
History-Independent Cuckoo Hashing

Moni Naor∗‡ Gil Segev†‡ Udi Wieder§

Abstract

Cuckoo hashing is an efficient and practical dynamic dictionary. It provides expected amor-
tized constant update time, worst case constant lookup time, and good memory utilization.
Various experiments demonstrated that cuckoo hashing is highly suitable for modern computer
architectures and distributed settings, and offers significant improvements compared to other
schemes.

In this work we construct a practical history-independent dynamic dictionary based on cuckoo
hashing. In a history-independent data structure, the memory representation at any point in
time yields no information on the specific sequence of insertions and deletions that led to its
current content, other than the content itself. Such a property is significant when preventing
unintended leakage of information, and was also found useful in several algorithmic settings.

Our construction enjoys most of the attractive properties of cuckoo hashing. In particular, no
dynamic memory allocation is required, updates are performed in expected amortized constant
time, and membership queries are performed in worst case constant time. Moreover, with high
probability, the lookup procedure queries only two memory entries which are independent and
can be queried in parallel. The approach underlying our construction is to enforce a canonical
memory representation on cuckoo hashing. That is, up to the initial randomness, each set of
elements has a unique memory representation.

∗Incumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel. Email: moni.naor@weizmann.ac.il. Research supported in
part by a grant from the Israel Science Foundation.

†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. Email: gil.segev@weizmann.ac.il.

‡Most of the work was done at Microsoft Research, Silicon Valley Campus.
§Microsoft Research, Silicon Valley Campus, 1065 La Avenida, Mountain View, CA 94043. Email: uwieder@

microsoft.com.

mailto:moni.naor@weizmann.ac.il
mailto:gil.segev@weizmann.ac.il
mailto:uwieder@microsoft.com
mailto:uwieder@microsoft.com

1 Introduction

Over the past decade an additional aspect in the design of data structures has emerged due to
security and privacy considerations: a data structure may give away much more information than
it was intended to. Computer folklore is rich with tales of such cases, for example, files containing
information whose creators assumed had been erased, only to be revealed later in embarrassing
circumstances1.

When designing a data structure whose internal representation may be revealed, a highly desir-
able goal is to ensure that an adversary will not be able to infer information that is not available
through the legitimate interface. Informally, a data structure is history independent if its memory
representation does not reveal any information about the sequence of operations that led to its
current content, other than the content itself.

In this paper we design a practical history-independent data structure. We focus on the dictio-
nary data structure, which is used for maintaining a set under insertions and deletions of elements,
while supporting membership queries. Our construction is inspired by the highly practical cuckoo
hashing, introduced by Pagh and Rudler [25], and guarantees history independence while enjoying
most of the attractive features of cuckoo hashing. In what follows we briefly discuss the notion of
history independence and several of its applications, and the main properties of cuckoo hashing.

Notions of history independence. Naor and Teague [23], following Micciancio [18], formal-
ized two notions of history independence: a data structure is weakly history independent if any two
sequences of operations that lead to the same content induce the same distribution on the memory
representation. This notion assumes that the adversary gaining control is a one-time event, but
in fact, in many realistic scenarios the adversary may obtain the memory representation at sev-
eral points in time. A data structure is strongly history independent if for any two sequences of
operations, the distributions of the memory representation at all time-points that yield the same
content are identical. Our constructions in this paper are strongly history independent. An alterna-
tive characterization of strong history independence was provided by Hartline et al. [14]. Roughly
speaking, they showed that strong history independence is equivalent to having a canonical rep-
resentation up to the choice of initial randomness. More formal definitions of the two notions are
provided in Section 2.

Applications of history-independent data structures. History independent data structures
were naturally introduced in a cryptographic setting. Micciancio showed that oblivious trees2

can be used to guarantee privacy in the incremental signature scheme of Bellare, Goldreich and
Goldwasser [2, 3]. An incremental signature scheme is private if the signatures it outputs do not
give any information on the sequence of edit operations that have been applied to produce the final
document.

An additional cryptographic application includes, for example, designing vote storage mecha-
nisms (see [4, 21, 22]). As the order in which votes are cast is public, a vote storage mechanism
must be history independent in order to guarantee the privacy of the election process.

History independent data structures are valuable beyond the cryptographic setting as well.
Consider, for example, the task of reconciling two dynamic sets. We consider two parties each
of which receives a sequence of insert and delete operations, and their goal is to determine the
elements in the symmetric difference between their sets. Now, suppose that each party processes

1See [5] for some amusing anecdotes of this nature.
2These are trees whose shape does not leak information.

1

its sequence of operations using a data structure in which each set of elements has a canonical
representation. Moreover, suppose that the update operations are efficient and change only a very
small fraction of the memory representation. In such a case, if the size of the symmetric difference
is rather small, the memory representations of the data structures will be rather close, and this can
enable an efficient reconciliation algorithm.

Cuckoo hashing. Pagh and Rudler [25] constructed an efficient hashing scheme, referred to as
cuckoo hashing. It provides worst case constant lookup time, expected amortized constant update
time, and uses roughly 2n words for storing n elements. Additional attractive features of cuckoo
hashing are that no dynamic memory allocation is performed (except for when the tables have to be
resized), and the lookup procedure queries only two memory entries which are independent and can
be queried in parallel. These properties offer significant improvements compared to other hashing
schemes, and experiments have shown that cuckoo hashing and its variants are highly suitable for
modern computer architectures and distributed settings. Cuckoo hashing was found competitive
with the best known dictionaries having an average case (but no non-trivial worst case) guarantee
on lookup time (see, for example, [10, 25, 27, 29]).

1.1 Related Work

Micciancio [18] formalized the problem of designing oblivious data structures. He considered a
rather weak notion of history independence, and devised a variant of 2–3 trees whose shape does
not leak information. This notion was strengthened by Naor and Teague [23] to consider data
structures whose memory representation does not leak information. Their main contributions are
two history-independent data structures. The first is strongly history independent, and supports
only insertions and membership queries which are performed in expected amortized constant time.
Roughly speaking, the data structure includes a logarithmic number of pair-wise independent hash
functions, which determine a probe sequence for each element. Whenever a new element is inserted
and the next entry in its probe sequence is already occupied, a “priority function” is used to
determine which element will be stored in this entry and which element will be moved to the
next entry in its probe sequence. The second data structure is a weakly history-independent data
structure supporting insertions, deletions and membership queries. Insertions and deletions are
performed in expected amortized constant time, and membership queries in worst case constant
time. Roughly speaking, this data structure is a history independent variant of the perfect hash
table of Fredman, Komlós and Szemerédi [12] and its dynamic extension due to Dietzfelbinger et
al. [7].

Buchbinder and Petrank [6] provided a separation between the two notions of history inde-
pendence for comparison based algorithms. They established lower bounds for obtaining strong
history independence for a large class of data structures, including the heap and the queue data
structures. They also demonstrated that the heap and queue data structures can be made weakly
history independent without incurring any additional (asymptotic) cost.

Blelloch and Golovin [5] constructed two strongly history-independent data structures based
on linear probing. Their first construction supports insertions, deletions and membership queries
in expected constant time. This essentially extends the construction of Naor and Teague [23] that
did not support deletions. While the running time in the worst case may be large, the expected
update time and lookup time is tied to that of linear probing and thus is O(1/(1−α)3) where α is
the memory utilization of the data structure (i.e., the ratio between the number of items and the
number of slots). Their second construction supports membership queries in worst case constant
time while maintaining an expected constant time bound on insertions and deletions. However,

2

the memory utilization of their second construction is only about 9%. In addition, it deploys a
two-level encoding, which may involve hidden constant factors that affect the practicality of the
scheme. Furthermore, the worst case guarantees rely on an exponential amount of randomness and
serves as a basis for a different hash table with more relaxed guarantees. The goal of our work is
to design a hash table with better memory utilization and smaller hidden constants in the running
time, even in the worst case.

1.2 Our Contributions

We construct an efficient and practical history-independent data structure that supports insertions,
deletions, and membership queries. Our construction is based on cuckoo hashing, and shares
most of its properties. Our construction provides the following performance guarantees (where
the probability is taken only over the randomness used during the initialization phase of the data
structure):

1. Insertions and deletions are performed in expected amortized constant time. Moreover, with
high probability, insertion and deletions are performed in time O(log n) in the worst case.

2. Membership queries are performed in worst case constant time. Moveover, with high proba-
bility, the lookup procedure queries only two memory entries which are independent and can
be queried in parallel.

3. The memory utilization of the data structure is roughly 50% when supporting only insertions
and membership queries. When supporting deletions the data structure allocates an addi-
tional pointer for each entry. Thus, the memory utilization in this case is roughly 25%, under
the conservative assumption that the size of a pointer is not larger than that of a key.

We obtain the same bounds as the second construction of Blelloch and Golovin [5] (see Section
1.1). The main advantages of our construction are its simplicity and practicality: membership
queries would mostly require only two independent memory probes, and updates are performed in
a way which is almost similar to cuckoo hashing and thus is very fast. A major advantage of our
scheme is that it does not use rehashing. Rehashing is a mechanism for dealing with a badly behaved
hash function by choosing a new one; using such a strategy in a strongly history-independent
environment causes many problems (see below). Furthermore, our data structure enjoys a better
memory utilization, even when supporting deletions. We expect that in any practical scenario,
whenever cuckoo hashing is preferred over linear probing, our construction should be preferred over
those of Blelloch and Golovin.

1.3 Overview of the Construction

In order to describe our construction we first provide a high-level overview of cuckoo hashing.
Then, we discuss our approach in constructing history-independent data structures based on the
underlying properties of cuckoo hashing.

Cuckoo hashing. Cuckoo hashing uses two tables T0 and T1, each consisting of r ≥ (1 + ε)n
words for some constant ε > 0, and two hash functions h0, h1 : U → {0, . . . , r − 1}. An element
x ∈ U is stored either in entry h0(x) of table T0 or in entry h1(x) of table T1, but never in both. The
lookup procedure is straightforward: when given an element x ∈ U , query the two possible memory
entries in which x may be stored. The deletion procedure deletes x from the entry in which it is
stored. As for insertions, Pagh and Rudler [25] demonstrated that the “cuckoo approach”, kicking

3

other elements away until every element has its own “nest”, leads to a highly efficient insertion
procedure when the functions h0 and h1 are assumed to sample an element in [r] uniformly and
independently. More specifically, in order to insert an element x ∈ U we first query entry T0[h0(x)].
If this entry is not occupied, we store x in that entry. Otherwise, we store x at that entry anyway,
thus making the previous occupant “nestless”. This element is then inserted to T1 in the same
manner, and so forth iteratively. We refer the reader to [25] for a more comprehensive description
of cuckoo hashing.

Our approach. Cuckoo hashing is not history independent. The table in which an element
is stored depends upon the elements inserted previously. Our approach is to enforce a canonical
memory representation on cuckoo hashing. That is, up to the initial choice of the two hash functions,
each set of elements has only one possible representation. As in cuckoo hashing, our construction
uses two hash tables T0 and T1, each consisting of r ≥ (1+ ε)n entries for some constant ε > 0, and
two hash functions h0, h1 : U → {0, . . . , r − 1}. An element x ∈ U is stored either in cell h0(x) of
table T0 or in cell h1(x) of table T1.

Definition 1.1. Given a set S ⊆ U and two hash functions h0 and h1, the cuckoo graph is the
bipartite graph G = (L,R, E) where L = R = {0, . . . , r − 1}, and E = {(h0(x), h1(x)) : x ∈ S}.

The cuckoo graph plays a central role in our analysis. It is easy to see that a set S can be
successfully stored using the hash functions h0 and h1 if and only if no connected component in
G has more edges then nodes. In other words, every component contains at most one cycle (i.e.,
unicyclic). The analysis of the insertion and deletion procedures are based on bounds on the size
of a connected component. The following lemma is well known in random graph theory (see, for
example, [15, Section 5.2]):

Lemma 1.2. Assume r ≥ (1+ε)n and the two hash functions are truly random. Let v be some node
and denote by C the connected component of v. Then there exists some constant β = β(ε) ∈ (0, 1)
such that for any integer k > 0 it holds that Pr[|C| > k] ≤ βk.

In particular, Lemma 1.2 implies that the expected size of each component is constant, and
with high probability it is O(log n), a fact which lies at the heart of the efficiency analysis.

In order to describe the canonical representation that our construction enforces it is sufficient
to describe the canonical representation of each connected component in the graph. Let C be a
connected component, and denote by S be the set of elements that are mapped to C. In case C is
acyclic, we enforce the following canonical representation: the minimal element in S (according to
some fixed ordering of U) is stored in both tables, and this yields only one possible way of storing the
remaining elements. In case C is unicyclic, we enforce the following canonical representation: the
minimal element on the cycle is stored in table T0, and this yields only one possible way of storing
the remaining elements. The most challenging aspect of our work is dealing with the unlikely event
in which a connected component contains more than one cycle.

Rehashing and history independence. It is known [17] that even if h0 and h1 are completely
random functions, with probability Ω(1/n) there will be a connected component with more than
one cycle. In this case the given set cannot be stored using h0 and h1. The standard solution
for this scenario is to choose new functions and rehash the entire data. In the setting of strongly
history-independent data structures, however, rehashing is particular problematic and affects the
practical performance of the data structure. Consider, for example, a scenario in which a set is
stored using h0 and h1, but when inserting an additional element x it is required to choose new hash

4

functions h′0 and h′1, and rehash the entire data. If the new element x is now deleted, then in order
to maintain history independence we must “roll back” to the previous hash functions h0 and h1,
and once again rehash the entire data. This has two undesirable properties: First, when rehashing
we cannot erase the description of any previous pair of hash functions, as we may be forced to
roll back to this pair later on. When dealing with strongly history-independent data structures, a
canonical representation for each set of elements must be determined at the initialization phase of
the data structure. Therefore, all the hash functions must be chosen in advance, and this may lead
to a high storage overhead (as is the case in [5]). Secondly, if an element that causes a rehash is
inserted and deleted multiple times, each time an entire rehash must be performed.

Avoiding rehashing by stashing elements. Kirsch et al. [16] suggested a practical augmen-
tation to cuckoo hashing in order to avoid rehashing: exploiting a secondary data structure for
storing elements that create cycles, starting from the second cycle of each component. That is,
whenever an element is inserted to a unicyclic component and creates an additional cycle in this
component, the element is stashed in the secondary data structure. In our case, the choice of the
stashed element must be history independent in order to guarantee that the whole data structure
is history independent. Kirsch et al. prove the following bound on the number of stashed elements
in the secondary data structure:

Lemma 1.3. Assume r ≥ (1 + ε)n and the two hash functions are truly random. The probability
that the secondary data structure has more than s elements is O(r−s).

The secondary data structure in our construction can be any strongly history-independent data
structure (such as a sorted list). This approach essentially reduces the task of storing n elements
in a history-independent manner to that of storing only a few elements in a history-independent
manner. In addition, it enables us to avoid rehashing and to increase the practicality of our scheme.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we overview the notion of history
independence. In Section 3 we describe our data structure. In Section 4 we propose several possible
instantiations for the secondary data structure used in our construction. In Section 5 we analyze the
efficiency of our construction, and in Section 6 we provide several concluding remarks. Appendix
A provides a formal proof of history independence.

2 Preliminaries

In this section we formally define the notions of weak and strong history independence. Our
presentation mostly follows that of Naor and Teague [23]. A data structure is defined by a list of
operations. We say that two sequences of operations, S1 and S2, yield the same content if for all
suffixes T , the results returned by T when the prefix is S1 are identical to those returned by T
when the prefix is S2.

Definition 2.1 (Weak History Independence). A data structure implementation is weakly his-
tory independent if any two sequences of operations that yield the same content induce the same
distribution on the memory representation.

We consider a stronger notion of history independence that deals with cases in which an ad-
versary may obtain the memory representation at several points in time. In this case it is required

5

that for any two sequences of operations, the distributions of the memory representation at all
time-points that yield the same content are identical.

Definition 2.2 (Strong History Independence). Let S1 and S2 be sequences of operations, and let
P1 = {i11, . . . , i1`} and P2 = {i21, . . . , i2`} be two lists such that for all b ∈ {1, 2} and 1 ≤ j ≤ ` it
holds that 1 ≤ ibj ≤ |Sb|, and the content of the data structure following the i1j prefix of S1 and the
i2j prefix of S2 are identical. A data structure implementation is strongly history independent if for
any such sequences the distributions of the memory representation at the points of P1 and at the
corresponding points of P2 are identical.

Note that Definition 2.2 implies, in particular, that any data structure in which the memory
representation of each state is fully determined given the randomness used during the initialization
phase is strongly history independent. Our construction in this paper enjoys such a canonical
representation, and hence is strongly history independent.

3 The Data Structure

Our data structure uses two tables T0 and T1, and a secondary data structure. Each table consists
of r ≥ (1+ ε)n entries for some constant ε > 0. In the insert-only variant each entry stores at most
one element. In the variant which supports deletions each entry stores at most one element and a
pointer to another element. The secondary data structure can be chosen to be any strongly history-
independent data structure (we refer the reader to Section 4 for several possible instantiations of
the secondary data structure).

Elements are inserted into the data structure using two hash functions h0, h1 : U → {0, . . . , r−
1}, which are independently chosen at the initialization phase. An element x ∈ U can be stored in
three possible locations: entry h0(x) of table T0, entry h1(x) of table T1, or stashed in the secondary
data structure. The lookup procedure is straightforward: when given an element x ∈ U , query the
two tables and perform a lookup in the secondary data structure.

In the remainder of this section we first describe the canonical representation of the data struc-
ture and some of its useful properties. Then, we describe the insertion and deletion procedures.

3.1 The Canonical Representation

As mentioned in Section 1.3, it is sufficient to consider a single connected component in the cuckoo
graph. Let C be a connected component, and denote by S the set of elements that are mapped to
C. When describing the canonical representation we distinguish between the following cases:

• C is a tree. In this case the minimal element in S is stored in both tables, and this yields
only one possible way of storing the remaining elements.

• C is unicyclic. In this case the minimal element on the cycle is stored in table T0, and this
yields only one possible way of storing the remaining elements.

• C contains at least two cycles. In this case we iteratively put in the secondary data structure
the largest element that lies in a cycle, until C contains only one cycle. The elements which
remain in the component are arranged according to the previous item. We note that this case
is rather unlikely, and occurs with only a polynomially small probability.

• When supporting deletions each table entry includes additional space for one pointer. These
pointers form a cyclic sorted list of the elements of the component (not including stashed

6

elements). When deletions are not supported, there is no need to allocate or maintain the
additional pointers.

Orientating the edges. When describing the insertion and deletion procedures it will be con-
venient to consider the cuckoo graph as a directed graph. Given an element x, we orient the edge
so that x is stored at its tail. In other words, if x is stored in table Tb for some b ∈ {0, 1}, we
orient its corresponding edge in the graph from Tb[hb(x)] to T1−b[h1−b(x)]. An exception is made
for the minimal element of an acyclic component, since such an element is stored in both tables.
In such a case we orient the corresponding edge in both directions. The following claims state
straightforward properties of the directed graph.

Claim 3.1. Let x1 → · · · → xk be any directed path. Then, given the element x1 it is possible to
retrieve all the elements on this path using k probes to memory. Furthermore, if xmin is a minimal
element in an acyclic component C, then for any element x stored in C there exists a directed path
from x to xmin.

Proof. For every 1 ≤ i ≤ k denote by Tbi the table in which xi is stored. Given x1, the definition
of the graph and the orientation of its edges imply that x2 is stored in entry T1−b1 [h1−b1(x1)]. We
continue similarly and retrieve in increasing order each xi+1 which is stored in entry T1−bi [h1−bi(xi)].
For the second part note that if C is acyclic then by the first property of the canonical representation
it must be a tree rooted at the minimal element.

Claim 3.2. Let C be a unicyclic component, and let x∗ be any element on its cycle. Then for any
element x stored in C there exists a simple directed path from x to x∗.

Proof. Note that the orientation of the edges guarantees that the cycle is oriented in a consistent
manner. That is, the cycle is of the form y1 → · · · → yk → y1. Therefore if x is on the cycle,
then the claim follows. Now assume that x is not on the cycle. Let x = x1 and denote by Tb1 the
table in which x1 is stored. Denote by x2 the element stored in entry T1−b1 [h1−b1(x1)]. Note that
x2 6= x1 since x1 is not on the cycle. If x2 is on the cycle, then we are done. Otherwise we continue
similarly, and for every i we denote by xi+1 the element stored in entry T1−bi [h1−bi(xi)]. Since the
component is unicycle, as long as xi is not on the cycle then xi+1 /∈ {x1, . . . , xi}. Therefore we are
guaranteed to reach the cycle at some point.

3.2 The Insertion Procedure

Given an element to insert x, the goal of the insertion procedure is to insert x while maintaining the
canonical representation. Note that one only has to consider the representation of the connected
component of the cuckoo graph in which x resides. Furthermore, Lemma 1.2 implies that the size of
the component is O(1) on expectation, thus an algorithm which is linear in the size of the component
would have a constant expected running time. In the following we show that the canonical memory
representation could be preserved without using the additional pointers. The additional pointers
are only needed for supporting deletions. If the additional pointers are maintained, then once the
element is inserted the pointers need to be updated so that the element is in its proper position in
the cyclic linked list. This could be done in a straightforward manner in time linear in the size of
the component.

Given an element x ∈ U there are four possible cases to consider. The first and simplest case
is when both T0[h0(x)] and T1[h1(x)] are unoccupied, and we store x in both entries. The second
and third cases are when one of the entries is occupied and the other is not occupied. In these

7

cases x does not create a new cycle in the graph. Thus, unless x is the new minimal element in
an acyclic component it is simply put in the empty slot. If x indeed is the new minimal element
in an acyclic component, it is put in both tables and the appropriate elements are pushed to their
alternative location, effectively removing the previous minimum element from one of the tables.
The fourth case, in which both entries are occupied involves slightly more details, but is otherwise
straightforward. In this case x either merges two connected components, or creates a new cycle in
a component. The latter case may also trigger the low probability event of stashing an element in
the secondary data structure.

In the following we provide a full description of the four cases. One can readily verify that the
procedure preserves the canonical representation invariant. For the convenience of the reader we
also supply a detailed explanation in Appendix A.1.

Case 1: T0[h0(x)] = ⊥ and T1[h1(x)] = ⊥. In this case x is in the only element of the
component, and thus the minimal one. Thus, the canonical representation is maintained by storing
x in both T0[h0(x)] and T1[h1(x)].

Case 2: T0[h0(x)] 6= ⊥ and T1[h1(x)] = ⊥. In this case x is added to an existing connected
component, and since we add a new node to this component then x does not create a new cycle.
Denote by x1 the element stored in T0[h0(x)], and denote by C its connected component. We
begin by identifying whether C is acyclic or unicyclic. We follow the directed path starting at x1

(as in Claim 3.1) either until we reach an element that appears twice (see Claim 3.1), or until we
detect a cycle (see Claim 3.2). The canonical representation guarantees that in the first case the
component is acyclic (and we denote by xmin the element that appears twice), and in the second
case the component is unicyclic. There are three possible subcases to consider:

1. C is acyclic and x > xmin. In this case xmin is the still the minimal element of the component,
so we store x in T1[h1(x)].

2. C is acyclic and x < xmin. In this case x is the new minimal element of the component so
it should be stored in both T0[h0(x)] and T1[h1(x)]. In addition, all the elements along the
path connecting x1 and xmin are moved to their other possible location.

More formally, we first store x in T1[h1(x)], and denote by x → x1 → · · · → xk → xmin → xmin

the directed path connecting x to xmin (note that it is possible that x1 = xmin). For every
1 ≤ i ≤ k we move xi to its other possible location (this deletes the first appearance of xmin

on this path). That is, if xi is stored in Tb[hb(xi)] we move it to T1−b[h1−b(xi)]. Finally, we
store x in T0[h0(x)].

3. C is unicyclic. In this case x does not lie on a cycle so we can safely store x in T1[h1(x)].

Case 3: T0[h0(x)] = ⊥ and T1[h1(x)] 6= ⊥. This case is analogous to Case (2).

Case 4: T0[h0(x)] 6= ⊥ and T1[h1(x)] 6= ⊥. In this case, x either merges two connected
components (each of which may be acyclic or unicyclic), or creates a new cycle in a connected
component (which, again, may be acyclic or unicyclic). The canonical representation forces us to
deal separately with each of these subcases. Roughly speaking, if the component created after x
was inserted has at most one cycle then the secondary data structure need not be used and insertion
procedure is simple. In the unlikely event of creating a second cycle, the procedure has to find the

8

element to store in the secondary data structure. In the following we show in detail how to do it.
It is a rather tedious but otherwise completely straightforward case analysis.

The insertion procedure begins by distinguishing between these subcases, as follows. For each
b ∈ {0, 1} denote by xb

1 the element stored in Tb[hb(x)], and denote by Cb its connected component.
We follow the directed path starting at xb

1 to identify whether Cb is acyclic or unicyclic (as in
Case 2). If Cb is acyclic the path discovers the minimal element xb

min in the component (note that
x0

min = x1
min if and only if C0 = C1), and if Cb is unicyclic then the path allows us to discover the

maximal element xb
max on the cycle. The three most likely cases are the following:

1. C0 6= C1 and both C0 and C1 are acyclic. In this case we merge the two components to a
single acyclic component. For each b ∈ {0, 1} denote by xb

1 → · · · → xb
kb
→ xb

min → xb
min the

directed path connecting xb
1 to xb

min. There are two possibilities to consider:

(a) x = min{x0
min, x

1
min, x}. In this case, all the elements along the two paths are moved to

their other possible location, and x is stored in both tables. More specifically, for every
b ∈ {0, 1} and for every 1 ≤ i ≤ kb we move xb

i to its other possible location, and store
x in both T0[h0(x)] and T1[h1(x)].

(b) xb
min = min{x0

min, x
1
min, x} for some b ∈ {0, 1}. In this case only the elements along on

the path connecting x1−b
1 and x1−b

min are moved, and x is stored in T1−b[h1−b(x)]. More
specifically, for every 1 ≤ i ≤ k1−b we move x1−b

i to its other possible location, and store
x in T1−b[h1−b(x)].

2. C0 6= C1 and exactly one of C0 and C1 is acyclic. Let b ∈ {0, 1} be such that C1−b is
acyclic and Cb is unicyclic. Denote by x1−b

1 → · · · → x1−b
k1−b

→ x1−b
min → x1−b

min the directed path

connecting x1−b
1 to x1−b

min. For every 1 ≤ i ≤ k1−b we move x1−b
i to its other possible location,

and store x in T1−b[h1−b(x)].

3. C0 = C1 and the component is acyclic. In this case x creates the first cycle in the component.
Denote by xmin the minimal element in the component (i.e., xmin = x0

min = x1
min), and for

each b ∈ {0, 1} denote by xb
1 → · · · → xb

kb
→ xmin → xmin the path connecting xb

1 to xmin.
There are two cases to consider:

(a) The path connecting x0
1 and x1

1 contains the two appearances of xmin. That is, the path
is of the form x0

1 → · · · → x0
k0
→ xmin ↔ xmin ← x1

k1
← · · · ← x1

1. In this case the
minimal element on the cycle is xmin, and therefore it should now be stored only in T0.
Let b ∈ {0, 1} be such that xb

kb
is adjacent to T1[h1(xmin)]. For every 1 ≤ i ≤ kb we move

xb
i to its other possible location, and store x in Tb[hb(x)].

(b) The path connecting x0
1 and x1

1 contains at most a single appearance of xmin. That is,
the path is of the form x0

1 → · · · → x0
`0
→ x∗ ← x1

`1
← · · · ← x1

1, for some `0 ≤ k0

and `1 ≤ k1, where x∗ is the first intersection point of the two paths. In this case we
denote by x∗ = y1 → · · · → yk∗ → xmin → xmin the directed path connecting x∗ and
xmin. First, for every 1 ≤ i ≤ k∗ in decreasing order we move yi to its other possible
location. Then, we let z = min{x, x0

1, . . . , x
0
`0

, x1
1, . . . , x

1
`1
} (this is the minimal element

on the cycle, which should be stored in table T0) and distinguish between the following
two cases:

i. z = x. For every 1 ≤ i ≤ `0 we move x0
i to its other possible location, and store x

in T0[h0(x)].

9

ii. z = xb
j for some b ∈ {0, 1} and 1 ≤ j ≤ `b. If xb

j is currently stored in T0, then
for every 1 ≤ i ≤ `1−b we move x1−b

i to its other possible location, and store x in
T1−b[h1−b(x)]. Otherwise (xb

j is currently stored in T1), for every 1 ≤ i ≤ `b we move
xb

i to its other possible location, and store x in Tb[hb(x)].

In the unlikely event in which an element has to be put in the secondary data structure we do
as follows:

1. C0 6= C1 and both C0 and C1 are unicyclic. Recall that we identified x0
max and x1

max – the
maximal elements on the cycles of C0 and C1, respectively. Let b ∈ {0, 1} be such that
x1−b

max < xb
max. Denote by xb

1 → · · · → xb
k → xb

max the simple directed path connecting xb
1

to xb
max. For every 1 ≤ i ≤ k we move xb

i to its other possible location, stash xb
max in the

secondary data structure, and store x in Tb[hb(x)].

2. C0 = C1 and the component is unicyclic. In this case the connected component already
contains a cycle, and x creates an additional cycle. We denote the existing cycle by y1 →
· · · → yk → y1, and denote the paths connecting x0

1 and x1
1 to the existing cycle by x0

1 →
· · · → x0

k0
→ y1 and by x1

1 → · · · → x1
k1
→ y` (for some 1 ≤ ` ≤ k), respectively. Note that we

assume without loss of generality that the existing cycle is directed from y1 to y`, and note
that it is possible that x0

1 = y1 or x1
1 = y`. There are two possibilities:

(a) y1 6= y`. In this case the paths connecting x0
1 and x1

1 to the existing cycle do not intersect.
Let xmax = max{x, x0

1, . . . , x
0
k0

, x1
1, . . . , x

1
k1

, y1, . . . , yk}. We stash xmax in the secondary
data structure, and distinguish between the following cases:

i. xmax = x. In this case the insertion procedure terminates.
ii. xmax = xb

j for some b ∈ {0, 1} and 1 ≤ j ≤ kb. For every 1 ≤ i ≤ j − 1 we move xb
i

to its other possible location, and store x in Tb[hb(x)].
iii. xmax = yj for some 1 ≤ j ≤ ` − 1. For every 1 ≤ i ≤ j − 1 we move yi to its

other possible location (this clears the entry in which y1 was stored). Let x′min =
min{x, x0

1, . . . , x
0
k0

, x0
1, . . . , x

1
k1

, y`, . . . , yk} (this is the minimal element on the new
cycle, and it should be stored in T0). We distinguish between three cases:
• x′min = x. For every 1 ≤ i ≤ k0 we move x0

i , and store x in T0[h0(x)].
• x′min = x0

t for some 1 ≤ t ≤ k0. If x′min is currently stored in T0, then for every
` ≤ i ≤ k we move yi to its other possible location, for every 1 ≤ i ≤ k1 we
move x1

i to its other possible location, and store x in T1[h1(x)]. Otherwise (x′min

is currently stored in T1), the for every 1 ≤ i ≤ k0 we move x0
i , and store x in

T0[h0(x)].
• x′min = x1

t for some 1 ≤ t ≤ k1, or x′min = yt for some ` ≤ t ≤ k. If x′min is
currently stored in T0, then for every 1 ≤ i ≤ k0 we move x0

i , and store x in
T0[h0(x)]. Otherwise (x′min is currently stored in T1), then for every ` ≤ i ≤ k
we move yi to its other possible location, for every 1 ≤ i ≤ k1 we move x1

i to its
other possible location, and store x in T1[h1(x)].

iv. xmax = yj for some ` ≤ j ≤ k. For every ` ≤ i ≤ j − 1 we move yi to its
other possible location (this clear the entry in which y` was stored). Let x′min =
min{x, x0

1, . . . , x
0
k0

, x0
1, . . . , x

1
k1

, y1, . . . , y`−1} (this is the minimal element on the new
cycle, and it should be stored in T0). We distinguish between three cases:

10

• x′min = x. For every 1 ≤ i ≤ ` − 1 we move yi to its other possible location,
for every 1 ≤ i ≤ k0 we move x0

i to its other possible location, and store x in
T0[h0(x)].

• x′min = x1
t for some 1 ≤ t ≤ k1. If x′min is currently stored in T0, then for every

1 ≤ i ≤ `− 1 we move yi to its other possible location, for every 1 ≤ i ≤ k0 we
move x0

i to its other possible location, and store x in T0[h0(x)]. Otherwise (x′min

is currently stored in T1), then for every 1 ≤ i ≤ k1 we move x1
i to its other

possible location, and store x in T1[h1(x)].
• x′min = x0

t for some 1 ≤ t ≤ k0, or x′min = yt for some 1 ≤ t ≤ ` − 1. If x′min is
currently stored in T0, then for every 1 ≤ i ≤ k1 we move x1

i to its other possible
location, and store x in T1[h1(x)]. Otherwise (x′min is currently stored in T1),
then for every 1 ≤ i ≤ `− 1 we move yi to its other possible location, for every
1 ≤ i ≤ k0 we move x0

i to its other possible location, and store x in T0[h0(x)].
(b) y1 = y`. In this case the paths connecting x0

1 and x1
1 to the existing cycle intersect. De-

note by x∗ their first intersection point. Note that either x∗ = y1 or that x∗ = x0
`0

= x1
`1

for some `0 ≤ k0 and `1 ≤ k1. Let xmax = max{x, x0
1, . . . , x

0
`0−1, x

1
1, . . . , x

1
`1−1, y1, . . . , yk}.

We stash xmax in the secondary data structure, and distinguish between the following
cases:

i. xmax = x. In this case the insertion procedure terminates.
ii. xmax = xb

j for some b ∈ {0, 1} and 1 ≤ j ≤ `b − 1. For every 1 ≤ i ≤ j − 1 we move
xb

i to its other possible location, and store x in Tb[hb(x)].
iii. xmax = yj for some 1 ≤ j ≤ k. Denote by x∗ = x∗1 → · · · → x∗k∗ → y1 the directed

path connecting x∗ to y1. For every 1 ≤ i ≤ j − 1 we move yi to its other possible
location, and for every 1 ≤ i ≤ k∗ we move x∗i to its other possible location. Now,
let x′min = min{x, x0

1, . . . , x
0
`0−1, x

1
1, . . . , x

1
`1−1} (this is the minimal element on the

new cycle, and it should be stored in T0). We distinguish between two cases:
• x′min = x. For every 1 ≤ i ≤ `0 − 1 we move x0

i to its other possible location,
and store x in T0[h0(x)].

• x′min = xb
j for some b ∈ {0, 1} and 1 ≤ j ≤ `b − 1. If x′min is currently stored

in T0, then for every 1 ≤ i ≤ `1−b we move x1−b
i to its other possible location,

and store x in T1−b[h1−b(x)]. Otherwise (x′min is currently stored in T1), then
for every 1 ≤ i ≤ `b− 1 we move xb

i to its other possible location, and store x in
Tb[hb(x)].

3.3 The Deletion Procedure

The deletion procedure takes advantage of the additional pointer stored in each entry. Recall that
these pointers form a cyclic list of all the elements of a connected component. Note that since the
expected size of a connected component is constant, and the expected size of the secondary data
structure is constant as well, a straightforward way of deleting an element is to retrieve all the
elements in its connected component, reinsert them without the deleted element, and then reinsert
all the elements that are stashed in the secondary data structure. This would result in expected
amortized constant deletion time. In practice, however, it is desirable to minimize the amount of
memory manipulations. In what follows we detail a more refined procedure, which although share
the same asymptotic performance, it is much more sensible in practice.

Given an element x ∈ U we execute the lookup procedure to verify that x is indeed stored. If
x is stashed in the secondary data structure, we just delete x from the secondary data structure.

11

In the more interesting case, where x is stored in one of the tables, the connected component C of
x is either acyclic or unicyclic. As in the insertion procedure, we follow the directed path starting
at T0[h0(x)] either until we reach an element that appears twice, or until we detect a cycle. The
canonical representation guarantees that in the first case the component is acyclic (and the element
that appears twice is xmin), and in the second case the component is unicyclic (and we are able to
identify whether x is part of its cycle). There are four possible cases to consider:

Case 1: C is acyclic and x 6= xmin. In this case we split C to two acyclic connected components
C0 and C1. An element belongs to C0 if the directed path connecting it to xmin does not go through
x. All the other elements belong to C1.

Note that xmin is the minimal element in C0, and is already stored in both tables. We identify
the minimal element in C1 as follows. We follow the linked list of elements starting from xmin, and
denote by x1

min the first element on that list which is different from x, and for which x belongs to
the directed path connecting it to xmin (it is possible that there is no such element, and in this case
we delete x and update the linked list). This process discovers the directed path connecting x1

min

to x, denoted x1
min → x1 → · · · → xk → x. For every 1 ≤ i ≤ k we move xi to its other possible

location (note that this deletes x), and store x1
min in both tables. Finally, we update the linked

lists of the two components.

Case 2: C is acyclic and x = xmin. In this case we again split C to two acyclic connected
components C0 and C1. The element x is the minimal element in an acyclic component, and
therefore it is stored in both tables. We denote its two appearances by x0 and x1. An element
belongs to C0 if the directed path connecting it to x0 does not go through x1. All the other elements
belong to C1. That is, an element belongs to C1 if the directed path connecting it to x1 does not
go through x0.

For each b ∈ {0, 1} we continue as follows. We follow the linked list of elements starting from xb,
and denote by xb

min the first element on that list which belongs to Cb (it is possible that there is no
such element, and in this case we delete xb and update the linked list). This process discovers the
directed path connecting xb

min to xb, denoted xb
min → xb

1 → · · · → xb
kb
→ xb. For every 1 ≤ i ≤ kb

we move xb
i to its other possible location (note that this deletes xb), and store xb

min in both tables.
Finally, we update the linked lists of the two components.

Case 3: C is unicyclic and x is part of its cycle. In this case C remains connected when x is
deleted. In addition, if there are any stashed elements that belong to C, the minimal such element
should be removed from the secondary data structure and inserted using the insertion procedure.

More specifically, by following the linked list starting from x we locate the minimal element
xmin currently stored in C (if x is the minimal element than we denote by xmin the first element
larger than x). Claim 3.2 guarantees that there is a directed path connecting xmin to x. Denote
this path by xmin → x1 → · · · → xk → x. For every 1 ≤ i ≤ k we move xi to its other possible
location (note that this deletes x), and store xmin in both tables. We then update the linked list of
the component. Finally, if there are stashed elements that belong to this component, we execute
the insertion procedure with the minimal such element.

Case 4: C is unicyclic and x is not part of its cycle. In this case we split C to an acyclic
component C0 and a unicyclic component C1. An element belongs to C0 if the directed path
connecting it to the cycle goes through x. All the other elements belong to C1.

12

We identify the minimal element in C0 as follows. We follow the linked list of elements starting
from x, and denote by x0

min the first element on that list which is different from x, and for which x
belongs to the directed path connecting it to the cycle (it is possible that there is no such element,
and in this case we delete x and update the linked list). This process discovers the directed path
connecting x0

min to x, denoted x0
min → x1 → · · · → xk → x. For every 1 ≤ i ≤ k we move xi to its

other possible location (note that this deletes x), and store x0
min in both tables. We then update

the linked lists of the two components. Finally, if there are stashed elements that belong to C0, we
execute the insertion procedure with the minimal such element.

4 The Secondary Data Structure

In this section we propose several possible instantiations for the secondary data structure. As
discussed in Section 1.3, the secondary data structure can be any strongly history-independent
data structure. Recall that Lemma 1.3 implies in particular that the expected number of stashed
elements is constant, and with overwhelming probability there are no more than log n stashed
elements. Thus, the secondary data structure is essentially required to store only a very small
number of elements. Furthermore, since the secondary data structure is probed every time a
lookup is performed, it is likely to reside most of the time in the cache, and thus impose a minimal
cost.

The practical choice. The most practical approach is instantiating the secondary data structure
with a sorted list. A sorted list is probably the simplest data structure which is strongly history
independent. When a sorted list contains at most s elements, insertions and deletions are performed
in time O(s) in the worst case, and lookups are performed in time O(log s) in the worst case. In turn,
instantiated with a sorted list, our data structure supports insertions, deletions, and membership
queries in expected constant time. Moreover, Lemma 1.3 implies that the probability that a lookup
requires more than k probes is at most O(n−2k

).

Constant worst case lookup time. We now propose two instantiations that guarantee constant
lookup time in the worst case. We note that these instantiations result in a rather theoretical
impact, and in practice we expect a sorted list to perform much better.

One possibility is using the strongly history-independent data structure of Blelloch and Golovin
[5], and in this case our data structure supports insertions and deletions in expected constant time,
and membership queries in worst case constant time. Another possibility is using any deterministic
perfect hash table with constant lookup time. On every insertion and deletion we reconstruct the
hash table, and since its construction is deterministic, the resulting data structure is strongly history
independent. The repeated reconstruction allows us to use a static hash table (instead of a dynamic
hash table), and in this case the construction time of the table determines the insertion and deletion
time. Perfect hash tables with such properties were suggested by Alon and Naor [1], Miltersen [19],
and Hagerup, Miltersen and Pagh [13]. Asymptotically, the construction of Hagerup et al. is the
most efficient one, and provides an O(s log s) construction time on s elements. Instantiated with
their construction, our data structure supports insertions and deletion in expected constant time,
and membership queries in worst case constant time.

13

5 Efficiency Analysis

In this section we examine the efficiency of our data structure, in terms of its update time, lookup
time, and memory utilization. The lookup operation, as specified in Section 3, requires probing both
tables and performing a lookup in the secondary data structure. As in cuckoo hashing, probing
the tables requires only two memory accesses (which are independent and can be performed in
parallel). The secondary data structure, as described in Section 4, can be chosen to support
membership queries in constant time in the worst case. Furthermore, with high probability the
secondary data structure contains only a very small number of elements, and can therefore reside
in the cache. In this case the lookup time is dominated by the time required for probing the two
tables. Moreover, we note that with high probability (see Lemma 1.3), the secondary storage does
not contain any elements, and therefore the lookup procedure only probes the two tables. We
conclude that the lookup time is basically similar to that of cuckoo hashing, shown in [25] to be
very efficient.

The running time analysis of the insertion and deletion procedures is based on bounds on the size
of a connected component and on the number of elements in the secondary data structure. Both the
insertion and the deletion procedure involve at most two scans of the relevant connected component
or the secondary data structure, and thus are linear in the size of the connected component and of
the number of stashed elements. Lemmata 1.2 and 1.3 implies that the expected running time is a
small constant.

The memory utilization of the our construction is identical to that of cuckoo hashing when
supporting only insertions and membership queries – the number of elements should be less than
half of the total number of table entries. The extra pointer needed for supporting deletions reduces
the memory utilization to 25% under the conservative assumption that a pointer occupies the same
amount of space as a key. If a pointer is actually shorter than a key, the space utilization improves
accordingly.

6 Concluding Remarks

On using O(log n)-wise independent hash functions. One possible drawback of our con-
struction, from a purely theoretical point of view, is that we assume the availability of truly random
hash functions, while the constructions of Blelloch and Golovin assume O(log n)-wise independent
hash functions (when guaranteeing worst case constant lookup time) or 5-wise independent hash
functions (when guaranteeing expected constant lookup time). Nevertheless, simulations (see, for
example, [25]) give a strong evidence that simple heuristics work for the choice of the hash func-
tions as far as cuckoo hashing is concerned (Mitzenmacher and Vadhan [20] provide some theoretical
justification). Thus we expect our scheme to be efficient in practice.

Our construction can be instantiated with O(log n)-wise independent hash functions, and still
provide the same performance guarantees for insertions, deletions, and membership queries. How-
ever, in this case the bound on the number of stashed elements is slightly weaker than that stated
in Lemma 1.3. Nevertheless, rather standard probabilistic arguments can be applied to argue that
(1) the expected number of stashed elements is constant, and (2) the expected size of a connected
component in the cuckoo graph is constant.

Alternatively, our construction can be instantiated with the highly efficient hash functions of
Dietzfelbinger and Woelfel [9] (improving the constructions of Siegel [28] and Ostlin and Pagh [24]).
These hash functions are almost nδ-wise independent with high probability (for some constant
0 < δ < 1), can be evaluated in constant time, and each function can be described using only O(n)
memory words. One possible drawback of this approach is that the distance to nδ-independence is

14

only polynomially small.

Memory utilization. Our construction achieves memory utilization of essentially 50% (as in
cuckoo hashing), and of 25% when supporting deletions. More efficient variants of cuckoo hashing
[8, 11, 26] circumvent the 50% barrier and achieve better memory utilization by either using more
than two hash functions, or storing more than one element in each entry. It would be interesting to
transform these variants to history-independent data structures while essentially preserving their
efficiency.

References

[1] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16(4-5):434–449, 1996.

[2] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case of hashing
and signing. In Advances in Cryptology - CRYPTO ’94, pages 216–233, 1994.

[3] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and application to
virus protection. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing,
pages 45–56, 1995.

[4] J. Bethencourt, D. Boneh, and B. Waters. Cryptographic methods for storing ballots on a vot-
ing machine. In Proceedings of the 14th Network and Distributed System Security Symposium,
pages 209–222, 2007.

[5] G. E. Blelloch and D. Golovin. Strongly history-independent hashing with applications. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pages
272–282, 2007.

[6] N. Buchbinder and E. Petrank. Lower and upper bounds on obtaining history-independence.
Information and Computation, 204(2):291–337, 2006. A preliminary version appeared in Ad-
vances in Cryptology - CRYPTO ’03, pages 445–462, 2003.

[7] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal on Computing,
23(4):738–761, 1994.

[8] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly packed
constant size bins. Theoretical Computer Science, 380(1-2):47–68, 2007.

[9] M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 629–638,
2003.

[10] Ú. Erlingsson, M. Manasse, and F. McSherry. A cool and practical alternative to traditional
hash tables. In Proceedings of the 7th Workshop on Distributed Data and Structures, 2006.

[11] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. Space efficient hash tables with worst
case constant access time. Theory of Computing Systems, 38(2):229–248, 2005.

[12] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31(3):538–544, 1984.

15

[13] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal of Algorithms,
41(1):69–85, 2001.

[14] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. Rocke. Characterizing history
independent data structures. Algorithmica, 42(1):57–74, 2005.

[15] S. Janson, T. ÃLuczak, and A. Ruciński. Random Graphs. Wiley-Interscience, 2000.

[16] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing with a
stash. Manuscript, 2008.

[17] R. Kutzelnigg. Bipartite random graphs and cuckoo hashing. In Proceedings of the 4th Collo-
quium on Mathematics and Computer Science, pages 403–406, 2006.

[18] D. Micciancio. Oblivious data structures: Applications to cryptography. In Proceedings of the
29th Annual ACM Symposium on the Theory of Computing, pages 456–464, 1997.

[19] P. B. Miltersen. Error correcting codes, perfect hashing circuits, and deterministic dynamic
dictionaries. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 556–563, 1998.

[20] M. Mitzenmacher and S. Vadhan. Why simple hash functions work: Exploiting the entropy
in a data stream. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 746–755, 2008.

[21] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-evident, history-independent,
subliminal-free data structures on PROM storage -or- How to store ballots on a voting ma-
chine (extended abstract). In Proceedings of the IEEE Symposium on Security and Privacy,
pages 365–370, 2006. The full version is available from the Cryptology ePrint Archive, Report
2006/081.

[22] T. Moran, M. Naor, and G. Segev. Deterministic history-independent strategies for storing
information on write-once memories. In Proceedings of the 34th International Colloquium on
Automata, Languages and Programming, pages 303–315, 2007.

[23] M. Naor and V. Teague. Anti-persistence: History independent data structures. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing, pages 492–501, 2001.

[24] A. Ostlin and R. Pagh. Uniform hashing in constant time and linear space. In Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, pages 622–628, 2003.

[25] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

[26] R. Panigrahy. Efficient hashing with lookups in two memory accesses. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 830–839, 2005.

[27] K. A. Ross. Efficient hash probes on modern processors. In Proceedings of the 23nd Interna-
tional Conference on Data Engineering, pages 1297–1301, 2007.

[28] A. Siegel. On universal classes of fast high performance hash functions, their time-space trade-
off, and their applications. In Proceedings of the 30th Annual IEEE Symposium on Foundations
of Computer Science, pages 20–25, 1989.

[29] M. Zukowski, S. Héman, and P. A. Boncz. Architecture conscious hashing. In 2nd International
Workshop on Data Management on New Hardware, page 6, 2006.

16

A Proof of History Independence

In this section we prove that our data structure is history independent by showing that it has
the canonical representation described in Section 3.1. We fix two hash functions h0, h1 : U →
{0, . . . , r − 1}, and a sequence of insert and delete operations σ1, . . . σm. We prove by induction
on 1 ≤ i ≤ k that after performing σi the data structure has the canonical representation. This
essentially reduces to proving that if the data structure is in the canonical representation and an
operation is performed, then the canonical representation is not violated. In addition, note that
the insertion and deletion procedures affect only a single connected component, and therefore the
analysis can focus on a single connected component. In what follows we deal separately with
insertions and deletions.

A.1 History Independence of Insertions

As in the insertion procedure, when inserting an element x ∈ U there are four possible cases to
consider.

Case 1: T0[h0(x)] = ⊥ and T1[h1(x)] = ⊥. In this case a new connected component is cre-
ated. This component is acyclic, and x is its minimal element. We store x in both T0[h0(x)] and
T1[h1(x)], and this corresponds to the canonical representation of the component.

Case 2: T0[h0(x)] 6= ⊥ and T1[h1(x)] = ⊥. In this case x is added to an existing connected
component, and x does not create a new cycle in this component. Therefore, the set of stashed
elements of the component does not change. If the component is acyclic and x is larger than the
minimal element of the component, then x is stored in T1[h1(x)]. If the component is acyclic and x is
smaller than the minimal element, then x is stored in both tables and there is only one possible way
of storing all the other elements. Finally, if the component is unicyclic then x is stored in T1[h1(x)].
In addition, we did not move any elements that are on the cycle, and therefore the minimal element
on the cycle is still stored in T0. Thus, in all three cases the canonical representation is not violated.

Case 3: T0[h0(x)] = ⊥ and T1[h1(x)] 6= ⊥. See the previous case.

Case 4: T0[h0(x)] 6= ⊥ and T1[h1(x)] 6= ⊥. In this case x either merges two connected com-
ponents, or create a new cycle in an existing component. There are five possible subcases to
consider:

1. Merging two acyclic components. The new component is acyclic as well, and its minimal
is either the minimal element of the first component, the minimal element of the second
component, or x. The procedure identifies the minimal element, which is then stored in both
tables, and there is only one possible way of storing all the other elements.

2. Merging an acyclic component with a unicyclic component. In this case x creates a single
unicyclic component. Note that x is not on the cycle of this component, and therefore the
set of stashed elements of the new component is the same as that of the unicyclic component.
The procedure stores x in the acyclic component, and moves all elements on the directed path
from x to the minimal element of the acyclic component to their other possible location. The
result is that the minimal element of the acyclic component is now stored in only one of the
tables. In addition, we did not move any elements on the cycle of the unicyclic component,
and therefore the minimal element on the cycle is still stored in T0.

17

3. Merging two unicyclic components. The set of stashed elements of the new component is the
union of the corresponding sets of the two components, including the maximal element on the
two cycles of the components (these are disjoint cycles, which do not contain x). The insertion
procedure identifies the maximal element on the two cycles, and stash it in the secondary data
structure. Then, x is inserted by moving all the elements on the directed path that leads to
the stashed element. Note that we did not move any elements on the remaining cycle, and
therefore the minimal element on that cycle is still stored in T0.

4. Creating a cycle in an acyclic component. In this case there are two directed paths connecting
the two possible locations of x to the minimal element of the component. The procedure
inserts x by moving the elements along the path that will cause the minimal element of the
cycle to be stored in T0.

5. Creating a cycle in a unicyclic component. The set of stashed elements now includes also the
maximal element on the two cycles (i.e., either the maximal element on the existing cycle, or
the maximal element on the cycle created by x). Once this element is stashed, x is inserted
to the location that will cause the minimal element on the cycle to be stored in T0.

A.2 History Independence of Deletions

As in the deletion procedure, given an element x ∈ U which is currently stored, there are several
cases to consider. The simplest case is when x is stashed in the secondary data structure, and the
procedure just deletes x. This does not affect the representation of the connected component to
which x is mapped: the set of stashed elements of this component does not changes (other than
removing x). Therefore, in this case the canonical representation is not violated.

We now turn to consider the cases in which x is stored in at least one of the tables. The
connected component C in which x is stored is either acyclic or unicyclic. If C is acyclic, the
canonical representation after deleting x depends on whether x is the minimal element xmin of the
component. If C is unicyclic, the canonical representation after deleting x depends on whether x
is part of its cycle. There are four possible cases to consider:

Case 1: C is acyclic and x 6= xmin. The deletion of x removes the outgoing edge of x from the
cuckoo graph, and this splits C to two acyclic connected components C0 and C1. The elements of
C0 are those who are not connected to x after the edge is removed (that is, all elements for which
the directed path connecting them to xmin does not go through x). All the other elements belong
to C1.

Note that xmin is the minimal element in C0, and is already stored in both tables. Therefore,
C0 is in its canonical form. The procedure identified the minimal element in C1, stores it in both
tables, and arranges the other elements of the component in the only possible way. This implies
that also C1 is in its canonical form.

Case 2: C is acyclic and x = xmin. This case is almost identical to the previous case. The
only difference is that the procedure needs to identify the minimal element in both C0 and C1 (and
arrange the components accordingly).

Case 3: C is unicyclic and x is part of its cycle. When removing the outgoing edge of x, the
component remains connected. In addition, the component is currently acyclic. The procedure first
enforces the canonical representation of an acyclic component by identifying the minimal element

18

and storing it in both tables. If the component does not have any stashed elements, then we are
done. Otherwise, inserting its minimal stashed element leads to the canonical representation.

Case 4: C is unicyclic and x is not part of its cycle. When removing the outgoing edge of
x, the component splits to two connected components: an acyclic component C0, and a unicyclic
component C1. An element belongs to C0 if the directed path connecting it to the cycle goes
through x. All the other elements belong to C1.

The unicyclic component C1 is already in its canonical form (the minimal element on the cycle
is still stored in T0), and any stashed elements that are mapped to this components should remain
stashed. As for the acyclic component C0, the procedure enforces the canonical representation
of an acyclic component by identifying the minimal element and storing it in both tables. If the
component does not have any stashed elements, then we are done. Otherwise, inserting its minimal
stashed element leads to the canonical representation.

19

	Introduction
	Related Work
	Our Contributions
	Overview of the Construction
	Paper Organization

	Preliminaries
	The Data Structure
	The Canonical Representation
	The Insertion Procedure
	The Deletion Procedure

	The Secondary Data Structure
	Efficiency Analysis
	Concluding Remarks
	Proof of History Independence
	History Independence of Insertions
	History Independence of Deletions

