
Deniable Encryption⋆

Ran Canetti1 Cynthia Dwork2 Moni Naor3 Rafail Ostrovsky4

1 IBM T.J. Watson Research Center. email: canetti@watson.ibm.com
2 IBM Almaden Research Center. email: dwork@almaden.ibm.com

3 Dept. of Computer Science, the Weizmann Institute. email:
naor@wisdom.weizmann.ac.il

4 Bellcore. email: rafail@bellcore.com

Abstract. Consider a situation in which the transmission of encrypted
messages is intercepted by an adversary who can later ask the sender to
reveal the random choices (and also the secret key, if one exists) used in
generating the ciphertext, thereby exposing the cleartext. An encryption
scheme is deniable if the sender can generate ‘fake random choices’ that
will make the ciphertext ‘look like’ an encryption of a different cleartext,
thus keeping the real cleartext private. Analogous requirements can be
formulated with respect to attacking the receiver and with respect to
attacking both parties.
Deniable encryption has several applications: It can be incorporated in
current protocols for incoercible (“receipt-free”) voting, in a way that
eliminates the need for physically secure communication channels. It
also underlies recent protocols for general incoercible multiparty com-
putation (with no physical security assumptions). Deniable encryption
also provides a simplified and elegant construction of an adaptively secure
multiparty protocol.
In this paper we introduce and define deniable encryption and propose
constructions of such schemes. Our constructions, while demonstrating
that deniability is obtainable in principle, achieve only a limited level of
it. Whether they can be improved is an interesting open problem.

1 Introduction

The traditional goal of encryption is to maintain the privacy of communicated
data against passive eavesdroppers. That is, assume that Alice wants to com-
municate private information to Bob over a channel where Eve can eavesdrop.
Alice obtains Bob’s (public) encryption key of an asymmetric encryption scheme
and uses it, together with local randomness, to encrypt her messages. Now only
Bob, who possesses the decryption key, should be able to decrypt. Semantic se-
curity [15] captures the security requirements that this setting imposes on the
encryption function. Basically, semantic security means that Eve learns nothing
from the ciphertexts she hears: whatever she can compute having heard the ci-
phertexts she can also compute from scratch. It follows that Alice must use local
randomness in order to achieve semantic security.

⋆ Research on this paper was supported by BSF Grant 32-00032.

While (passive) semantic security appropriately captures the security needed
against passive eavesdroppers, there are settings in which it falls short of pro-
viding the desired degree of protection. Such settings include protection against
chosen ciphertext attacks (e.g., [17, 18]), non-malleable encryption [8], and pro-
tection against adaptive adversaries [7].

We investigate the additional properties required from an encryption scheme
in order to protect the privacy of transmitted data in yet another hostile set-
ting. Assume that the adversary Eve now has the power to approach Alice (or
Bob, or both) after the ciphertext was transmitted, and demand to see all the
private information: the cleartext, the random bits used for encryption and any
private keys Alice (or Bob) have. Once Alice hands over this information, Eve
can verify that the cleartext and randomness provided by Alice indeed match
the transmitted ciphertext. Can the privacy of the communicated data be still
somehow maintained, in face of such an attack?

We first concentrate on the case where Eve attacks only Alice in the above
way. Certainly, if Alice must hand Eve the real cleartext and random bits then
no protection is possible. Also if Eve approaches Alice before the transmission
and requires Alice to send specific messages there is no way to hide information.
However, in case Eve has no direct physical access to Alice’s memory, and Alice
is allowed to hand Eve fake cleartext and random bits, is it possible for Alice
to maintain the privacy of the transmitted data? That is, we ask the following
question. Assume Alice sent a ciphertext c = E(m1, r), where m1 is some mes-
sage, E is the public encryption algorithm and r is Alice’s local random input.
Can Alice now come up with a fake random input r′ that will make c ‘look like’
an encryption of a different message m2? We call encryption schemes that have
this property deniable.

The following valid question may arise at this point: if Eve has no physical
access to Alice’s memory, then why should Alice present Eve with any data
at all? That is, why not have Alice tell Eve: ‘Sorry, I erased the cleartext and
the random bits used’. Indeed, if Eve will be willing to accept such an answer,
then deniable encryption is not needed. But there may well exist cases where
being able to provide Eve with convincing fake randomness will be valuable to
Alice. (Presenting convincing data is almost always more credible than saying ‘I
erased’, or ‘I forgot’.) In fact, there may be cases where Alice is required to record
all her history including the randomness used, and can be punished/prosecuted
if she claims to have destroyed the “evidence”, i.e. any part of her history.
Furthermore, the mere fact that Alice is able to ‘open’ any ciphertext in many
ways makes it impossible for Alice to convince Eve in the authenticity of any
opening. This holds even if Alice wishes to present Eve with the real data. In
this sense, the privacy of Alice’s data is protected even from the future behavior
of Alice herself.

Standard encryption schemes do not guarantee deniability. Furthermore, in
most existing schemes there do not exist two different messages that may result
in the same ciphertext (with any random input). In fact, encryption is often
conceived as a committing process, in the sense that the ciphertext may serve as

a commitment to the cleartext. (This is a common use for encryption schemes,
e.g. in [13, 14].) Deniable encryption radically diverges from this concept.

Deniable encryption may seem impossible at first glance: consider a cipher-
text c sent from Alice to Bob. If, using two different random choices, Alice could
have generated c both as an encryption of a message m1 and as an encryption
of a different message, m2, then how can Bob correctly decide, from c alone,
whether Alice meant to send m1 or m2? A more careful inspection shows that
such schemes can indeed be constructed, based on trapdoor information unavail-
able to Eve.

In addition to being an interesting and surprising primitive by itself, deniable
encryption has several applications. Perhaps the most immediate one is the pre-
vention of vote-buying in electronic voting schemes [4, 10, 11, 19]. Another appli-
cation is for storing encrypted data in a deniable way. Deniable encryptions also
underlie the general solution to the incoercible multiparty computation problem
appearing in [5], and provide for an alternative solution to the adaptive security
problem [7]. We elaborate on these applications in Section 1.1.

We classify deniable encryption schemes according to which parties may be
attacked: a sender-deniable scheme is resilient against attacking (i.e., demanding
to see the secret data) of the sender of the ciphertext. Receiver-deniable and
sender-and-receiver-deniable schemes are defined analogously. We also distinguish
between shared-key and public-key deniable encryption schemes. In a shared-
key scheme the sender and receiver are assumed to share a (short) secret key,
about which the adversary has no a priori information. (Consequently, here the
attacked party can also present the adversary with a fake key.) A public-key
scheme “starts from scratch” in the sense that the sender and receiver have no
shared secret information. Yet another issue is how dynamic the attacked parties’
actions can be. In both cases we prefer schemes in which the parties can decide
on the fake message later, at time of attack, rather than at time of encryption.

Let us informally sketch the requirements from a deniable encryption scheme.
We concentrate on the public-key, sender-deniable case. For simplicity we also
concentrate on ‘one round’ schemes where the sender sends only one message,
and on schemes that encrypt one bit at a time. (See Section 2 for a more general
definition.) Let Ek be the sender’s encryption algorithm with public key k. First,
a deniable encryption scheme should of course be semantically secure in the
sense of [15]. In addition we require that the sender will have a (publicly known)
faking algorithm. Given a bit b, a random input r, and the resulting ciphertext
c = Ek(b, r), the faking algorithm generates a fake random input r̃ = ϕ(b, r, c)
that ‘makes c look like an encryption of b̄’. That is, given b, ρ, c, the adversary
should be unable to distinguish between the following cases:
(a) ρ is uniformly chosen and c = Ek(b, ρ)
(b) c was generated as c = Ek(b̄, r) where r is independently and uniformly
chosen, and ρ = ϕ(b̄, r, c).
We say that a scheme is δ-deniable if the adversary can distinguish between cases
(a) and (b) with probability at most δ.

We construct a sender-deniable public-key encryption scheme based on any
trapdoor permutation (Section 3). However, our scheme falls short of achiev-
ing the desired level of deniability. That is, while we can construct a δ-deniable
scheme for arbitrarily small δ, the length of the ciphertext is linear in 1/δ.
Consequently, if we want δ to be negligible, we end up with ciphertexts of super-
polynomial length. (The semantic security of our scheme against passive eaves-
droppers holds in the usual sense.) Can better deniable schemes be constructed?
This remains an interesting open question. We present evidence that construct-
ing substantially better schemes may not be easy, at least in one round and
without a different approach (Section 4).

We also consider a slightly weaker notion of deniability than the one sketched
above. An encryption scheme for encrypting a single bit can be generally viewed
as defining two distributions on ciphertexts: a distribution T0 of encryptions of
0, and a distribution T1 of encryptions of 1. Here, in contrast, the sender chooses
the ciphertext according to one of four distributions, T0, T1, C0, C1. Distribution
Tb is used by a sender who wishes to send the binary value b and does not wish to
have the ability to open dishonestly when attacked. Distribution Cb is also used
to send the bit value b, but by a sender who wishes to preserve both the ability to
open “honestly” and the ability to open dishonestly when attacked. (This choice
can be made at time of attack.) In particular, if the sender encrypts according to
distribution Cb then, when attacked, the sender can appear to have chosen either
from T0 or T1. This alternative notion allows us to construct efficient deniable
schemes with negligible δ. For lack of space we omit further details. See [6].

Section 6 shows, via simple constructions, how to transform any sender-
deniable encryption scheme into a receiver-deniable scheme, and vice-versa. We
also show how a scheme resilient against corrupting both the sender and the
receiver can be constructed based on a scheme resilient against corrupting the
sender. This last construction requires the help of other parties in a network,
and works as long as at least one other party remains unattacked. In Section 5
we review some shared-key deniable schemes.

1.1 Applications and related work

A natural application of deniable encryption is to prevent coercion in electronic
secret voting schemes [10]: a coercer may offer bribe in exchange for proof of a
person’s vote, after hearing the corresponding ciphertext. The coercion problem
in the context of voting has been studied in the past [4, 19, 11]. However, these
previous works assume that, for a crucial part of the conversation, the commu-
nicating parties share a physically secure channel; thus, the coercer hears no
ciphertext and the ‘deniability problem’ disappears.5 Deniable encryptions may
be incorporated in these works to replace these physical security assumptions.
(One still has to make sure, as before, that the voters are not coerced prior to
the elections.)

5 In [11] a slightly different physical security assumption is made, namely that the
random choices used for encryption are physically unavailable. The result is the
same: the ‘deniability problem’ disappears.

Another application is to general multiparty protocols for computing any
function in an incoercible way [5]. There, a set of parties want to compute a
common function of their inputs while keeping their internal data private even
in the presence of a coercer. The public-key, sender-deniable scheme presented
here plays a key role in the [5] construction.

Finally, we note that deniable encryptions provide a conceptually simple
and elegant alternative solution to the recently solved problem of general secure
multiparty computation in the presence of an adaptive adversary. We elaborate
briefly. Protocols for securely computing any function in a multiparty scenario
in the presence of a non-adaptive adversary – one that chooses whom to corrupt
before execution of the protocol begins – were shown in [14]. Recently proto-
cols secure against adaptive adversaries – ones that choose whom to corrupt
during the course of the computation, based on the information seen as the ex-
ecution unfolds – were presented in [7].6 These protocols are based on another
type of encryption protocol, called non-committing encryption. Non-committing
encryptions have the same flavor as deniable encryptions, in that there exist ci-
phertexts that can be “opened” as encryptions of, say, both ‘1’ and ‘0’. However,
non-committing encryptions are strictly weaker than deniable ones. One main
difference is that in non-committing encryptions the parties using the scheme
are, in general, not able to generate ciphertexts that can be opened both ways;
such ciphertexts can only be generated by a simulator (which is an artifact of the
[7] model). In deniable encryption each ciphertext generated by parties using the
scheme has unique decryption, and at the same time can be “opened” in several
ways for an adversary. In particular, the non-committing encryption scheme in [7]
is not deniable. Yet, any deniable encryption scheme, resilient against attacking
both the sender and the receiver, is non-committing. Indeed, one of the schemes
shown in the sequel constitutes a conceptually simple and elegant alternative to
the [7] scheme. See [6] for more details.

2 Definitions

Let us first recall the definition of computational distance of distributions. Here
and in the sequel a function δ : N → [0, 1] is negligible if it approaches zero faster
than any polynomial (when its argument approaches infinity).

Definition 1. Let A = {An}n∈N and B = {Bn}n∈N be two ensembles of prob-
ability distributions, and let δ : N → [0, 1]. We say that A and B are δ(n)-
close if for every polynomial time distinguisher D and for all large enough n,
|Prob(D(An) = 1)− Prob(D(Bn) = 1)| < δ(n).

If δ(n) is negligible then we say that A and B are computationally indistin-

guishable and write A
c

≈ B.
6 [9, 3] obtain solutions for this problem under the assumption that the parties are
trusted to keep erasing past information. Such solutions are unsatisfactory in a set-
ting where parties aren’t trusted since erasing cannot be externally verified. Further-
more, the physical design of computer systems makes erasing information difficult
and unreliable [16].

2.1 Public-key encryption

Consider a sender S and a receiver R that, a priori, have no shared secret
information. They engage in some protocol in order to transmit a message from
S to R. (If a standard public key encryption scheme is used then this protocol
may consist of the receiver sending his public encryption key to the sender, who
responds with the encrypted message.) We first define intuitively what we desire
from a deniable encryption protocol. First, the receiver should be able to decrypt
the correct value (except perhaps for negligible probability of error). Next the
protocol should be semantically secure against eavesdroppers, as in [15]. Finally,
the sender should have a faking algorithm ϕ with a property described roughly
as follows. Given (m1, rS , c,m2) (where m1 is the transmitted message, rS is
the senders random input, c is a transcript of the conversation between S and
R for transmitting m1, and m2 is the required fake message), ϕ generates a
fake random input for the sender, that makes c look like a conversation for
transmitting m2.

More precisely, let M be the set of all possible messages to be sent from S to
R (M can be {0, 1}s for some s). Let π be a protocol for transmitting a message
m ∈ M from S to R. Let comπ(m, rS , rR) denote the communication between
S and R for transmitting m, when S has random input rS and R has random
input rR. Let comπ(m) denote the random variable describing comπ(m, rS , rR)
when rS and rR are uniformly and independently chosen.

Definition 2. A protocol π with sender S and receiver R, and with security
parameter n, is a δ(n)-sender-deniable encryption protocol if:

Correctness: The probability that R’s output is different than S’s input is negli-
gible (as a function of n).

Security: For any m1,m2 ∈ M we have comπ(m1)
c

≈ comπ(m2).
Deniability: There exists an efficient faking algorithm ϕ having the following prop-

erty with respect to any m1,m2 ∈ M . Let rS , rR be uniformly and indepen-
dently chosen random inputs of S and R, respectively, let c = comπ(m1, rS , rR),
and let r̃S = ϕ(m1, rS , c,m2). Then, the random variables

(m2, r̃S ,comπ(m1, rS , rR)) and (m2, rS ,comπ(m2, rS , rR)) (1)

are δ(n)-close.

The right hand side of (1) describes the adversary’s view of an honest encryption
of m2 according to protocol π. The left hand side of (1) describes the adversary’s
view when c was generated while transmitting m1, and the sender falsely claims
that c is an encryption of m2. The definition requires that the adversary cannot
distinguish between the two cases with probability more than δ(n).
Remarks:

– In the case where the domain of messages is M = {0, 1} the definition
becomes slightly simpler. In particular, the faking algorithm needs only two
inputs: the random input used and the resulting ciphertext. In the sequel we
concentrate on such schemes, encrypting one bit at a time.

– Definition 2 requires the parties to ‘start from scratch’ (e.g., to choose new
public keys) for each message transmitted. The definition can be modified in
a natural way to capture schemes where a ‘long-lived’ public key is used to
encrypt several messages. Here we require that the sender be able to ‘fake’
each message independently of the other messages encrypted with the same
(publicly known) key. The scheme described in the sequel indeed enjoys this
additional property.

Schemes resilient against attacking the receiver, or simultaneous attack of
both the sender and the receiver, are defined analogously. They appear in [6].

Theorem 1. Assume trapdoor permutations exist. Then for any c > 0 there ex-
ist 1/nc-sender-deniable and 1/nc-receiver-deniable encryption schemes. If there
are other parties that participate in the communication, at least one of which re-
mains unattacked, then there exist also 1/nc-sender-and-receiver-deniable schemes.

2.2 Shared-key encryption

In a shared-key scenario, the sender and receiver share a random, secret key
about which the adversary is assumed to have no a priori information. Conse-
quently, here the parties can also present the adversary with a fake shared key, on
top of presenting fake random inputs. This is captured as follows. The commu-
nication between the parties now depends also on a shared key k, and is denoted
comπ(m, k, rS , rR) (where m, rS , rR are the same as before). Below we define
sender-deniability. Receiver-deniability and sender-and-receiver-deniability are
defined analogously.

Definition 3. A protocol π with sender S and receiver R, and with security
parameter n, is a shared-key δ(n)-sender-deniable encryption protocol if:

Correctness: The probability that R’s output is different than S’s input is negli-
gible (as a function of n).

Security: For any m1,m2 ∈ M and for a shared-key k chosen at random, we
have comπ(m1, k)

c

≈ comπ(m2, k).
Deniability: There exists an efficient ‘faking’ algorithm ϕ having the following

property with respect to any m1,m2 ∈ M . Let k, rS , rR be uniformly chosen
shared-key and random inputs of S and R, respectively, let c = comπ(m1, k, rS , rR),
and let (k̃, r̃S) = ϕ(m1, k, rS , c,m2). Then, the random variables

(m2, k̃, r̃S , c) and (m2, k, rS ,comπ(m2, k, rS , rR))

are δ(n)-close.

Note that Definition 3 also covers the case where the same key is used to
encrypt several messages: let m1 (resp., m2) in the definition denote the concate-
nation of all real (resp., fake) messages. In Section 5 we review some shared-key
schemes.

3 Public-key Deniable Encryption: the Parity Scheme

Overview. We describe two public-key deniable encryption schemes. The first,
called the basic scheme, is only a partial solution to the problem. We use it as a
building-block to construct our main scheme. (It can also be used to construct
a non-committing encryption scheme, as described in [6].) Our main scheme,
called the Parity Scheme, is 4

n -sender-deniable according to Definition 2. Roughly
speaking, this means that the probability of successful attack vanishes linearly in
the security parameter. (By a simple renaming of parameters this scheme can be
regarded as 1

nc -sender-deniable for any c > 0. Yet, the probability of successful
attack vanishes only linearly in the amount of work invested in encryption and
decryption.)

The schemes are sender-deniable. Receiver-deniable and Sender-and-receiver-
deniable schemes can be constructed from these using the techniques of Section 6.
Our schemes encrypt one bit at a time. Here they are described in the standard
terms of encryption and decryption algorithms. In terms of Definition 2, the
interaction consists of the receiver sending the public encryption key to the
sender, who responds with the encrypted message.
The basic approach. Our schemes are based on the following simple idea.
Assume that the sender can pick an element in some domain either randomly,
or according to some pseudorandom distribution. Assume further that the re-
ceiver, having some secret information, can tell whether the element was chosen
randomly or pseudorandomly; other parties cannot tell the difference. Then, the
sender can proceed as follows: to encrypt a 1 (resp., 0) send a pseudorandom
(resp., random) element. The receiver will be able to decrypt correctly; but if
a pseudorandom element e was transmitted, then when attacked the sender can
claim that e was randomly chosen — and the adversary will not be able to tell
the difference.

Here the sender could fake its message only in one direction (from 1 to 0).
Using simple tricks one can come up with schemes that allow faking in both
directions. We now describe the schemes in detail.
Translucent sets. Our schemes are based on a construct that can be
informally described as follows. (Formal definitions can be extracted from this
description.) We assume that there exists a family {St}t∈N of sets, where St ⊂
{0, 1}t, together with secret ‘trapdoor information’ dt, such that:
1. St is small: |St| ≤ 2t−k for some sufficiently large k(t).
2. It is easy to generate random elements x ∈ St, even without the secret dt.
3. Given x ∈ {0, 1}t and dt it is easy to decide whether x ∈ St.
4. Without dt it is infeasible to distinguish between values chosen uniformly from
St and values chosen uniformly from {0, 1}t.
We call such sets translucent.

We first present two simple constructions of translucent sets. Both use a trap-
door permutation f : {0, 1}s → {0, 1}s, and its hard-core predicate B : {0, 1}s →
{0, 1} (say, use the Goldreich-Levin predicate [12]).
Construction I: Let t = sk. Represent each x ∈ {0, 1}t as a vector x =
x1...xk where each xi ∈ {0, 1}s. Then let St = {x1...xk ∈ {0, 1}sk | ∀i =

1..k, B(f−1(xi)) = 0}. Here |St| ≈ 2(s−1)k = 2t−k.
Construction II: Let t = s + k. Represent each x ∈ {0, 1}t as x = x0, b1...bk
where x0 ∈ {0, 1}s and for i ≥ 1 each bi ∈ {0, 1}. Then let St = {x0, b1...bk ∈
{0, 1}s+k | ∀i = 1..k, B(f−i(x0)) = bi}. Here |St| = 2s = 2t−k.
It is easy to verify that both constructions satisfy requirements 1-4. Construction
II is more efficient in that, given a trapdoor permutation on {0, 1}s, the length
of x is only t = s+ k instead of t = sk.

A third construction relies on the latticed-based public-key cryptosystem
described in [2]. Roughly speaking, the secret information is an n-dimensional
vector u of length at most 1. The vector u induces a collection X of (n − 1)-
dimensional hyperplanes. The public key consists of a collection of m = nc

points v1, . . . , vm, each of which is a small perturbation of a randomly cho-
sen point in X ∩ 2n logn(n)U (n), where U (n) is the n-dimensional unit cube.
The encryption procedure makes use of a certain parallelepiped P, computable
from the public key. An encryption of zero is a point chosen uniformly at ran-
dom from 2n logn(n)U (n). An encryption of one is

∑m
i=1 δivi mod P, where each

δi ∈R {0, 1}. Thus, encryptions of one are close to hyperplanes in X, while en-
cryptions of zero, typically, are not. Decryption of the ciphertext is performed
by computing the distance of the ciphertext from the nearest hyperplane in X;
if the distance is sufficiently small the ciphertext is decrypted as one (there is a
polynomial probability of error).

The Basic Scheme. The public encryption key is a translucent set St ⊂
{0, 1}t. The private decryption key is the corresponding secret d.
Encryption: To encrypt 1, send a random element of St. To encrypt 0, send a
random element in {0, 1}t.
Decryption: If the ciphertext x is in St then output 1. Else output 0.
Opening an encryption honestly: reveal the true random choices used.
Opening an encryption dishonestly: If the encrypted bit is 1, i.e., the ci-
phertext x is a random element in St, then claim that x was chosen at random
from {0, 1}t and thus x is an encryption of 0. If the encrypted bit is 0 then lying
will be infeasible since the ciphertext x is in St only with negligible probability
2−k. Analysis: Correctness: An encryption of 1 is always decrypted correctly. An

encryption of 0 may be decrypted as 1 with probability 2−k. Standard security
against eavesdroppers is straightforward. Deniability: the faking algorithm ϕ and
its validity are described above. Since lying is possible only in one direction, this
is only a partial solution to the problem. Next we describe a scheme where lying
is possible in both directions.

The Parity Scheme. Let St ⊂ {0, 1}t be a translucent set. For a vector
v ∈ {0, 1}n, let F (v) denote the random variable over ({0, 1}t)n constructed
as follows: If the ith element in v is 1 (resp., 0) then the ith element of F (v)
is chosen uniformly at random from St (resp., from {0, 1}t). We call elements
drawn uniformly from S (resp., from {0, 1}t) S-elements (resp., R-elements).

Encryption: To encrypt 0 (resp., 1), choose a random even (resp., odd) num-
ber i ∈ 0, . . . , n, and let v ∈ {0, 1}n be the vector whose first i entries are 1 and
the remaining entries are 0. Compute and send an instance of F (v). (I.e., F (v)

contains i S-elements followed by n− i R-elements.)
Decryption: Output the parity of the number of elements in the received ci-
phertext that belong to S.
Opening an encryption honestly: Reveal the real random choices used in
generating the ciphertext.
Opening an encryption dishonestly: Let i be the number chosen by the
sender when generating v. The sender claims that she has chosen i − 1 rather
than i. (Consequently, the parity of i flips.) For this, she claims that the ith ele-
ment in the ciphertext is an R-element (whereas it was chosen as an S-element).
If there are no S-elements (i.e., i = 0) then cheating fails.

Theorem 2. Assume trapdoor permutations exist. Then the Parity Scheme is
a 4/n-sender-deniable encryption scheme.

Proof (Sketch): The probability of erroneous decryption is at most n2−k. Se-
curity of the Parity Scheme against eavesdroppers that see only the ciphertext
is straightforward. We show deniability. Assume that n is odd, and let c be an
encryption of 1. Let i be the number chosen for generating c. Then, i was chosen
at random from 1, 3, ...n. Consequently, the value i− 1 is uniformly distributed
over 0, 2, ..., n− 1. Thus, when the sender claims that she has chosen i− 1, she
demonstrates the correct distribution of i for encrypting 0. Thus, cheating in this
direction is undetectable (as long as S-elements cannot be distinguished from
R-elements). Assume now that c is an encryption of 0. Thus i is chosen uni-
formly from 0, 2, ..., n−1. Now, i−1 is distributed uniformly in −1, 1, 3, ..., n−2
(where −1 is interpreted as “cheating impossible”). It is easy to verify that the
statistical distance between the distribution of i in the case of an honest opening
(i.e., uniform on 1, 3, ..., n) and the distribution of i in the case of fake opening
(i.e., uniform on −1, 1, 3, ..., n− 2) is 4/n. It follows that, as long as S-elements
cannot be distinguished from R-elements, cheating is detectable with probability
at most 4/n. ⊓⊔

Note that the Parity Scheme can be modified to let the sender choose v
uniformly out of all vectors in {0, 1}n with the parity of the bit to be encrypted.
Here the probability of i = 0 (i.e., the probability of the case where cheating
is impossible) is negligible. Now, however, the statistical distance between i’s

distribution in honest and fake openings grows to Ω(
√

1
n). A ‘hybrid’ scheme,

omitted from this abstract, achieves both negligible probability of impossible
cheating and probability O(1/n) of detection.

The unique shortest vector problem for lattices is: “Find the shortest nonzero
vector in an n dimensional lattice L where the shortest vector v is unique in the
sense that any other vector whose length is at most nc∥v∥ is parallel to v.” The
unique shortest vector problem is one of the three famous problems listed in [1].
There, a random method is given to generate hard instances of a particular lattice
problem so that if it has a polynomial time solution then all of the three worst-
case problems (including the unique-shortest vector problem) has a solution. The
cryptosystem in [2] outlined above is secure provided the unique shortest vector

problem is hard in the worst case. From this and the proof of Theorem 2 we
have:

Theorem 3. Assume that the unique shortest vector problem is hard in the
worst case. Then the Parity Scheme is a 4/n-sender-deniable encryption scheme.

4 Efficiency Vs. Deniability

In the parity scheme (described in the previous section) the amount of work
involved in encryption and decryption is linear in the “quality of deniability”.
That is, ciphertexts of length Ω(m) are needed to ensure that the coercer can
distinguish between honest and fake ‘openings’ with probability only 1

m .
Can we do better? In particular, can we come up with a f(n)-deniable public

key scheme that requires only a polynomial amount of work, and where f(n) is
negligible? In this section we give some evidence that this may not be so easy
to achieve — at least with one communication round and using the approach
described in the previous section. That is, we show a simple and general “attack”,
or an algorithm for the adversary for distinguishing between fake ‘openings’
and real ones. In particular, all the schemes we managed to come up with are
susceptible to this attack.

We first informally describe the class of schemes against which the attack
works. We call these schemes separable (the reason for the name will become
clear shortly). In particular, the parity scheme described in the previous section
is separable. In these schemes the decryption key is the trapdoor of some translu-
cent set S ⊂ {0, 1}t; a ciphertext consists of a sequence of elements y1....ym in
{0, 1}t. The sender chooses some of the yi’s at random, and the rest at random
from S. The encrypted bit is encoded in the number and placement of the yi’s
that are in the translucent set S. Faking the value of the cleartext is done as
follows: the sender claims that one (or more) of the yi’s was randomly chosen,
whereas this yi was chosen from S.

The attack can now be informally described as follows. For any such scheme,
end for each value b ∈ {0, 1}, one can compute the expected number of yi’s
in S in an encryption of b. Denote this number by Eb. Now, since the faking
algorithm always decreases the number of yi’s for which the sender claims to
know the preimage, the adversary can proceed as follows. Let q be the number
of yi’s which the sender claims to have chosen from S, and let b be the claimed
cleartext. Then, decide that the sender is lying iff q < Eb. It is shown below
that this strategy succeeds with probability at least Ω(1

m). Furthermore, the
success of this attack does not depend on the specific way in which the cleartext
is encoded in the yi’s. The only property needed for the attack to work is that
the faking algorithm always reduces the number of yi’s claimed to be in S.

A more precise (and slightly more general) description follows.

Definition 4. A 1
k -sender-deniable public key encryption scheme π is m-separable

if there exists an efficient, deterministic classification algorithm C that, on any
input ρ (interpreted as a claimed random input of the sender), outputs a number
C(ρ) ∈ 1, . . . ,m. Furthermore:

1. For a value ρ (interpreted as a random input for the sender), let ρ(b) be
the random variable describing ϕ(b, ρ, c), where ϕ is the sender’s faking
algorithm, b ∈ {0, 1}, rR is the receiver’s random input, and and c =
comπ(b, ρ, rR) is the resulting communication. Let EC(b)(ρ) denote the ex-
pected value (over the choices of rR) of C(ρ(b)). Then for any value ρ such
that C(ρ) > 1, either EC(0)(ρ) ≤ C(ρ)− 1 or EC(1)(ρ) ≤ C(ρ)− 1.

2. If the sender’s random input ρ satisfies C(ρ) = 1 then the faking algorithm
fails, i.e. it outputs a special symbol denoting that no suitable fake random
input was found.

Claim. For any m-separable, 1
k -sender-deniable public key encryption scheme we

have 2m ≥ k.

Remarks:

– Using the terminology of the above informal description of separable schemes,
the coercer will use the classification algorithm that outputs the number of
yi’s which the sender claims to have chosen as S-elements. It follows that
any such scheme with only m yi’s is m-separable.

– In all the m-separable schemes that we know of, the length of the cipher-
text grows linearly with m. This seems to be inherent in our approach for
constructing deniable schemes.

Proof. Consider an m-separable deniable scheme π with faking algorithm ϕ. We
show an algorithm A that for some b ∈ {0, 1} distinguishes between

(b̄, r
(b)
S ,comπ(b, rS , rR)) and (b̄, rS ,comπ(b̄, rS , rR)) (2)

with probability 1
2m , where rS , rR are random inputs for the sender and the

receiver respectively, and r
(b)
S = ϕ(b, rS ,comπ(b, rS , rR)).

Let C be the classification algorithm. For b ∈ {0, 1}, let DC denote the
distribution of C(rS) where rS is chosen at random from the domain of random

inputs of the sender, and let DC(b) denote the distribution of C(r
(b)
S) when rR

is chosen at random. Let EC,EC(b) denote the expected values of DC,DC(b),
respectively. It follows from Definition 4 that either EC − EC(0) ≥ 1

2 or EC −
EC(1) ≥ 1

2 .
Let SD(D1, D2) denote the statistical distance between two distributions

D1, D2 over 1, . . . ,m,7 and let E1, E2 denote the corresponding expected values.
It can be verified that |E1 − E2| ≤ m·SD(D1, D2). In our case this implies that
either SD(DC,DC(0)) > 1

2m or SD(DC,DC(1)) > 1
2m .

The distinguisherA is now straightforward. Assume w.l.o.g. that SD(DC,DC(0)) >
1

2m . ThenA distinguishes between (0, r
(1)
S ,comπ(1, rS , rR)) and (0, rS ,comπ(0, rS , rR))

as follows. Let Z ⊂ 1...m be the set of numbers that have higher probability un-
der DC(0) than under DC. Then, given a triplet (0, ρ, c), first check that the
ciphertext c is consistent with 0 and ρ. Next, if C(ρ) = 1 then by Definition

7 That is, SD(D1, D2) =
∑

i∈1,...,m
|ProbD1(i) = ProbD2(i)|.

4 above A can distinguish between the two distributions of (2). Otherwise, say
that the triplet describes an honest encryption of 0 iff C(ρ) ∈ Z. By definition
of statistical distance, A distinguishes correctly with probability at least 1

2m .
(Since Z is a subset of 1...m, it can be found by sampling.)

5 Shared-key deniable encryption

In this section we briefly remark on some shared-key deniable schemes. Clearly,
a public-key deniable scheme is also deniable in the shared-key setting. Thus the
public key constructions described in previous sections apply here as well. Yet
better shared-key deniable schemes may be easier to find than public-key ones.

One-time-pad is a perfectly good shared-key deniable encryption scheme:
Assume that the sender and the receiver share a sufficiently long random string,
and each message m is encrypted by bitwise xoring it with the next unused |m|
bits of the key. Let k denote the part of the random key used to encrypt m, and
let c = m⊕ k denote the corresponding ciphertext. Then, in order to claim that
c is an encryption of a message m′ ̸= m, the parties claim that the shared key
is k′ = c⊕m′. It is easy to verify that this trivial scheme satisfies Definition 3.
Here the message m′ can be chosen as late as at time of attack. However, using
a one-time pad is generally impractical, since the key has to be as long as all the
communication between the parties. We look for schemes where the key is much
shorter of the length of the messages.

A weaker deniability property allows the encryption algorithm to have the
fake message(s) as part of its input, forcing the sender to choose the fake mes-
sage(s) at time of encryption. This restriction may be considerable. In particu-
lar, since all fake messages have to be specified in advance, there may be only
a polynomial number of them. Still, this type of deniability, called plan-ahead
deniability, can be useful, e.g. for maintaining ‘deniable records’ of data, such
as a private diary, that may be publicly accessible but is kept private using
a deniable encryption scheme (alternative examples include a psychiatrist’s or
lawyer’s notes.) The records are deniable if, when coerced to reveal the cleartext
and the secret key used for encryption and decryption, the owner of the record
can instead “reveal” a variety of fake cleartexts of her choice.

This weaker property has a trivial solution: given l alternative messages to
encrypt, use l different keys, and construct the ciphertext as the concatenation
of the encryptions of all messages, where the ith message is encrypted using the
ith key. When coerced, the party simply claims that the key he used is the one
that corresponds to the message he wishes to open.

One problem with this simple scheme is that the size of the ciphertext grows
linearly in the number of different messages to be encrypted. We can transform
any given shared key encryption to a deniable one, without any increase in the
message length, and with a key of length 1− 1

l times the length of the message.
We omit details from this abstract. We also know of several other alternative
methods to solve this problem; these methods, however, do not provide sub-

stantial improvements over the trivial solution, and are thus omitted from this
abstract.

6 Coercing the Sender vs. Coercing the Receiver

We describe simple constructions that transform sender-deniable schemes into
receiver-deniable schemes and vice-versa. If there are other parties that can help
in transmitting the data, we also construct a sender-and-receiver-deniable scheme
from any sender-deniable scheme. We describe the constructions with respect to
schemes that encrypt only one bit at a time. Generalizing these constructions
to schemes that encrypt arbitrarily long messages is straightforward. These con-
structions apply to both shared-key and public-key settings.
Receiver-deniability from Sender-deniability. Assume a sender-deniable
encryption scheme A, and construct the following scheme B. Let b denote the
bit to be transmitted from S to R. First R chooses a random bit r, and invokes
the scheme A to send r to S. (That is, with respect to scheme A, R is the sender
and S is the receiver.) Next, S sends b⊕ r to R, in the clear.

If scheme A is sender-deniable then, when attacked, R can convincingly claim
that the value of r was either 0 or 1, as desired. Consequently R can claim that
the bit b was either 0 or 1, at wish, and scheme B is receiver-deniable.
Sender-deniability from Receiver-deniability. We use the exact same
construction. It is easy to verify that if A is receiver-deniable then B is sender-
deniable.
Sender-and-receiver-deniability. Assume that S and R can use other
parties I1, ..., In as intermediaries in their communication. The following scheme
is resilient against attacking the sender, the receiver and some intermediaries, as
long as at least one intermediary remains unattacked.

In order to transmit a bit b to R, S first chooses n bits b1...bn such that
⊕ibi = b. Next, S transmits bi to each intermediary Ii, using a sender-deniable
scheme. Next, each Ii transmits bi to R using a receiver-deniable scheme. Finally
R computes ⊕ibi = b.

When an intermediary Ii is attacked, it reveals the true value of bi. However,
as long as one intermediary Ij remains unattacked, both S and R can convinc-
ingly claim, when attacked, that the value of bj (and consequently the value of
b) is either 0 or 1.

Note that this scheme holds only if the parties can ‘coordinate their sto-
ries’. In particular, the sender and receiver must know, when attacked, which
intermediaries are being attacked.8

References

1. M. Ajtai, Generating Hard Instances of Lattice Problems, STOC’96

8 In general, when both the sender and the receiver are attacked they are faced with
a ‘coordination problem’: to be consistent, they both should claim the same (fake or
true) value for the cleartext. This problem is extensively treated in [5].)

2. M. Ajtai, C. Dwork, A Public-Key Cryptosystem with Average-Case/Worst-
Case Equivalence, to appear, STOC’97; see also Electronic Colloquium
on Computational Complexity TR96-065, http://www.eccc.uni-trier.de/eccc-
local/Lists/TR-1996.html

3. D. Beaver and S. Haber, Cryptographic Protocols Provably Secure Against
Dynamic Adversaries, Eurocrypt, 1992.

4. J. Benaloh and D. Tunistra, Receipt-Free Secret-Ballot Elections, 26th STOC,
1994, pp. 544-552.

5. R. Canetti and R. Gennaro, Incoercible multiparty computation, 37th FOCS,
1996.

6. R. Canetti, C. Dwork, M. Naor and R. Ostrovsky, Deniable Encryption, Theory
of Cryptology Library, http://theory.lcs.mit.edu/ tcryptol, 1996.

7. R. Canetti, U. Feige, O. Goldreich and M. Naor, Adaptively secure computa-
tion, 28th STOC, 1996.

8. D. Dolev, C. Dwork and M. Naor, Non-malleable cryptography, 23rd STOC,
1991.

9. P. Feldman, Private Communication, 1986.
10. A. Herzberg, Rump-Session presentation at CRYPTO 1991.
11. R. Gennaro, ‘A multi-authority election scheme which is voter-efficient and

receipt-free against a dynamic coercer, Workshop on Security in Communica-
tion Networks, Amalfi, Sept. 1996.

12. O. Goldreich and L. Levin, A Hard-Core Predicate to any One-Way Function,
21st STOC, 1989, pp. 25-32.

13. O. Goldreich, S. Micali and A. Wigderson, Proofs that Yield Nothing but
the Validity of the Assertion, and a Methodology of Cryptographic Protocol
Design, 27th FOCS, 174-187, 1986.

14. O. Goldreich, S. Micali and A. Wigderson, How to Play any Mental Game,
19th STOC, pp. 218-229, 1987.

15. S. Goldwasser and S. Micali, Probabilistic encryption, JCSS, Vol. 28, No 2,
April 1984, pp. 270-299.

16. P. Gutman, Secure Deletion of Data from Magnetic and Solid-State Memory,
Sixth USENIX Security Symposium Proceedings, San Jose, California, July
22-25, 1996, pp. 77-89.

17. M. Naor and M. Yung “ Public key cryptosystems provably secure against cho-
sen ciphertext attacks”, Proc. 22nd ACM Annual Symposium on the Theory
of Computing, 1990, pp. 427–437.

18. C. Rackoff and D. Simon, Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack, CRYPTO’91, (LNCS 576), 1991.

19. K. Sako and J. Kilian, Receipt-Free Mix-Type Voting Scheme, Eurocrypt 1995,
pp. 393-403.

