
Information and Computation167, 27–45 (2001)
doi:10.1006/inco.2000.3012, available online at http://www.idealibrary.com on

On the Decisional Complexity of Problems Over the Reals

Moni Naor∗ and Sitvanit Ruah

Weizmann Institute of Science, Department of Applied Math and Computer Science, Rehovot 76100, Israel
E-mail: naor@wisdom.weizmann.ac.il, sitvanit@wisdom.weizmann.ac.il

We consider the role of randomness for the decisional complexity in algebraic decision (or compu-
tation) trees, i.e., the number of comparisons ignoring all other computation. Recently Ting and Yao
showed that the problem of finding the maximum ofn elements has decisional complexityO(log2 n)
(1994,Inform. Process. Lett., 49, 39–43). In contrast, Rabin showed in 1972 anÄ(n) bound for the
deterministic case (1972,J. Comput. System Sci., 6, 639–650). We point out that their technique is
applicable to several problems for which correspondingÄ(n) lower bounds hold. We show that in
general the randomized decisional complexity is logarithmic in the size of the decision tree. We then
turn to the question of the number of random bits needed to obtain the Ting and Yao result. We provide
a deterministicO(k logn) algorithm for finding the elements which are larger than a given element,
given a boundk on the number of these elements. We use this algorithm to obtain anO(log2 n) random
bits andO(log2 n) queries algorithm for finding the maximum. C© 2001 Academic Press

1 INTRODUCTION

The power of probabilistic models of computation has been studied extensively since the intro-
duction of randomization to algorithms. The main reason for adding randomization is to obtain more
efficient algorithms. In addition to time and space, a natural measure for the complexity of an algo-
rithm is thedecisional complexitywhich corresponds to the number of conditional statements (also
called queries) performed for the worst case input. As it turns out, when considering decision and com-
putation trees significant gaps exist between randomized and non-randomized decisional complexity
classes: In the algebraic decision tree and algebraic computation tree models it is known [Rab72, Jar81,
MPR94] that the deterministic decisional complexity of finding the maximum ofn real numbers is
Ä(n). Conversely, the co-nondeterministic decisional complexity of the problem (the smallest num-
ber of queries required to prove that an element is not maximal) in this model isO(1). Ting and Yao
[Ting93, TY94] used the small co-nondeterministic complexity of the problem to construct a randomized
algorithm that solves the problem usingO(log2 n) queries andO(n log2 n) random bits withO(1/nc)
error.

These gaps make the decisional complexity one of the few measures where randomness is provably
exponentially powerful. Such gaps cannot be obtained in all versions of the ACT and ADT models.
In models that use only bounded degree queries, or examine only a bounded number of elements in
a query, there are results showing that the decisional complexity of many computation problems does
not reduce much by adding randomness and even a small probability of error (see [MT85, S85, Ni91,
Gri99]). In this paper we focus our attention on the power of randomness in decisional complexity: for
what problems are the results of Ting and Yao [Ting93, TY94] applicable; how much randomness is
really needed.

Our main results are in showing that randomness can be limited toO(log2 n) random bits.
We present a probabilistic algorithm for finding the maximum ofn distinct elements withO(1/nc)

error probability, usingO(log2 n) queries. The advantage of the algorithm is that it uses onlyO(log2 n)
random bits, thus improving theO(n log2 n) randomness complexity of [TY94]. The algorithm makes
use of a deterministic algorithm for finding the elements which are larger than a given element, given a
boundk on the number of these elements. Ting [Ting93], gave a probabilistic proof to the existence of
an O(k2 logn) deterministic algorithm for this later problem. We observe that onlyO(k logn) queries
are actually needed and then turn Ting’s non-constructive scheme into a completely explicit algorithm
with O(k logn) decisional complexity. This is done by applying small probability spaces.

∗ Research supported by a grant from the Israel Science Foundation administered by the Israeli Academy of Sciences.

27

0890-5401/01 $35.00
Copyright C© 2001 by Academic Press

All rights of reproduction in any form reserved.

28 NAOR AND RUAH

The ideas of [TY94] for themaximal elementproblem are applied to derive probabilistic algorithms
with O(logn) decisional complexity andO(1/nc) error probability also for other problems. On the
other hand, we describe how to obtainÄ(n) deterministic, nondeterministic, and randomized with no
error lower bounds for these problems using the results of [Rab72, Jar81, MPR94]. The motivation is to
show more examples for the gaps between the deterministic and probabilistic decisional complexities.
In addition, we show how to reduce the randomness complexity of these problems fromO(n logn) to
O(logn). We also relate thesize decisional complexity(the number of leaves in the smallest tree) and
the randomized decisional complexity and show that the latter is logarithmic in the former.

Note that there are applications in which the decisional complexity has a special role, for example,
in the technique ofprefetchingand inautomated parallelizing. In prefetching a block of data is brought
into memory before it is actually referenced. In straight-line algorithms, in which only computations
are performed, prefetching is possible because we know what the next statement is, before the current
statement is executed. On the other hand, the step following a conditional statement depends on whether
the condition holds or not, and hence cannot be fetched before the condition is tested. Straight-line
algorithms are also generally easier to parallelize than algorithms that involve queries. Note however
that not every algorithm whose decisional complexity is small is suitable for these applications, and the
price of computations should be considered as well.

11. Organization

The paper is organized as follows: Section 2 defines the computation models we use. Section 3
summarizes related work. Section 4 discusses the gaps between the deterministic and probabilistic
decisional complexities introduced in [TY94, Rab72, Jar81, MPR94]. The ideas presented in these
papers are applied to exhibit gaps between the deterministic and probabilistic decisional complexities
also for each of the problems:simultaneous positivity, direct oriented convex hull, successive elements,
andsorted list(the exact definitions are given in Section 4.1). In addition, we show how to reduce the
randomness complexity of these problems fromO(n logn) to O(logn). We also relate the size decisional
complexity (the number of leaves in the smallest tree) and the randomized decisional complexity.

Section 5 describes how to turn Ting’s non-constructive scheme for finding thek-largest elements
into a completely explicit algorithm withO(k logn) decisional complexity.

Section 6 describes a probabilistic algorithm for finding the maximum ofn distinct elements with
O(1/nc) error probability, usingO(log2 n) queries.

2 MODEL OF COMPUTATION AND RELATED NOTATIONS

Given an inputx we consider the problems of deciding ifx belongs to a given setW (decision
problem) or finding some elements of the input that satisfy a given property (search problem).

We find it easier to describe algorithms explicitly in a model that allows computation steps. Hence,
our model of computation is analgebraic computation tree(ACT), a rooted binary tree with three
kinds of nodes: computation nodes, query nodes, and leaves. Incomputation nodes, a computation
zv← f (z1 . . . , zm) is executed, wheref is a rational function (f can be written asf (z1, . . . , zm) =
p(z1, . . . , zm)/q(z1, . . . , zm),wherep andq are polynomials), and thezi ’s are either the input elements
or variables computed in some lower level. These nodes have just one emanating edge. In aquery node,
a queryzvµ0 is performed whereµ ∈ {=,≥, >} andzv ∈ {x1, . . . , xn} or zv was computed in a lower
level node. The node has two emanating edges, for the two possible outcomes of the query. A leaf is
labeled with an output value. For a decision problem, this value is just “1” or “0.” For a search problem,
this value is the element or subset of elements that satisfy the required property.

A nondeterministic algebraic computation tree (NACT) is a rooted binary tree that has the three types
of nodes of an ACT and alsoguessing nodesin which a nondeterministic choice is made. These nodes
have two unlabeled emanating edges. For every inputx ∈ Rn, and every leaf in the NACT thatx can
reach, the label of the leaf is the correct output value forx.

A probabilistic algebraic computation tree(PACT) is a rooted binary tree that has the three types
of nodes of an ACT and alsoprobabilistic nodes, in which a random bit∈ {0, 1} is chosen with equal
probability. A probabilistic node has two emanating edges, for the two possible bits. At each execution
of the algorithm, the sequence of random bits chosen at the probabilistic steps forms a random string

DECISIONAL COMPLEXITY 29

r. T is a distribution over deterministic ACTs. For each possible random stringr , a deterministicTr is
executed. A PACTT solves a problem with error probabilityα if ∀x ∈ Rn

Pr[T gives the correct output value on inputx |≥ 1− α.

A setW is accepted by a PACTT with one-sided errorα if for x ∈ W

Pr[T acceptsx] ≥ 1− α

and forx /∈ W

Pr[T acceptsx] = 0.

A setW is accepted by PACTT with two-sided errorα if for x ∈ W

Pr[T acceptsx] ≥ 1− α

and forx /∈ W

Pr[T acceptsx] ≤ α.

We next recall from [MPR94, Definition 2.1] the formal definitions of the complexity measures to
be used: LetT be an algebraic computation tree andW ⊆ Rn.

• Thedecisional heightof a pathP in T, hD(P), is the number of query nodes onP.

• Thedecisional height of Tis the maximum over all pathsP in T of hD(P).

• Thedecisional complexity of W, CD(W), is the minimum decisional height of all ACTs that decide
on membership inW.

Analogous measures are defined for PACTs and NACTs: letT be a probabilistic algebraic computation
tree,W ⊆ Rn andx ∈ Rn. Let T̂r be the ACT executed for random stringr . Denote byT̂r (x) the path
thatx follows in T̂r . Therandomized decisional heightof T is:

RCD(T) = max
x∈Rn

E
r
(hD(T̂r (x))).

The randomized with no error decisional complexityof W, RCD(W), is the minimum decisional
complexity over all PACTs that decide correctly on membership inW. RCD(W) corresponds to the
complexity of Las Vegas algorithms.

Another measure considered for PACTs is therandomness complexityof T . This is the maximum
over all pathsP̀ of T of the number of probabilistic nodes onP̀ , or equivalently, the length of the
longest random string.

For an NACTT , again letT̂r be the ACT executed for choice stringr (wherer is the concatenation
of the bits chosen in the guessing nodes ofT) and let T̂r (x) be the path thatx follows in T̂r . The
nondeterministic decisional heightof T is N TD(T) = maxx∈Rn minr (hD(T̂r (x))). Thenondeterminis-
tic decisional complexityof W⊆ Rn, N TD(W), is the minimum height of all NACTs that decide on
membership inW. The corresponding complexity measures for search problems are defined similarly.

Another interesting measure of complexity is the decisional size of an ACTT which is the number
of leaves inT . We use this measure in connection with the model of ternary algebraic computation
trees, i.e., where at each node there is a three-way split according to<,>, or =. Eachbinary ACT
has an equivalentternary ACT, constructed in the obvious way. The decisional size complexity of
W ⊆ Rn,CS(W), is the minimum decisional size over all ternary ACTs that decide membership inW.
We relate the randomized decisional complexity and size complexities of ternary ACTs, by using the
fact that in a ternary ACT there is a way to test (with high probability) if a given input reaches a certain
leaf. However, this technique does not apply anymore when we considerbinary ACTs, because of the

30 NAOR AND RUAH

difficulty of distinguishing inputs which are roots of some of the polynomials on the path from the root
to the leaf, but do not reach that leaf.

Another model of computation commonly used in the literature is thealgebraic decision tree(ADT),
which includes only query nodes and leaves (i.e., has no computation nodes). Its nondeterministic and
probabilistic versions are the NADT and PADT, respectively, defined similarly to NACT and PACT.

3 RELATED WORK

The two main models considered in the study of computational complexity over the reals are the
algebraic computation tree and the algebraic decision tree. The set of functions that can be computed at
a computation node in the ACT or tested at a query node in the ADT varies from one version of these
models to another.

Some geometric techniques were developed for obtaining lower bounds for decision problems in
these models. Examples of these are the region counting argument of Dobkin and Lipton [DL79] and
the flat counting of Rivest and Yao [RY80] for linear decision trees and the connected components
counting of [SY82, BenOr83] for ADTs and ACTs with arithmetic functions.

Rabin [Rab72] studied the decisional complexity of membership problems represented by a conjunc-
tion of linear forms. He proved a linear lower bound on the decisional complexity of a restricted type of
ADT for these problems. Jaromczyk [Jar81] showed these lower bounds still hold in the more general
case of polynomial forms. The generalization of these lower bounds to the broader class of ACTs is
proved in [MPR94]. The next section describes these results and some extensions of them.

Similar results were proved also for randomized and nondeterministic algorithms. Meyer Auf Der
Heide [Mey85a, Mey85b] showed that the deterministic and probabilistic complexities of a problem
are polynomially related. He proved that a PACT which acceptsL ⊆ Rn, in expected timet , can be
simulated by a deterministic ACT inO(t2n) steps.

Manber and Tompa [MT85] gave examples for problems withÄ(n logn) deterministic and non-
deterministic decisional complexities butO(polylog) co-non-deterministic decisional complexity in
the linear ADT model. One of their results in probabilistic models is anÄ(n) lower bound for deciding
maximality of an element by an ADT that examines a bounded number of elements in each query.

Snir [S85] generalized the arguments of [DL79] to one-sided error linear PADTs. He gave a linear
lower bound on deciding maximality of an element in this model. The component counting argument
is generalized for lower bounds on two-sided error linear PADT in [Mey85b].

Grigoriev [Gri99] proved anÄ(log N) lower bound for probabilistic computation trees recognizing
an arrangement (i.e., a union of hyperplanes) withN faces. This is applied to give anÄ(n2) lower bound
for theKnapsackproblem and anÄ(n logn) lower bound for theelement distinctnessproblem in the
PACT model.

The decisional size complexity is considered by Grigorievet al.[GKY95], who obtain an exponential
lower bound for the maximal element problem in bounded degree ADTs.

In the Boolean decision tree model, Nisan [Ni91] shows that even allowing error does not help
much in reducing the randomized decisional complexity of problems with small non-deterministicand
co-non-deterministic decisional complexities.

However, there are some examples for the usefulness of randomization in algorithms. Snir [S85]
introduced a family of problemsPn that takeO(3n) time in the probabilistic linear ADT but cannot be
solved by less thanO(4n) in the deterministic linear ADT.

Buergisseret al.[BKL93] describe anO(n) probabilistic algorithm for testing membership in the set
{(x, y) ∈ R2n | y is a permutation ofx}. They use the ACT model where each arithmetic operation is
counted. The deterministic complexity of this problem isÄ(n logn).

Ting and Yao [Ting93, TY94] improved the upper bound on the randomized decisional complexity of
finding the maximum ofn distinct elements. They gave anO(logn) Monte Carlo algorithm for deciding
maximality, and anO(log2 n) Monte Carlo algorithm for finding the maximum.

Ben-Or [BenOr96a] proved the optimality of Ting and Yao’s algorithm for deciding maximality. He
showed that fork < n − 1 any randomized algorithm for verifying thatx1 = max{x1, . . . , xn} using
at mostk comparisons of analytic functions must have error probability greater than 1/2k. In addition,
[BenOr96a] shows that any randomized algorithm with small error probability for verifying thatx1 is
themedianof x1, . . . , xn requiresÄ(n) comparisons of analytic functions.

DECISIONAL COMPLEXITY 31

Wigderson and Yao [WY96] considered the number ofsubset minimum testsrequired forfindingthe
maximum. A subset minimum test is of the form “x < V” (namely isx ∈ X smaller than all elements
in V ⊆ X?). They proved thatÄ(log2 n) such tests are required for finding the maximum ofn elements.
Ben-Or [BenOr96b] has also showed how to find the minimum explicitly, for the case that the input
elements are not necessarily distinct. A description of this algorithm is given in Section 4.3.1.

4 EXTENSIONS TO KNOWN RESULTS

41. Lower Bounds for Error-less Algorithms

The sets accepted by an ACT coincide with the class of semi-algebraic sets. A setW⊆ Rn is semi-
algebraic if it can be described as a boolean combination of polynomial equalities and inequalities, i.e.,
the setW can be given asW =⋃i∈I {x ∈ Rn | pi (x) = 0,qi, j (x) > 0 for j ∈ J}, whereI , J are finite
sets of positive integers (possibly empty), andpi ,qi, j ∈ R[X1, . . . , Xn].

By [BCR87, Theorem 2.7.1], for every closed semi-algebraic subsetW⊂ Rn there are positive
integersk, t and polynomialspi, j ∈ R[X1, . . . , Xn] s.t.

W =
t⋃

i=1

{x ∈ Rn | pi,1(x) ≥ 0, . . . , pi,k(x) ≥ 0}. (1)

The width of W in Rn, w(W, Rn), is the minimum non-negative integerk ∈ N for which such a
representation exists.

Rabin [Rab 72] defined the notion of acomplete prooffor x ∈ W,whereW is a closed semi-algebraic
set of the formW = {x ∈ Rn | `1(x) ≥ 0, . . . , `m(x) ≥ 0} and` j is linear 1≤ j ≤ m. A complete
proof for`1(x) ≥ 0, . . . , `m(x) ≥ 0 is a matrical representation of Eq. (1). Using these notations, Rabin
proved a lower bound on the width of a complete proof for`1(x) ≥ 0, . . . , `m(x) ≥ 0, which is equal
to the width ofW in Rn.

Montanaet al.[MPR94] applied the equivalence relation “generically equal” in order to prove lower
bounds for general ACTs that accept a semi-algebraic set. They showed that in order to bound the
decisional complexity of a semi-algebraicW, it is enough to give a lower bound on the width of closed
semi-algebraic sets which are generically equal toW.

Two semi-algebraicW,W′ ⊆ Rn are generically equal if there exists a polynomialq ∈ R[X1, . . . , Xn]
s.t. the two sets are equal, except maybe for points which are roots ofq. That is,

W\{x ∈ Rn | q(x) = 0} = W′\{x ∈ Rn | q(x) = 0}.

Montanaet al. [MPR94] defined the notiongeneric widthand showed it is a lower bound on the
decisional complexity of any ACT that acceptsW ∈ Rn. This notion applies to any semi-algebraicW
and not just closed. The generic width of a semi-algebraicW in Rn,wgen(W, Rn), is

wgen(W, Rn) = min{w(C, Rn) : C is closed, generically equal toW in Rn}.
They established the connection between the generic width of a semi-algebraic set and the complexity
of its membership problem in the following proposition:

PROPOSITION4.1 [MPR94, Proposition 4.1].Let W be a semi-algebraic subset of Rn. Then,

wgen(W, Rn) ≤ CD(W).

They bounded the generic width of semi-algebraic sets which are defined by a conjunction of polynomial
inequalities, satisfying some condition as required in the following propositions:

Recall theJacobian matrix Jof p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) at a pointα is them× n matrix
of which theith row is the vector of the partial derivatives ofpi (x1, . . . , xn) evaluated atα. That is,
J = (ai, j)m×n, whereai, j = (∂ pi /∂xj)(α).

PROPOSITION4.2 [MPR94, Corollary 3.9]. Let p1(X), . . . , pm(X) ∈ R[X1, . . . , Xn] be a collection
of polynomials, and letα be a point in Rn such that p1(α) = 0, . . . , pm(α) = 0 and the rank of the
Jacobian matrix defined by p1(X), . . . , pm(X) at α is m, i.e., rank J(p1, . . . , pm)α = m.

32 NAOR AND RUAH

Let W={x ∈ Rn | p1(x) ≥ 0 . . . , pm(x) ≥ 0}. Then,wgen({x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0},
Rn) = m.

PROPOSITION 4.3 [MPR94, Corollary 3.10]. Let f1, . . . , fm ∈ R[X1, . . . , Xn] be a collection of
polynomials for which there is a pointα ∈ Rn and a positive integer1≤ k < m s.t.

f1(α) = · · · = fk(α) = 0, fk+1(α) > 0, . . . , fm(α) > 0

and the rank of the Jacobian matrix verifies J(f1, . . . , fk)α = k.
Let W= {x ∈ Rn | f1(x) ≥ 0, . . . , fm(x) ≥ 0}. Then, k ≤ wgen(W, Rn).

They applied these conditions to derive linear deterministic lower bounds on the decisional complex-
ities of the problemsmaximal element, simultaneous positivity,anddirect oriented convex hulldefined
in the sequel. This is also applicable for the problemssorted listandsuccessive elementslisted below.

We claim that the notions ofwidth andgeneric widthare not only lower bounds for deterministic
algorithms, but also for non-deterministic algorithms and probabilistic algorithms that never err.

The complexity of a non-deterministic ACT is defined in terms of the minimal path length, and that
of a probabilistic ACT in terms of the expectation of the lengths of the paths that an input follows. For
that reason we first define the concept ofminimal widthwhich relates to the length of theshortestpath
the worst input follows. Later, we show that actually theminimal widthof W is equal to itswidth.

DEFINITION 4.1. LetW be a semi-algebraic subset ofRn,W closed. The minimal width ofW in Rn,

minw(W, Rn), is the minimum non-negative integers ∈ N s.t. there ist, and for 1≤ i ≤ t there are
k(i) ∈ N and polynomialspi, j ∈ R[X1, . . . , Xn] for 1 ≤ j ≤ k(i), s.t.

W =
t⋃

i=1

{x ∈ Rn | pi,1(x) ≥ 0, . . . , pi,k(i)(x) ≥ 0},

and maxx∈W mini∈I (x) k(i) = s, whereI (x) = {i | pi,1(x) ≥ 0, . . . , pi,k(i)(x) ≥ 0}.
If W is an open set, then the minimal width ofW is defined by replacing “pi, j (x) ≥ 0” By “ pi, j (x) >

0.” Again,minw(Rn, Rn) = minw(∅, Rn) = 0.
As defined in the Introduction, a non-deterministic ACT is said to acceptx within time t if and only

if there is an accepting path of length at mostt thatx follows. As will be seen, for the worst case input
x ∈ W, this time is bounded from below by the generic width ofW in Rn. Hence this measure is a
lower bound on the non-deterministic complexity of the membership problem forW, and consequently
also for its randomized with no error complexity. The following claim shows that the concepts ofwidth
andminimal widthare identical.

CLAIM 4.1. For every semi-algebraic subset W⊆ Rn,minw(W, Rn) = w(W, Rn).

Proof. Obviouslyminw(W, Rn) ≤ w(W, Rn). For the other direction, letw(W, Rn) = k. Assume
minw(W, Rn) < k. Then, there is a representation

W =
t⋃

i=1

{x ∈ Rn | pi,1(x) ≥ 0, . . . , pi,k(i) ≥ 0},

and for everyx ∈ Rn there isi s.t.pi,1(x) ≥ 0∧· · ·∧ pi,k(i)(x) ≥ 0, andk(i) < k. By possibly reordering
the indicesi , let 1≤ i ≤ s be the indices s.t.k(i) < k, but then

W =
s⋃

i=1

{x ∈ Rn | pi,1(x) ≥ 0, . . . , pi,k(i)(x) ≥ 0},

andk(i) < k for everyi contradicting the fact thatw(W, Rn) = k. ■

The following theorem gives a lower bound for the nondeterministic and randomized with no error
decisional complexity of the membership problem of a semi-algebraic setW. Recall that the randomized

DECISIONAL COMPLEXITY 33

decisional height of a PACTT is the expected value of the decisional height of the path that the worst
input follows:

RCD(T) = max
x∈Rn

E
r
(hD(T̂τ (x))).

The randomized with no error decisional complexity ofW, RCD(W), is the minimum decisional
height of all PACTs that decide on membership inW with no error.

Obviously,RCD(W) ≥ N TD(W).

THEOREM 1. Let W⊆ Rnbe a semi-algebraic set; then

N TD(W) ≥ wgen(W, Rn).

Proof. Let wgen(W, Rn) = M . If M = 0, the inequality trivially holds. Now, assumeM > 0.
Let T̂ be an NACT that acceptsW. Let P1, . . . , Ps be the accepting paths ofT̂ . So for everyi the set of

pointsW(Pi) accepted at the leaf endingPi is a semi-algebraic set, andW = W(T̂) = def
⋃s

j=1 W(Pj).
Similarly to [MPR94] we produce a semi-algebraic set that is generically equal toW by the following
steps:

1. Eliminate every path that includes an equation test, i.e., a test of the form “q(x)= 0?” Let
P̀ 1, . . . , P̀ t be the remaining paths, thenW1(T̂) = ⋃t

j=1 W(Pi j) is a semialgebraic set, and since

we dropped only paths with equalities,W1(T̂) is generically equal toW in Rn.

2. Replace every strict inequalityp(x)> 0 on the paths definingW1(T̂) by a weak inequalityp(x) ≥
0. Again the obtained setW2(T̂) is

W2(T̂) =
t⋃

j=1

{x ∈ Rn | pi,1(x) ≥ 0, . . . , pi,k,(i)(x) ≥ 0},

where pi,1, . . . , pi,k,(i) are the polynomials tested on pathP̀ i . Hence,W2(T̂) is generically equal to
W1(T̂) in Rn and hence, also toW.

Denote byhD(T̂r (x)) the decisional height of the path thatx follows in the NACT for random stringr :

N TD(T̂) = max
x∈Rn

min
r

(hD(T̂r (x))).

SinceM > 0, there existsx ∈ W that follows only paths that were not eliminated in steps 1 and 2;
henceN TD(T̂) ≥ minw(W2(T̂), Rn) = w(W2(T̂), Rn) ≥ M . Since the above inequality is true for
every NACTT̂ that acceptsW, we have that

N TD(W) = min
NACT T for W

N TD(T) ≥ M ■

A corollary from the above lower bound results is that even if all the inputs to the algorithm satisfy
Q(x) 6= 0, for some polynomialQ, then at leastwgen(W, Rn) − 1 queries are required to decide on
membership in a semi-algebraicW ⊆ Rn by an ACT, NACT, or PACT that never errs. In particular,
this gives linear lower bounds on the number of queries required to solve problems as above, given that
pi (x) 6= 0 for every polynomialpi appearing in the conjunction of polynomials that definesW.

Each of the problems listed below are membership problems for subsets that are represented by
a conjunction of inequalities of the formpj (x)≥ 0 as above. Consequently, the deterministic, non-
deterministic, and randomized with no error decisional complexities of each of them isÄ(n):

Simultaneous positivity(defined in [MPR94]): Givenn nonzero real numbersx1, . . . , xn, decide
whetherxi ≥ 0 for 1≤ i ≤ n.

Direct oriented convex hull: Given a sequence (z1, . . . , zn) of points in the real planezi = (xi , yi),
s.t. no three successive points (in cyclic order) lie on the same straight line, decide whether they are the
clockwise oriented vertices of their convex hull. By [Jar81] this is the problem of testing membership

34 NAOR AND RUAH

in the set

W = {(z1, . . . , zn) ∈ R2n | d(z1, z2, z3) ≥ 0, . . . ,d(zn−2, zn−1, zn) ≥ 0,

d(zn−1, zn, z1) ≥ 0, d(zn, z1, z2) ≥ 0},

whered(zi , zk, zj) = xk(yi − yj)+ yk(xj − xi)+ yj · xi − yi · xj and∀i d(zi , zi+1, zi+2) 6= 0.
Maximal element: Given a list ofdistinctreal numbersx1, . . . , xn, decide whetherx1 is the maximum.
Sorted list: Given a list ofdistinct real numbersx1, . . . , xn, decide whether the list is sorted in

increasing order.
Successive elements: Givenn distinctreal numbersx1, . . . , xn,decide whetherx1 andx2 are successive

in sorted order. This holds if and only if (x1− xk)(x2− xk) ≥ 0 for 3≤ k ≤ n.

42. Small-Bias Probability Spaces

In the sequel, small probability spaces are applied for constructing efficient deterministic algorithms
and probabilistic algorithms with small decisional and randomness complexities. Specifically, we make
use of the following types of random variables:

1. ε-biased random variables [NN93] defined as follows: lety1, . . . , yn be 0, 1 random variables
with joint probability distributionD. The variablesy1, . . . , yn are said to beε-biased if for all subsets
U ⊆ {1, . . . ,n},

∣∣∣∣∣Pr
D

[⊕
j∈U

yj = 0

]
− Pr

D

[⊕
j∈U

yi = 1

] ∣∣∣∣∣ ≤ ε.
For constantε < 1/2, the points of the probability space can be the columns of the generating matrix of
an error correcting code that corrects a constant fraction of errors (for example Justesen codes [Jus72]).
Sampling the resultingε-biased probability space requiresO(logn+ log(1/ε)) random bits.

2. k-wiseε-biased random variables defined as follows (Definition 2.2 in [NN93]): random variables
y1, . . . , yn ∈ {0, 1}with joint probability distributionD arek-wiseε-biased if for everyU ⊆ {1, . . . ,n}
such that|U | ≤ k,

∣∣∣∣∣Pr
D

[⊕
j∈U

yj = 0

]
− Pr

D

[⊕
j∈U

yi = 1

] ∣∣∣∣∣ ≤ ε.
In [NN93] there is a description of a construction of ak-wise ε-biased probability space of size
(k logn)/εO(1). Hence, for constantε, this construction produces a probability space of sizeO(k logn).

3. k-wiseδ-dependent random variables:{0, 1} random variablesy1, . . . , yn with joint distribution
D arek-wiseδ-dependent if∀1≤ ` ≤ k, ∀S= {i1, . . . , i`} ⊆ {1, . . . ,n},

‖D(S)−U (S)‖ =
∑

d∈{0,1}`
| D((xi1, . . . , xi`) = d)−U ((xi1, . . . , xi`) = d) |≤ δ,

whereU stands for the uniform distribution.

In particular, for everyS⊆ {1, . . . ,n} such that|S| = i ≤ k, the probability that the random variables
of S attain a certain configuration deviates from 1/2i by at mostδ. By [AGHP92, ABNNR92], such a
probability space can be constructed, where the number of bits required to specify a point in the sample
space isO(log logn+ k/2+ logk + log(1/δ)). Hence, forδ = O(1/nc) andk = O(logn), sampling
the resulting space requiresO(logn) bits.

DECISIONAL COMPLEXITY 35

43. Monte Carlo Algorithms

43..1 Decisional Complexity

In contrast to the lower bounds of Section 4.1 for error-less algorithms, recent results of Ting and
Yao [Ting93, TY94] present a Monte Carlo algorithm withO(log2 n) decisional complexity for finding
the maximum ofn distinct elements. They defined polynomial queries that can serve as a proof to the
non-maximality of an element. They used the fact that for a uniformly random subsetS⊆ {1, . . . ,n}
(represented as a vector (s1, . . . , sn) ∈ {0, 1}n), if xi is not the maximum, then it is equally likely that
S contains an odd or even number of indices of elements larger thanxi . Denoting the set of indices of
elements larger thanxi by Gi (x) (i.e.,Gi (x) = { j | xj > xi }), that means,

Pr

[∏
j∈S\{i }

(xi − xj) < 0

]
= Pr

[⊕
j∈S∩Gi (x)

sj = 1

]
= 1

2
.

On the other hand, ifxi is the maximum, then aparity test
∏

j∈S\{i }(xi − xj) > 0 on any subsetS
gives a positive result. The error can be reduced to 1/nc by choosingO(logn) subsets uniformly at
random and accepting only ifxi passed the parity tests on all these subsets.

This idea can be extended to other membership problems. AssumeW is represented as

W = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}.

Assume we know
∏m

j=1 pj (x) 6= 0, and we have a way to sample random subsets of polynomials
{pj1, · · · , pjs}. Then forx ∈ W, alwayspj1(x) · · · pjs(x) > 0, and forx /∈ W, Pr[pj1(x) . . . pjs(x) <
0] = 1/2.

Hence, we can execute the same procedure to decide ifx ∈W.That is, we sample uniformly at random
O(logn) subsets of{1, . . . ,m} and check if all the parity tests give positive results.

The algorithms of [Ting93, TY94] have polynomial randomness complexity (O(n logn) for checking
maximality andO(n log2 n) for finding the maximum). The amplification methods of random walks on
expander graphs [AKS87, AS92, CW89, IZ89] andε-biased random variables [ABNNR92, AGHP92,
NN93] enable us to reduce this randomness cost. We first recall the definitions required for the ampli-
fication methods we use:

A graphG = (V, E) is called an (n, d, c)-expander if|V | = n, the maximum degree of a vertex is
d, and for every set of verticesW ⊂ V such that (|W| ≤ n)/2, the inequality|N(W)| ≥ c|W| holds,
whereN(W) denotes the set of all vertices inV\W adjacent to some vertex inW.

A d-regular expander is ad-regular graphG(V, E) such that there existsc for whichG is an (n, d, c)-
expander.

Let G = (V, E) be ad-regular expander where the absolute value of each of its eigenvalues (the
eigenvalues of its adjacency matrix) but the first one is at mostλ. Assume a one to one correspondence
betweenV and the set of all possible random strings of anε-biased probability space with random
variablesy1, . . . , yn.By [LPS86, Mar88] such a graph can be constructed with degreed andλ≤ 2

√
d − 1

for eachd = p + 1 wherep is a prime congruent to 1 modulo 4. The label of each nodev ∈ V is
a characteristic vector of a subsetSv ⊆ {1, . . . ,n}. A “good” node fori is a node which represents a
subset with odd number of elements fromGi (x). By the property of anε-biased probability space, we
know that for everyi ∈ {1, . . . ,n} s.t. i is not the maximum, there are at least 1/2− ε good nodes.

Instead of choosingO(logn) subsets uniformly at random, choose a random walk of lengthO(logn)
on G as described in [AS92, CW89, IZ89].

At each node on the random walk, test whether∏
j∈Sv\{1}

(x1− xj) < 0,

wherev is the current node on the random walk. If one of the tests produced a positive answer, conclude
x1 is not the maximum. Otherwise, conclude it is. The following bound on the error probability is given
in [AS92]:

36 NAOR AND RUAH

THEOREM2 [AS92, Corollary 2.8]. Let G= (V, E) be a d-regular graph on n vertices, and suppose
the absolute value of each of its eigenvalues but the first one is at mostλ. Let C be a set ofδn vertices
of G. If

((1− δ)d2+ λ2)1/2 ≤ d

21/4
,

then, for every`, the probability that a randomly chosen walk of length` avoids C is at most1/2`/4.

By using the expander constructions of [LPS86, Mar88] and performing a random walk of length
4c logn, the above scheme produces an algorithm for deciding maximality with error probability 1/nc

(using Corollary 2.8 in [AS92]) and decisional and randomness complexitiesO(logn).
As before, the same method applies for deciding membership in any subset

W = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}, where
m∏

j=1

pj (x) 6= 0.

In particular the following theorem holds:

THEOREM 3. For each of the problems simultaneous positivity, maximal element, direct oriented
convex hull, successive elements, and sorted list (as defined in Section 4.1), and for every constant
c > 0, an algorithm can be constructed that solves the problem with error probability O(1/nc), and
has O(logn) decisional and randomness complexities.

Ben-Or [BenOr96b] generalized the algorithm for finding maximum to the case where not all elements
are distinct. He changed the procedure for checking if an elementxi is maximal as follows:

• Find the number of elementsk equal toxi .

• ChooseO(logn) random subsetsS1, . . . , S̀ ⊆ {1, . . . ,n}.
• For each 1≤ j ≤ `, find the number of elements inSj which are equal toxi , then check ifSj

contains an odd number of elements larger thanxi . As before, if none of the subsets contained an odd
number of elements, decidexi is the maximum.

Ben-Or used the fact that a subsetScontains at leastk elements equal toy if and only if∑
S∈An−k+1

∏
j∈S

(y− xj)
2 = 0, (2)

whereAj = {S ⊆ {1, . . . ,n} ‖ S| = j }. Hence, we can find the exact value ofk by a binary search.
For checking ifS contains an odd number of elements, he tested the sign of the left-hand side of
(2). By choosing random subsets of the right size, this procedure for checking maximality requires
O(logk logn) queries andO(n logn) random bits.

The results of [TY94, Rab72, MPR94] also imply the following example of a problem whose non-
deterministicandco-non-deterministic decisional complexities are large, yet the randomized decisional
complexity is small:

P1: given distinctx1, x2, . . . , xn, y1, y2, . . . , yn, decide whetherx1 is the maximum ofx1, . . . , xn,

and y1 is not the maximum ofy1, . . . , yn.

PROPOSITION4.4. The nondeterministic and co-nondeterministic decisional complexities of the prob-
lem P1 areÄ(n), but the randomized (two-sided error) decisional complexity is O(1).

Obviously, there are problems that already their deterministic decisional complexity is low and much
smaller than theirtotal complexity(counting arithmetic computations). For example:

Element distinctness:Givenx1, . . . , xn decide whether all elements are distinct.
Set equality:Given two sets{x1, . . . , xn} and{y1, . . . , yn} decide whether the two sets are equal.

DECISIONAL COMPLEXITY 37

PROPOSITION4.5. The problemselement distinctnessandset equalityhave total complexityÄ(n logn),
yet their decisional complexity is only O(1).

Proof. Each ofx1, . . . , xn is unique in the list if and only if
∏

i 6= j (xi − xj) 6= 0. For the case ofset
equality, {x1, . . . , xn} = {y1, . . . , yn} if and only if

∏
σ∈Sn

(
∑n

j=1(xj − yσ (j))2) = 0 (whereSn is the
permutation group ofn elements). ■

43..2 Decisional Size Complexity

As defined before, the decisional size complexity of an ACTT is the number of leaves inT . We give
a general relation between the randomized decisional and size complexities of decision problems (but
not necessarily search problems) in the following theorem:

THEOREM 4. A semi-algebraic set W⊂ Rn has two-sided error randomized decisional complexity
which is O(logCS(W)+ log 1/δ), where CS(W) is the size decisional complexity of W (and the size is
measured for ternary trees) andδ is a bound on the error.

Proof. We need the following proposition:

PROPOSITION4.6. Let T be a ternary ACT that solves the membership problem for W. Given an input
x and a nodev in T, we can check with probability 3/4 whether x reachesv.

Proof. Let q1, . . . ,qs, p1, . . . , pm be the polynomials s.t.q1(x)= 0, . . . ,qs(x)= 0, p1(x)> 0, . . . ,
pm(x) > 0 on the path from the root tov. We can decide with probability 3/4 and constant number of
queries whether on inputx the path from the root tov is traversed as follows:

Choose randomS1, S2 ⊆ {1, . . . ,m} and check if
∏
j∈Sk

pj (x) > 0, for j = 1, 2 and
s∑

i=1

q2
i (x) = 0. ■

Let T be a ternary ACT that solves the membership problem forW, and letx be an input. We utilize
a separator decomposition technique used, e.g., in [NA91] for finding the leaf to which the computation
on x leads.

In a rooted treeT on n vertices, a nodev is called aseparatorif its removal fromT splitsT so that
each connected component contains at most2

3n of the nodes. By [Jo69, Meg83] each tree contains a
separator.

Any treeT has acomplete decomposition tree Uon the same set of vertices [NA91]:U is a rooted
tree whose rootv is a separator ofT ; v’s children (inU) are the roots of the recursively defined separator
decomposition trees for the connected components ofT resulting from the removal ofv.

Let U be a decomposition tree ofT . In order to compute with unreliable tests, we extendU as
described in thenoisy comparison modelof Feigeet al. [FRPU94]: each leaf is a parent of a chain of
nodes of lengthm′ = O(log(Cs(W)/δ)). Each node is labeled with the label of the leaf and has a pointer
to the head of the chain.

Throughout the algorithm we use the following notations:

u: current node inU .

t: node inT corresponding tou.

At any point we have to examine a given node and decide whether on inputx this node is reached.
However, note that we may be in the wrong component altogether, so we should query on the parent
(in the decomposition tree) of the current node as well.

• Let m= c log(Cs(W)/δ),m< m′.
• u← root ofU .

• Repeat for at mostm steps:
1. If u is not the root ofU , then check if we are in the right component, by repeating the test on

the parent ofu.

2. If we are in the wrong component, then go to the connected component corresponding to
the“grandparent” (parent of the parent) ofu.

38 NAOR AND RUAH

3. Otherwise, decide ifu is an ancestor ofw by applying the technique described in Proposi-
tion 4.3.2 (ifu is a chain node, then choose tests of nodes above the chain).

4. If u is an ancestor ofw, then evaluate the test int to determine which ofu’s children inT is
an ancestor ofw, and assign it tou (if u is a chain node, then go the only child ofu).

5. Otherwise, the connected component is the child ofu corresponding to the parent inT . u is
assigned this child (ifu is a chain node, then the connected component is the one corresponding to the
grandparent of the head of the chain).

By Proposition 1 in [NA91], the height of the decomposition tree isO(logCS(W)). This is very similar
to the noisy comparison trees model of Feigeet al.[FRPU94] and the analysis there can be applied here
to show that for probability of errorδ you can find the correct leaf in timeO(logCS(W)+ log 1/δ). The
proof is as follows: Take a leafw in U , and supposex reaches a node in the connected component of
w, but a leaf inU corresponds to a connected component with one node, sow is the leaf thatx reaches
in T . Orient all the edges ofU towardsw. So every nodev has exactly one outgoing edge, and all the
other adjacent edges are directed towardsv. The transition probability along the outgoing edge is at
least 3/4, and the transition probability of the incoming edges is at most 1/4.

Let mf be a random variable counting the number of transitions in the direction of the edges andmb

the number of backward transitions. Somb+mf = m. Sincem< m′, the algorithm never reaches the
end of a chain. We need to show thatmf −mb > logCs(W) with probability at least 1− δ, implying
that the correct chain is reached. We prove this by applying the following version of Chernoff bound
[Chernoff52]:

THEOREM 5 (Chernoff bound). Let x1, . . . , xn be independent{0, 1} random variables with
Prob(xi = 1)= pi i = 1, . . . ,n and

∑n
i=1 pi > 0. Let X=∑n

i=1 xi . Then for0< ε < 1

Prob(X < (1− ε)E(X)) ≤ e−E(X)ε2/2.

In our case

xi =
{

1 a forward transition was performed at stepi

0 otherwise

Prob(xi = 1)≥ 3

4

mf =
n∑

i=1

xi

Prob(mf −mb ≤ logCs(W)) = Prob

(
mf ≤ 1

2
(m+ logCs(W)

)
= Prob

(
mf ≤ 1

2
(c log(Cs(W)/δ)+ logCs(W)

)
≤ Prob

(
mf ≤

(
1

2
(c+ 1) log(Cs(W)/δ

))
≤ Prob

(
mf ≤ 2

3

(c+ 1)

c
E(mf)

)
< δ.

For c = (32 log1
δ
)/log(Cs(W)/δ). ■

5 FINDING THEk LARGEST ELEMENTS

Assume we have a set ofn distinctelements{x1, . . . , xn} and an indexi s.t. at mostk elements from
the set are larger thanxi . In this section we study the decisional complexity of finding these elements.

DECISIONAL COMPLEXITY 39

Since there are (n−1
k) possible solutions to the problem, a trivial lower bound on this complexity is

log(n−1
k) = Ä(k log(n/k)).

Denote the set of possible inputs bỹRn={x = (x1, . . . , xn) ∈ Rn | xi 6= xj if i 6= j }. We say
that xi is of rankk + 1 if there arek elements larger thanxi , i.e., rank(xi) =| Gi (x) | +1, where
Gi (x) = { j | xj > xi }. Let xi be s.t.rank(xi) > 1. A good subset forxi is a subset of{1, . . . ,n} that
contains an odd number of elements fromGi (x). Given such a subsetS, the non-maximality ofxi will
be discovered by the query “

∏
j∈S\{i }(xi − xj) < 0?”

Ting [Ting93] proved the existence of a collection ofO(k logn) subsets s.t. for eachx with 1 <
rank(xi) ≤ k + 1, there is a good subset in the collection. Given such a collection, Ting suggests an
algorithm that is executed in phases as follows: in each phase test if

∏
j∈S\{i }(xi − xj) < 0 for eachS in

the collection. By the property of the collection, as long as not all elements ofGi (x) are found, a good
subset will be reached. Now, find an element ofGi (x) using a binary search on the good subset; i.e.,
divide the subset into two and use a parity test to find which of the two halves contains an odd number
of members ofGi (x), and repeat the process until reaching a subset of one elementxt . Eliminate the
elementxt that was found (replace it with a very small element, say−(

∑
u6=t (xu + 2)2)) and repeat the

procedure untilxi passes all the parity tests in the collection. In each scan of the collection, one new
element ofGi (x) is found and eliminated from the setGi (x); hence afterk such iterations all elements
of Gi (x) are found. One scan of the collection requiresO(k logn) queries for finding a good subset
and O(logn) queries for finding a larger element in this subset. Therefore, this scheme produces a
non-constructiveO(k2 logn) algorithm for the problem.

We first observe that onlyO(k logn) queries are needed. This is because once the queries of the first
phase are evaluated, they determine the results of the queries in subsequent phases. Specifically, let
S1, . . . , SM be the subsets used. Letb1, . . . ,bM be the results of the queries in the first phase, where
b` = 1 if

∏
j∈S̀ \{i }(xi − xj) < 0 andb` = 0 otherwise. Assumext is the element found in the first phase

s.t.xt > xi . Then for each subsetS̀ s.t.t ∈ S̀ , the result of the query onS̀ in the second phase is¬b`
and it isb` otherwise. Generally, forj > 1 the results of the queries in thej +1 phase can be determined
from the results of phase numberj . Hence, we need to evaluate onlyM + k logn = O(k logn) queries
throughout the algorithm.

In order to obtain an explicit algorithm using this scheme, the collection of subsets should be con-
structed. We claim that this can be done using ak-wiseε-biased probability space. Since|Gi (x)| ≤ k,
for any subsetU ⊆ {1, . . . ,n} at mostk elements inU are larger thanxi , that is,|U ∩ Gi (x)| ≤ k.

A k-wiseε-biased probability space withn random variables that takes their values from{0, 1} gives
us even a stronger property than needed. Each point in ak-wiseε-biased probability space represents a
subset of{1, . . . ,n}, and for everyx with 1< rank(xi) ≤ k+1, a fractionδ ≥ 1/2− ε of these subsets
contain an odd number of elements larger thanxi . As was recalled in Section 4.2, ak-wise ε-biased
probability space ofn random variables can be constructed where the size of the space isO(k logn).
Using the points of this space as the collection of subsets, we get anexplicit O(k logn) algorithm that
finds all members ofGi (x), for everyx with 1< rank(xi) ≤ k+ 1.

The details of the procedure are as follows:D will denote the set of larger elements found so far.

1. Initialize:ε ← 1
4; D← ∅;

Let {Q1, . . . , QM} be sets represented by the random strings of ak-wise ε-biased probability
space as above. ThusM = O(k logn).

2. For j = 1 to M
check if Qj contains an odd number of elements fromGi (x):

bj =
{

1 if
∏
`∈Qj \{i }(xi − x`) < 0

0 otherwise.

3. Repeat until all elements ofGi (x) are discovered.

(a) For j = 1 to M
check if Qj \({i }

⋃
D) contains an odd number of elements fromGi (x):

If in second phase or higher, then reversebj if the last found elementt ∈ Qj .

40 NAOR AND RUAH

(b) For the first j s.t. bj = 1, perform the following binary search onQj to find t ∈ Qj s.t.
xt > xi :
• AssignV ← Qj .

• While |V | > 1: Let U be the first|V |/2 elements ofV . If U contains an odd number of
elements fromGi (x) then setV ← U ; otherwiseV ← |V |\|U |.

• Setxt ← the only element inV, D← D
⋃{t}.

• Replacext by a very small element, say−(
∑

u6=t (xu + 2)2), and continue to step 2.

(c) If no new element was found, then terminate.

LEMMA 5.1. For every i with1 < rank(i) ≤ k + 1 in {1, . . . ,n}, the above algorithm finds all the
elements from Gi (x), and the maximum of x, using O(k logn) parity tests.

Proof. Suppose that at the beginning of iterationM of the repeat loop, not all the elements ofGi (x)
were found yet, 1< rank(xi) in the current input, and all the input elements are distinct. By the property
of a k-wiseε-biased space, we are guaranteed that for some 1≤ j ≤ M,

∏
`∈Qj \({i }

⋃
D)(xi − x`) < 0

and we find a newt ∈ Gi (x). After adding` to D, the rank ofxi is decreased by 1. Thus, as long as
not all the elements ofGi (x) were found, another iteration of the repeat loop will find a new element
from Gi (x). Thus, since|Gi (x)| ≤ k, after at mostk iterations, all the elements ofGi (x) are found. We
perform at mostO(k logn) parity tests in step 2 to get the results on all subsets. Additional logn parity
tests are required at each phase of the repeat loop, for finding a new element fromGi (x) in the good
subset found. Thus, the total complexity isO(k logn). ■

Ueharaet al. [UTW96] considered an analogous problem in the theory of attribute-efficient learning
with k essential attributes. They examined the computational complexity of learning the class of parity
functionsPAR(k) defined as follows: Letg be the parity function onn variablesx1, . . . , xn. Denote by
gS the sub-function ofg obtained fromg by replacing by 0 eachxi in the input such thati /∈ S. The
classPAR(k) contains allgS where|S| = k. Given a functionf , the problem is to findSs.t.gS = f , that
is, to find thek essential variables. Note that thek essential variables here correspond to thek largest
elements in our case since we use parity functions to find them.

They gave a non-constructive scheme to the problem of learningPAR(k). In their model, adaptively
chosen inputs a∈ {0, 1}n are provided, and the correct value off (a) is given in response. An input
a= (a1, . . . ,an) corresponds to the query setA={i |ai = 1}. If f (a)= 1, then an essential element
can be found using a binary search similar to Ting’s technique. They use the fact that we have implicit
knowledge on a query setS\{i }, onceS was asked andi is an essential element. (We use this idea in
our algorithm for finding thek largest elements.) The scheme of [UTW96] gives a non-constructive
O(k logn/k) upper bound for the problem (similar to the non-constructive bound we had in the prelim-
inary version of the paper). Our current constructive bound ofO(k logn) is applicable to the problem
of [UTW96] as well.

6 FINDING THE MAXIMUM USING O(log2 n) QUERIES

As mentioned before, there is a linear lower bound on the decisional complexity of deterministic,
non-deterministic and Las Vegas algorithms for the problem of deciding maximality of an element in
a set ofn distinctelements. Obviously, this also gives a lower bound on the decisional complexities of
the corresponding search problem.

Ting and Yao [Ting93, TY94] presented a randomized algorithm that finds the maximum ofn distinct
real numbers in the probabilistic polynomial decision tree model. For every constantc > 0 they
presented an algorithm that usesO(log2 n) polynomial queries andO(n log2 n) random bits, and has
error probabilityO(1/nc). At the general step of the algorithm they have a candidate elementxi which
they try to improve by applying a procedure which finds an elementxi ′ larger thanxi . The algorithm is
started with a uniformly randomly chosenxi and the above step is repeated until no suchxi ′ is found,
or a bound on the number of iterations is reached.

The procedure for finding a larger elementxi ′ is as follows:

• ChooseO(logn) independent uniform random subsets of{1, . . . ,n}\{i }.

DECISIONAL COMPLEXITY 41

• Perform a parity test on each subset to find a good subset that contains and odd number of elements
larger thanxi .

• Find a larger elementxi ′ in the good subset by a binary search on the subset.

Ben-Or [BenOr96b] obtained an algorithm for the problem that does not require uniqueness of the
input elements and has the same decisional and randomness complexities as the algorithm of [TY94].
The algorithm applies the procedure that was described in Section 4.3.1.

We present a different algorithm for finding the maximum ofn distinctelements. Our motivation is
to reduce the number of random bits so that both the decisional complexity and randomness complexity
of the algorithm areO(log2 n).

Since the algorithm of [TY94] is order invariant,1 a probabilistic argument shows that evenO(logn)
random bits suffice for finding the maximum withO(log2 n) polynomial queries andO(1/nc) error
probability.

In the following sections we describe an explicit algorithm that finds the maximum usingO(log2 n)
polynomial queries,O(log2 n) random bits, andO(1/nc) probability of error.

61. Intuition of the Algorithm

Our algorithm uses a recursive procedureMax(S) that with high probability returns the maximum
of {xi | i ∈ S} whereS ⊆ {1, . . . ,n}. The procedure chooses a subsetS1 ⊆ S, finds its maximum
recursively, and then uses it to find the maximum ofS. As in the algorithm of [TY94] we also have a
candidate for a maximal element. In our algorithm it is the maximum of the subsetS1 chosen at the
current recursive call. We use a different procedure for obtaining a larger element; namely, we find all
the larger elements in the bigger setSusing the deterministic algorithm for finding the largest elements
from Section 5. Another difference from the algorithm of [TY94] is that we chose all the subsets required
in the algorithm over ak-wiseδ-dependent probability space instead of a uniformly random probability
space.

The procedure goes as follows: if 1≤ |S| ≤ (c+ 1) logn then find the maximum deterministically.
For |S| > (c+ 1) logn we use the fact that if we choose ak-wiseδ-dependent randomS1 ⊆ S where
k = (c+1) logn, then with high probability this subset contains an elements with a low rank inS. Find
the maximumxz of S1 recursively (with high probability). Ifxz is also the maximum ofS, then we are
done; otherwise we can apply the algorithm of Section 5 to find the elements larger thanxz and also find
the maximal of them in the process. Choosing the subsetS1 over ak-wiseδ-dependent probability space
we gain several things: we still have the properties that a uniform probability space gives us, namely,
with high probability, the size ofS1 is smaller by a constant factor than the size of the original subset
S, and thus, afterO(logn) recursive calls we will probably get to a subset of sizeO(logn). The second
property ofS1 that resembles a uniformly chosen subset is that with high probabilityS1 contains an
element with a low rank, and thus, on the average, finding the elements larger thanxz will take O(logn)
parity tests, as described later. The advantages of choosing ak-wise δ-dependent subset instead of a
uniform one is that it much more economic in random bits, and enables us to achieve polylogarithmic
randomness complexity.

62. Scheme of the Main Algorithm

For finding the maximum of{x1, . . . , xn} perform the following:

• Initialize S= {1, . . . ,n},

δ← 1

nc+1
; a← 4(c+ 1);b← c

log (2
1+ 2δ)

;

m1← db logne + dlog
1

1
2 + δ

ne + 1;

• ReturnMax(S, n).

1 The queries used in the algorithm give the same answer on inputs (x1, . . . , xn) and (y1, . . . , yn) that satisfy for every
i, j xi < xj ⇔ yi < yj .

42 NAOR AND RUAH

The procedureMax(S) returns the index of the maximum of{xj | j ∈ S}, whereS⊆ {1, . . . ,n}, and
goes as follows:
Max(S, n):

1. If |S| ≤ (c+ 1) logn then find the maximum ofSdeterministically.

2. If more thanm1 recursive calls were performed then terminate.

3. Otherwise, fork = (c + 1) logn, choose ak-wise δ-dependent subsetS1 of S (if empty then
terminate).

4. z← Max(S1, n).

5. If xz is the maximum ofS then returnz.

6. Otherwise, find the elements inS larger thanxz as follows:
• Setk← 2

• While k ≤ (c+ 1) logn and the maximum ofSwar not found:
(a) Apply the algorithm of Section 5 fork to find the elements larger thanxz and their maxi-

mumx`.

(b) If k > 2 and less thank/2+ 1 larger elements were found ork = 2 and no element was
found, then conclude that the rank ofxz is larger thank+ 1 and setk← 2k.

(c) Otherwise, test ifx` is the maximum ofSby reusing the random walk of step 5. Ifx` passed
the test, returǹ; otherwise setk← 2k.

7. If k > (c+ 1) logn and the maximum ofSwas found yet, then terminate.

Let S= { j1, j2, . . . , jt } ⊆ {1, . . . ,n} andxj 1 < xj 2 < · · · < xjt . In order to choose a subsetS1 ⊆ S
in step 3, we setk = (c+ 1) logn and uset random variables:y1, y2, . . . , yt that take their values from
{0, 1} and arek-wiseδ-dependent. The subsetS1 is defined asS1 = { ji | yi = 1}.

In step 5, checking whetherxz is the maximum ofS is done by performing a random walk of length
a logn on an expander graph, as described in Section 4.3.

We enter step 6 with an elementxz that is known to have at least one element in{xj | j ∈ S} larger
than it. The first iteration of the while loop finds all the elements larger thanxz, for xz with rank(xz) ≤ 3,
and the maximum of these elements will pass the test on the random walk. Similarly, if the number of
elements larger thanxz is between 2j−1+ 1 and 2j , and 2≤ j ≤ log(c+ 1) logn, then iterationj finds
all the larger elements.

The correctness of the algorithm is established in the next theorem.

THEOREM 6. For any constant c> 0, the algorithm finds and maximum of{x1, . . . , xn} with error
probability O(1/nc), using an expected number of O(log2 n) parity tests and O(log2 n) random bits.

Proof. Define the events:

A1: After m1 recursive calls we still have a setSwith |S| > (c+ 1) logn.

A2: At mostm1 call were performed and an error occured at one of them1 calls.

It follows that

Pr[error] ≤ Pr[A1] + Pr[A2]Pr[¬A1] ≤ Pr[A1] + Pr[A2].

By [Ka91], Theorem 1, Pr[A1] ≤ 1/nc.
AssumeS = Ui at level i of the recursion (U1 = {1, . . . ,n}), andz = zi is the element returned

at step 4 of this level. At leveli that is not the bottom level, an error may occur because of one of the
following events:

Ei : |Ui | > (c+ 1) logn and none of the (c+ 1) logn largest elements inUi is in the subsetS1 ⊆ Ui

chosen at step 3.

Bi : an element that is not the maximum ofUi passed the maximality check on the expander at step
5 or 6.

DECISIONAL COMPLEXITY 43

If Ei occurs, then eitherS1 us empty, and the algorithm terminates in step 3, or step 6 might not find all the
elements larger thanxzi . By the property ofk-wiseδ-dependent random variables, fork = (c+ 1) logn

Pr[Ei] ≤
(

1

2

)(c+1) logn

+ δ = 2

nc+1
.

The probability of error on one random walk isO(1/nc). The random walk check is executed for at
most 1+ log(c+ 1) logn elements, and thus, Pr[Bi] ≤ (log((c+ 1) logn)+ 1)/(nc+1).

Pr[A2] ≤
m1∑
i=1

(Ei + Bi) <
1

nc
.

Hence the total error probability is at most 2/nc.
We show that the expected number of parity tests performed by the algorithm isO(log2 n). Define

the following notations:

T =The number of parity tests performed during the execution of the algorithm on input{x1, . . . , xn}.
H = The number of recursive calls performed by the algorithm.

Li = The number of parity tests performed in step 5 at leveli of the recursion.

Mi = The number of parity tests performed in step 6 at leveli of the recursion.

At the bottom level of the recursion at most (c+ 1) logn queries are performed, and thus,

T ≤ (c+ 1) logn+
H∑

i=1

(Li + Mi)

E[T] ≤ (c+ 1) logn+
m1∑
i=1

(E[Li] + E[Mi]).

Li ≤ a logn, for every 1≤ i ≤ m1.
The rank ofzi in Ui is a random variabler (zi ,Ui). If r (zi ,Ui) = k, then at step 6 we run the algorithm

for finding them largest elements inUi , for m = 2, 4, . . . ,min{(c+ 1) logn, 2dlogke}. Following each
such run, we might need to perform a random walk of lengtha logn. The number of parity tests
performed forxzi with rankk s.t. 2`−1 + 1 ≤ k ≤ 2` where 1≤ ` ≤ dlog((c+ 1) logn)e is at most∑`

j=1(c12 j logn+ a logn) ≤ a12` logn, for some constanta1 > 0. If k > (c+ 1) logn then at most

O(log3 n) parity tests are performed. It follows that

E[Mi] = E[E[Mi | r (zi ,Ui) = k]]

≤ Pr[error]a3 log2 n+ a2 lognPr[1≤ k ≤ 2]

+a1 logn
dlog(c+1) logne∑

j=1

Pr[2j−1 < k ≤ 2 j]2 j ,

for some constanta1,a2,a3.
Define the eventBi : the rank ofxzi in {xj | j ∈ Ui } is k+ 1. By the property ofk-wiseδ-dependent

variables, Pr[Bi] ≤ 1
2k+1 + δ, and we have that for 2≤ j ≤ dlog(c+ 1) logne

Pr[2j−1+ 1≤ k ≤ 2 j] <
1

2

1

22 j−1 + 2 j−1δ

Pr[k = 1∨ k = 2] ≤ 3

8
+ 2δ.

44 NAOR AND RUAH

As was shown, Pr[error] ≤ 2/nc. Substitutingδ = 1/nc+1, we get that

E[Mi] ≤ 2

nc
a3 log2 n+ a1

(
3

2
+ 8δ

)
logn+ a1 logn

dlog(c+1) logne∑
j=2

2 j

(
1

2 j−1
+ 2 j−1δ

)
= O(logn)

and finally, E[T] = O(log2 n).
It remains to show that the number of random bits required by the algorithm isO(log2 n). At recursive

level i we look for the maximum ofUi ⊆ {1, . . . ,n}. Step 3 requiresO(log|Ui | + log(1/δ)) = O(logn)
bits to choose|Ui | k-wiseδ-dependent random variables.O(logn) random bits are required for checking
maximality of an element in the setUi in step 5. At step 6c we reuse the random walk of step 5, and
thus no more random bits are required. Since there are at mostO(logn) recursive iterations, the total
number of random bits required isO(log2 n). ■

7 FURTHER RESEARCH

We saw that allowingO(1/poly) probability of error can improve the running time of problems that
have small co-non-deterministic complexity but high non-deterministic complexity.

The first open question that arises is how much further can the randomized decisional complexity of
findingthe maximum be reduced s.t. the error probability remainsO(1/poly).

It would also be interesting to extend the results of [TY94, MPR94, BenOr96b] to a broader class
of problems, where the set at hand is a general semi-algebraic set, not necessarily represented by a
conjunction of a finite number of inequalities.

ACKNOWLEDGMENTS

We thank Michael Ben-Or for explaining his recent results.

REFERENCES

[ABNNR92] Alon, N., Bruck, J., Naor, J., Naor, M., and Roth, R. (1992), Construction of asymptotically good low-rate error
correcting codes through pseudo-random graphs,IEEE Trans. Inform. Theory38, 509–516.

[AGHP92] Alon, N., Goldreich, O., Hastad, J., and Peralta, R. (1992), Simple constructions for almost k-wise independent
random variables,Random Structures Algorithms3, 289–304.

[AKS87] Ajtai, M., Komlos, J., and Szemeredi E. (1987), Deterministic simulation in LOGSPACE,in “Proceedings, 19th
ACM Symposium on Theory of Computing,” pp. 132–140.

[AS92] Alon, N., and Spencer, J. H. (1992), “The Probabilistic Methods,” Wiley, New York.

[Ben Or83] Ben-Or, M. (1983), Lower bounds for algebraic computation trees,in “Proceedings, 19th ACM Symposium on
Theory of Computing,” pp. 80–86.

[Ben Or96a] Ben-Or, M. (1996), Randomized analytic decision trees—Summary of results, manuscript.

[Ben Or96b] Ben-Or, M. (1996), Finding the minimum with randomized polynomial tests, manuscript.

[BCR87] Bochnak, J., Coste, M., and Roy, M. F. (1987), “G´eométrie algébrique réelle,” Ergebnisse der Math. 3, Folge,
Band 12, Springer-Verlag, Berlin.

[BKL93] Buergisser, P., Karpinski, M., and Lickteig, T. (1993), On randomized algebraic test complexity,J. Complexity9,
231–251.

[Chernoff52] Chernoff, H. (1952), A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,
Ann. Math. Statist.23, 493–507.

[CW89] Cohen, A., and Wigderson, A. (1989), Dispersers, deterministic amplification, and weak random sources (extended
abstract),in “Proceedings, 30th IEEE Symposium on Foundations of Computer Science,” pp. 14–19.

[DL79] Dobkin, D. P., and Lipton, R. J. (1979), On the complexity of computations under varying sets of primitives,
J. Comput. System Sci.18, 86–91.

[FRPU94] Feige, U., Peleg, D., Ragahavan, P., and Upfal, E. A. (1994), Computing with noisy information,SIAM J. Comput.
23, 1001–1018.

[GKY95] Grigoriev, D., Karpinski, M., and Yao, A. C. (1995), An exponential lower bound on the size of algebraic decision
trees, Technical Report TR-95-066, International Computer Science Institute, Berkeley.

DECISIONAL COMPLEXITY 45

[Gri99] Grigoriev, D. (1999), Randomized Complexity Lower Bound for Arrangements and Polyhedra,Discrete Comput.
Geom.21, pp. 329–344.

[HR89] Hagerup, T., and Rub, C. (1989), A guided tour of Chernoff bounds,Inform. Process. Lett.33, 305–308.

[IZ89] Impagliazzo, R., and Zuckerman, D. (1989), How to recycle random bits,in “Proceedings, 30th IEEE Symposium
on Foundations of Computer Science,” pp. 248–253.

[Jar81] Jaromczyk, J. (1981), An extension of Rabin’s complete proof concept, Symposium on mathematical foundations
of computer science,Lecture Notes Comput. Sci.118, 321–326.

[Jo69] Jordan, C. (1969), Sur le assemblages des lignes,J. Reine Angew. Math.70, 185–190.

[Jus72] Justesen, J. (1972), A class of asymtotically good algebraic codes,IEEE Trans. Inform. Theory18, 652–656.

[Ka91] Karp, R. M. (1991), Probabilistic recurrence relations,in “Proceedings, 23rd ACM Symposium on Theory of
Computing,” pp. 190–197.

[LPS86] Lubotzky, A., Phillips, R., and Sarnak, P. (1986), Explicit expanders and the Ramanujan conjectures,in “Proceed-
ings, 18th ACM Symposium on Theory of Computing,” pp. 240–246.

[Mar88] Margulis, G. A. (1988), Explicit group-theoretical constructions of combinatorial schemes and their applications
to the design of expanders and superconcentrators,Problems Inform. Transmission24, 39–46.

[Mey85a] Meyer Auf Der Heide, F. (1985), Simulating probabilistic by deterministic algebraic computation trees,Theoret.
Comput. Sci.3, 325–330.

[Mey85b] Meyer Auf Der Heide, F. (1985), Nondeterministic versus probabilistic linear search algorithms,in “Proceedings
26th IEEE Symposium on Foundations of Computer Science,” pp. 65–73.

[Meg83] Megiddo, N. (1983), Applying parallel computation algorithms in the design of serial algorithms,J. Assoc. Comput.
Mach.30, 852–865.

[MPR94] Montana, J. L., Pardo, L. M., and Recio, T. (1994), A note on Rabin’s width of a complete proof,Comput.
Complexity4, 12–36.

[MT85] Manber, U., and Tompa, M. (1985), The complexity of problems on probabilistic, nondeterministic, and alternating
decision trees,J. Assoc. Comput. Mach.32, 720–732.

[NA91] Naor, M. (1991), String matching with preprocessing of pattern and text.in “Proceedings of the 18th International
Colloquium on Automata, Languages and Programming,” Lecture Notes in Computer Science, Vol. 510, pp.
739–750, Springer Verlag, Berlin.

[Ni91] Nisan, E. (1991), CREW PRAMs and decision trees,SIAM J. Comput.20, 999–1007.

[NN93] Naor, J., and Naor, M. (1993), Small-biased probability spaces: Efficient constructions and applications,SIAM J.
Comput.22(4), 838–856.

[Rab72] Rabin, M. O. (1972), Proving simultaneous positivity of linear forms,J. Comput. System Sci.6, 639–650.

[Ru95] Ruah, S. (1995), The decisional complexity of membership and selection problems over the reals, M.Sc. thesis,
under the supervision of M. Naor, Weizmann Institute of Science.

[RY80] Rivest, R. L., and Yao, A. C. (1980), On the polyhedral decision problem,SIAM J. Comput.9, 343–347.

[S85] Snir, M. (1985), Lower bounds on probabilistic linear decision trees,Theoret. Comput. Sci.38, 69–82.

[SY82] Steele, J. M., and Yao, A. C. (1982), Lower Bounds for algebraic decision trees,J. Algorithms3, 1–8.

[Ting93] Ting, H. F. (1993), Computational complexity for selection problems with parity-like tests, Ph.D. thesis, Princeton
University.

[TY94] Ting, H. F., and Yao, A. C. (1994), A randomized algorithm for finding maximum withO((log n)2) polynomial
tests,Inform. Process, Lett.49, 39–43.

[UTW96] Uehara, R., Tsuchida, K., and Wegener, I. (1997), Optimal attribute-efficient learning of disjunction, parity, and
threshold functions, In Third European Conference on Computational Learning Theory (EuroCOLT ’97), Lecture
Notes in Artificial Intelligence, Vol. 1208, pp. 171–184, Springer-Verlag, Berlin.

[WY96] Widgerson, A., and Yao, A. (1996), A lower bound for finding the minimum on probabilistic decision trees with
minimum tests, preprint.

	1 INTRODUCTION
	2 MODEL OF COMPUTATION AND RELATED NOTATIONS
	3 RELATED WORK
	4 EXTENSIONS TO KNOWN RESULTS
	5 FINDING THE k LARGEST ELEMENTS
	6 FINDING THE MAXIMUM USING O(log2 n) QUERIES
	7 FURTHER RESEARCH
	ACKNOWLEDGMENTS
	REFERENCES

