wσ1
i
) is a witness forZ(φ) then outputL1.

• If w is not a witness flip a coin and output eitherL0 orL1 accordingly.

In casew was indeed a witness, the distinguisher is guaranteed to be correct. Therefore, the above procedure
gives an advantage 1

2q(n) in distinguishing betweenL0 andL1, contradicting the hiding properties of the
commitment scheme.2

Note that the distributionsL0 andL1 will be useful also in the discussion of the unique witnesses case
(Lemma 6.6). 2

On Non-PerfectWitness Retrievability: We now show that the witness-retrieval procedure is possible
only if its success probability is sufficiently low (we denote the success probability by1

q(n,m) ). We upper
bound the success probability by a function of the rate of compression that the algorithmZ achieves (we
denote byp(n, m) the polynomial that bounds the length of the output ofZ, i.e. the compressed instance).

Lemma 6.5 Suppose one-way functions exist and suppose that(Z,W ) is a witness-retrievable compression
for OR(SAT ) such that for everyφ with parametersm,n the following holds:

1. The compression parameter|Z(φ)| ≤ p(n, m)

2. The success probability ofW is at least 1
q(n,m) where probability is over the random coins ofZ and

W as well as the choice of the witness.

Thenq(n, m) ≥ Ω( m
p(n,m)).

Proof: The proof uses the same setting as in the proof of Lemma 6.3. Once more, the sender sends a
compressed valueZ(φx) to the receiver that runs the procedureRec and we view this process as a channel
between a sender who holds the random variablesX = X1, ..., Xm to a receiver who gets the random
variablesY = Y1, ..., Ym. Only this time ifXi = 1 it is not guaranteed that alsoYi = 1 (since the witness-
retrievability is no longer perfect). Instead, our assumption on the success probability ofW translates to
Pr[Yi = 1 | Xi = 1] ≥ 1

q(n,m) for a randomi. SinceXi is a uniformly distributed bit thenPr[Yi = 1] ≥
1

2q(n,m) for a randomi.
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In addition, Claim 6.4 states that for everyi it holds thatPr[Yi = 1 | Xi = 0] ∈ neg(n). Thus, ifYi = 1
thenXi = 1 with overwhelming probability and thereforeH(Xi | Yi = 1) ∈ neg(n) for everyi (whereH
denotes the Shannon entropy). We use the above mentioned facts to provide an upper bound on the average
entropy ofXi (average overi) when givenY :

Ei[H(Xi | Y )] = Ei[Pr(Yi = 1)H(Xi | Yi = 1) + Pr(Yi = 0)H(Xi | Yi = 0)]

≤ 1
2q(n, m)

· neg(n) + (1− 1
2q(n, m)

) · 1

≤ 1− 1
2q(n, m)

+ neg(n)

The first inequality is true sinceH(Xi | Yi = 0) ≤ 1 for everyi. We deduce an upper bound on the entropy
of X when givenY :

H(X|Y ) ≤
∑

i

H(Xi | Y ) = mEi[H(Xi | Y )] ≤ m(1− 1
2q(n, m)

+ neg(n))

Hence, when the receiver getsZ(φx) (and can generateY ), the receiver’s entropy ofX deteriorates by

H(X)−H(X | Y ) ≥ Ω(
m

q(n, m)
).

This can only happen if the sender sent at leastΩ( m
q(n,m)) bits to the receiver, and thusp(n, m) ≥ Ω( m

q(n,m))
as required. 2

Note that the construction of OT protocols from one-way functions in Theorem 6.1 requires that the
compression ratep(n, m) ≤ O(m1−ε) for some constantε > 0. Thus, when put in the context of con-
structing OT protocols, the above lemma states that a useful compression algorithm forOR(SAT ) cannot
have witness-retrievability with probability that is better thanO( 1

mε ). In order to achieve non-trivial PIR
protocols (via Theorem 6.1), one would require witness-retrievability with a better success probability.

On Witness Retrieval with a Unique Witness: The limitations on witness-retrievability hold also when
there is only a single witness, which is the case in our cryptographic applications. For this we consider
the promise problemOR(SAT )U that isOR(SAT ) with a guarantee that every instance has at most one
satisfying assignment. We generate the interesting instances ofOR(SAT )U as above, from sets of commit-
ments. In this case the set of commitments should be such that at most one of the commitments is to the
value1. For simplicity we also assume that each commitment has a unique opening (this may be achieved
using one-way permutation), so overall such instances have the unique witness property.

Lemma 6.6 Suppose one-way permutations exist and suppose that(Z,W ) is a witness-retrievable com-
pression forOR(SAT )U such that for every inputφ with parametersm,n the following holds:

1. The compression parameter is|Z(φ)| ≤ p(n, m)

2. The success probability ofW is at least 1
q(n,m) for a polynomialq(·, ·) where probability is over the

random coins ofZ andW .

Then 1
q(n,m) −

p(n,m)
m ∈ neg(n).
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Proof: Suppose that there is a witness-retrievable compression(Z,W ) for OR(SAT )U that succeeds
with probability 1

q(n,m) . In similar fashion to the proof of Claim 6.4 we will show that in such a case
one can efficiently distinguish if a list ofm − 1 commitments was generated by the distributionL0 or
by the distributionL1. Recall that the distributionL0 is a random choice ofm − 1 commitments to0
while the distributionL1 is a choice ofm − 1 random commitments (commitments to either0 or 1). The
distinguisher works without knowledge of the openings to any of the commitments, thus contradicting the
hiding properties of the commitment scheme.

The distinguisher generates a random commitmentσ1 to 1 along with its witnesswσ1 . Now, given a
list L of m − 1 commitments, the distinguisher creates an instanceφ by addingσ1 in a random position in
the listL, and runs the compression onφ. The distinguisher then tries to retrieve a witness toZ(φ) using
the openingwσ1 . In the case thatL ∈ L0 thenφ is an instance ofOR(SAT )U and thus by the assumption
the distinguisher will retrieve a witness with probability at least1q(n,m) . On the other hand, ifL ∈ L1 then
the instanceφ is a general instance ofOR(SAT ) (without the promise of the unique witness). Lemma 6.5
states that there exists aφ for which the witness-retrieval succeeds with probability at mostp(n,m)

m . A more
careful inspection of the proof of Lemma 6.5 shows that this statement also holds for a randomly chosen
φ (generated by choosingm random commitments not all of which are to0). Thus, if L ∈ L1 then the
witness-retrieval succeeds onφ with probability at mostp(n,m)

m (with probability taken over the choice of
L ∈ L1 and the randomness of the distinguisher). Overall, the distinguisher accepts with probability at
least 1

q(n,m) whenL is from L0 and at mostp(n,m)
m whenL is from L1. So if 1

q(n,m) −
p(n,m)

m is larger
than a polynomial fraction inn, then this procedure has a distinguishing advantage betweenL0 andL1,
contradicting the security of the commitment scheme.2

All our results have been stated for the languageOR(SAT ). However, they may be applied for other
languages such as SAT and Clique. In particular, we get the statement with respect to SAT as a corollary
(since a compression for SAT can be used as a compression forOR(SAT ) via the same reduction as in
Lemma 2.17).

Corollary 6.7 Suppose one-way functions exist and let(Z,W ) be a witness-retrievable compression for
SAT (or for Unique-SAT), such that for every inputφ with parametersm, n the following holds:

1. The compression parameter|Z(φ)| ≤ p(n, m)

2. The success probability ofW is at least 1
q(n,m) where probability is over the random coins ofZ and

W as well as the choice of the witness.

Thenq(n, m) ≥ Ω( m
p(n,m)).

7 Discussion and Open Problems

7.1 Discussion - A Unified Perspective of the Applications

In sections 3,4 and 6 we presented three separate applications of compression that have a similar flavor: A
CRH from one-way functions using perfect compression (Section 3), a CRH/one-way function from hard-
on-average language using perfect/imperfect compression (Section 4), and PIR/OT from one-way function
using witness-retrievable compression (Section 6). These constructions have a common underlying prin-
ciple and can be viewed as variants on this main theme. The basic observation is that compression of
OR(L), whereL is a ”hard on average” language, can be used to construct private information retrieval
(PIR) protocols in which the receiver is unbounded. This construction follows by generalizing a standard
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approach in the design of PIR protocols (e.g. [59]). In this method the receiver generates a sequence ofn
commitments hiding the characteristic vector of its selection, and the server computes an encoding of the
XOR (alternatively, OR) of all of the committed values which correspond to the 1-entries of the database.
When decoded, this value amounts to the bit that the receiver was seeking. The non-triviality in the PIR
protocol stems from the fact that the length of the latter encoding can be made shorter than the length of
the database. Typically this is achieved by using homomorphic properties of specific commitment schemes.
In our case, this is achieved via the compression ofOR(L) (whereL is the language defined by the com-
mitment scheme). Thus the use of compression here can be viewed as a relaxation of the traditional use of
homomorphic commitments.

The result of Section 3 follows from this general scheme combined with the observation that PIR with an
unbounded receiver implies CRH (via the reduction of [53]). Section 6 observes that the receiver in the PIR
protocol can be made efficient if the underlying compression is witness-retrievable. The results of Section 4
follow by further observing that the CRH construction doesn’t require the committed vector to be known to
anyone, and moreover this construction remains collision resistant even if the committed vector is uniformly
random (otherwise one could break the semantic security of the commitment). Thus the commitments can
be replaced by random instances of a hard-on-average language. When compression is imperfect, the CRH
is relaxed to a distributional variant which still implies a one-way function.

7.2 Future Directions and Open Problems

The issue of compressibility and the corresponding classification introduced in this work raise many open
problems and directions. The obvious one is to come up with a compression algorithm for a problem
like SAT or Clique (or someVCOR-complete or hard problem). Note that the new impossibility results of
Fortnow and Santhanam [36] do not rule out the possibility of error prone compression for these languages.
We have seen compressibility of some interestingNP languages and hence the question is where exactly is
boundary between compressibility and incompressibility. We tend to conjecture that it is in the low levels
of theVC hierarchy. We view PCP amplification methods such as the recent result of Dinur [23] as potential
leads towards achieving compression. This is because these results show a natural amplification of properties
on a graph, and could potentially be combined with a simple compression of promise problems (such as the
example for GapSAT in Section 2.10). The main issue is doing the PCP amplification without introducing
many new variables. Due to the recent results of [36] and [15] the underlying PCP in such an approach must
also introduce some level of errors.

In particular, the following task would suffice for achieving non-trivial compression: given CNF formu-
laeφ1 andφ2 (not necessarily with short witnesses) come up with a CNF formulaφ that is (1) satisfiability
of the new formula coincides with very high probability with the satisfiability ofφ1 ∨ φ2 and (2) shorter
than the combined lengths ofφ1 andφ2 ; By shorter we mean of length(1 − ε)(|φ1| + |φ2|). The reason
this is sufficient is that we can apply it recursively and obtain non-trivial compression forOR(SAT ), which
implies the cryptographic applications.

Short of showing a compression for general complexity classes, it would be interesting to come up with
further interesting compression algorithms as well as to obtain more hardness results. For instance, is Clique
or any other embedding problem complete forVC1? Is there a natural and simple complete problem for
VC1? Also, theVC hierarchy is by no means the ultimate classification with respect to compressibility. One
can hope to further refine this classification, especially within the confines ofVC1. Moreover, it would be
interesting to find connections of theVC hierarchy to other classifications (e.g., in the style of Feige [31] for
average case complexity and approximation algorithms and Chen et al. [13] for parameterized complexity
and subexponential algorithms).

Regarding the cryptographic application of getting a CRH from one-way functions (Theorem 3.1), one
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issue is how essential is the requirement that the compression will be errorless (this question is even more
interesting due to the new impossibility results of [36]). We know that this requirement can be relaxed to
hold with an error that is exponentially small inm. However it is unknown whether a CRH can be con-
structed from any one-way function using a compression algorithm that errs with probability that is, say,
exponentially small inn andlog m. Note that using typical amplification techniques for CRH is unsuccess-
ful. For example, taking a concatenation of several independently chosen hash functions on the same input
fails, since reducing the adversary’s success probability to allow using the a union bound requires using
too many (Ω(m)) independent functions for the overall hash to still be shrinking. Another question in this
regard is whether compression of languages outside ofNP is possible. For example, applications such as
the construction of a CRH (in sections 3 and 4) can work also with compression of the languageAND(L)
(which may not have a short witness) orXOR(L) (not inNP) rather thanOR(L).

Especially in light of the apparent hardness of compression, it is valuable to understand what are the im-
plications ofincompressibility. We have seen the necessity of incompressibility for the security of schemes
in the hybrid bounded storage model. Other examples are the previously mentioned works of Dubrov and
Ishai [26] regarding derandomization and Dziembowski [28] with respect to forward-secure storage. In order
to gain confidence in an incompressibility assumption when used in a cryptographic setting it is important
to come up with anefficiently falsifiableassumption28 of this nature (see [68]).

Finally we feel that we have just scratched the surface of an important topic and in the future there will
be other implications of compressibility or the impossibility of compression, whether in cryptography or in
other areas.
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