
Scalable and Dynamic Quorum Systems∗

Moni Naor†‡ Udi Wieder‡

Abstract

We investigate issues related to the probe complexity of quorum systems and their implementation
in a dynamic environment. Our contribution is twofold. The first regards the algorithmic complexity of
finding a quorum in case of random failures. We show a tradeoff between the load of a quorum system
and its probe complexity for non adaptive algorithms. We analyze the algorithmic probe complexity of
thePathsquorum system suggested by Naor and Wool in [28], and present two optimal algorithms. The
first is a non adaptive algorithm that matches our lower bound. The second is an adaptive algorithm with a
probe complexity that is linear in the cardinality of the smallest quorum set. We supply a constant degree
network in which these algorithms could be executed efficiently. Thus thePathsquorum system is shown
to have good balance between many measures of quality. Our second contribution is presentingDynamic
Paths- a suggestion for a dynamic and scalable quorum system, which can operate in an environment
where elements join and leave the system. The quorum system could be viewed as a dynamic adaptation
of thePathssystem, and therefore has low load high availability and good probe complexity. We show
that it scales gracefully as the number of elements grows.

1 Introduction and Motivation

Quorum systems serve as a basic tool providing a uniform and reliable way to achieve coordination between
processors in a distributed system. Quorum systems are defined as follows:

Definition 1. LetU be a universe ofn elements. A set systemS = {S1, S2, . . . , Sm} is said to be aquorum
systemover the universeU if ∀i Si ⊆ U and∀i, j Si ∩ Sj 6= ∅. Each setSi is referred to as aquorum set
or simply as aquorum.

Quorum systems have been used in the study of distributed control and management problems such as
mutual exclusion (cf. [10],[33]), data replication protocols (cf. [10]) and secure access control ([27]). In
many applications of quorum systems the underlying universe is associated with a network of processors,
and a quorum is employed by accessing each of its elements. For example, in a typical implementation of
mutual exclusion using quorum systems, processors request access to the critical section from all members
of a quorum. A processor can enter its critical section only if it receives permission from all processors in a
quorum. The intersection property guarantees the integrity of the mutual inclusion. In a typical application
of data replication, the quorum sets are divided into reading quorums and writing quorums where each
reading quorum intersects each writing quorum. When a data item is added to the system, it is written into
all the members of a writing quorum. A data item is searched by querying all the members of a reading
quorum. The intersection property guarantees the effectiveness of the search. We investigate two aspects of
quorum systems:

∗Research supported in part by the RAND/APX grant from the EU Program IST
†Incumbent of the Judith Kleeman Professorial Chair.
‡Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science. Rehovot 76100 Israel.

{moni.naor, udi.wieder}@weizmann.ac.il

1

1. It is often assumed that processors can somehow find and communicate with one another. We analyze
algorithms for finding quorum systems in a distributed network while taking into account thenetwork
implementation; i.e., the network and the quorum system should be compatible such that elements
from the same quorum are connected to one another. We supply algorithms for finding a quorum set
(even in the case of failures) and analyze their running time and communication complexity. In this
setting non-adaptive algorithms are attractive since they can be executed in parallel.

2. The setting in which the quorum operates is often dynamic, and should accommodate changes in the
quorum system over time. See for instance [21],[33]. We address the problem of designing a quorum
system that is fit for a scalable and dynamic environment where processors leave and join at will.
Abraham and Malkhi [3] address this problems when the intersection property is not guaranteed but
rather occurs with high probability.

1.1 Scalable Dynamic Data Structures - P2P

Recently a new approach for construction of dynamic distributed data structures on overlay networks was
suggested, which offers excellent scalability. The main motivation for this line of research comes from
the rise in popularity of P2P application, therefore the attention was put on the construction of distributed
hash tables (cf. [26],[23], [34], [32]). In these works an overlay network is built dynamically. Processors
may fail (with some probability) and are allowed to join and leave. Each processor holds some data items.
The construction in [26] for instance, guarantees that any data item could be found in logarithmic time,
while imposing small load on every processor. In this paper we suggest quorum systems that operate in a
dynamic peer-to-peer model. We combine techniques developed in these papers, mainly [26] and [32], with
appropriate quorum systems, and provide the distributed algorithms for finding the quorums. We allow two
types of events:

1. A Processor may temporarily fail (halt). The failure of a processor occurs with some fixed probability
and is independent from failures of other processors in the network. It is desired that the probability
that a live quorum is found be as high as possible.

2. Processors may wish to join the system or to leave it (a long term failure of a processor could be
regarded as if the processor left the system). It is desired that the quorum sets be updated such that
these processors are included/excluded from the system.

1.2 Measures of Quality

The metrics that measure the quality of a dynamic quorum system relate both to itscombinatorialstructure
and to its capability of being implemented in a distributed network. The following metrics were analyzed
by Naor and Wool in [28] and are used to measure the quality of static systems as well.

• Load - A strategy is a distribution over quorum sets, giving each quorum set an access probability
(i.e., the probability by which it is accessed by the user). A strategy induces a load on each element,
which is the sum of the probabilities of quorums it belongs to. This represents the fraction of the time
an element is used. For a given quorum systemS, the loadζ(S) is the minimal load on the busiest
element, minimizing over the strategies. The load measures the quality of the quorum system in the
following sense: if the load is low, then each element is accessed rarely, thus it is free to perform other
unrelated tasks. Letc be the cardinality of the smallest quorum set. Naor and Wool prove in [28] the
following lemma:

Lemma 2. The load of a quorum system is always at leastmax{1
c ,

c
n}which implies thatζ(S) ≥ 1√

n
.

2

• Availability - Assuming that each element fails with probabilityp, what is the probability
Fp, that the surviving elements do not contain any quorum? This failure probability measures how
resilient the system is, and we would likeFp to be as small as possible.

The Load is especially important if the application of the quorum system involves replication of data, as was
described in the previous section. In this case the load is proportional to the fraction of data each element
has to hold, and therefore smaller load means that each processor needs to allocate a smaller amount of
memory. The notion of availability is important when dealing withtemporary faults. The most common
strategy to deal with faults is tobypassthem; i.e., find a quorum set for which all processors are alive. This
introduces the following notion:

• Algorithmic probe complexity - The complexity of the algorithms for finding a quorum
should be low. Even if all processors are alive thenetworkshould allow easy access to elements of
the same quorum system. In case some elements fail, finding a live quorum set can be a difficult
algorithmic task. Peleg and Wool analyzed in [30] the probe complexity of several quorum systems.
They assume that an adversary decided which elements fail and analyzed the number of elements
needed to be probed before either a living quorum is found or an evidence for the lack of it. They
assume that each probing takesO(1); i.e., they ignore the complexity caused by the implementation of
the network. Hassin and Peleg extend these results in [14] to the case where each processor fails with
some fixed probability . TheAlgorithmic probe complexityis the actual time and message complexity
needed to find a live quorum. It is determined by thenetworkand by the quorum system. A related
term is theCost of Failuresintroduced by Bazzi [7]. Given a network implementation and an algorithm
for finding quorums, the cost for failures measures the average communication overhead caused by
encountering a faulty processor.

The introduction of a dynamic environment requires another set of demands:

• Integrity - A new processor that joins the system, and a processor that leaves the system, should
change the quorum sets. The integrity of the system should be preserved in two aspects: First the
intersection property must hold. Bearden and Bianchini suggest in [8] a protocol for an online ad-
justment of quorum systems without compromising the integrity of the intersection propertyduring
the adaptation. It is necessary that the adaptations themselves do not corrupt the intersection property
of the quorum system; i.e., that the intersection property holds after the adaptations took place. The
second aspect is application oriented. Quorums that were used in the past (say for mutual exclusion)
might not be legal quorum sets after the adaptation. It is necessary that when an adaptation occurs,
the intersection guarantee that the quorum system supplies the application is not compromised.

• Scalability - The number of elements in the quorum system may increase over time. The increase
in the size of the system should maintain the good qualities of it, i.e., it should decrease the load on
each processor and increase the availability of the system. It is important that when the system scales
the algorithmic probe complexity would remain low. Finally the Join and Leave operation should be
applied with low time and message complexity.

1.3 New Results and Paper Organization

The paper is divided into two parts. In the first part, we show a tradeoff between the load and the non-
adaptive probe complexity of quorum systems (Section2), thus proving a lower bound for non-adaptive
probe complexity. In Section3 we show a non-adaptive algorithm for finding a quorum in thePathsquorum
system which is tight in that respect. We further show an adaptive algorithm forPathswith probe complexity

3

O(
√
n), which is optimal (up to constants). Thus combined with the results in [28] the Paths system is the

first quorum system shown to have an excellent balance between many somewhat contradictory measures of
quality. In the second part of the paper (Section4) we present and analyzeDynamic Paths, a construction for
a dynamic and scalable quorum system which could be viewed as a dynamic adaptation of thePathssystem.
To the best of our knowledgeDynamic Pathsis the first scalable quorum system which is shown to have low
load, high availability and good probe complexity. Thus it is an excellent candidate for an implementation
of quorums in a dynamic distributed network.

2 Non Adaptive Algorithms vs. Load

A non adaptive algorithm for finding a live quorum is an algorithm which decides which elements to probe
beforeit gains any knowledge as to which elements failed and which did not. Non-adaptive algorithms are
important in the context of a distributed network since they are easy to implement in parallel. It might be
worthwhile to ‘pay’ in a higher message complexity, and reduce the total time complexity of the algorithm.
As an illustrative example consider a quorum system in which only

√
n elements participate in quorum sets.

Clearly querying only those
√
n elements is sufficient to find a live quorum. The drawback of this approach

is that the load on these elements would be high (Lemma2 implies that it would be at leastn−
1
4). In this

section we show a tradeoff between the load of a quorum system and its probe complexity for non adaptive
algorithms.

Theorem 3. LetS be a quorum system over universeU with a load ofζ = ζ(S). Assume that each element
in U fails with some fixed probabilityp < 1

2 . LetX ⊆ U be a predefined set of elements such that

Pr[X contains a live quorum] ≥ 1
2
,

then

|X| ≥ 1
2 log(1/p) + 1

· log(1/4ζ)
ζ

.

In particular if ζ(S) isO(1√
n
) then,|X| is Ω(

√
n log n).

Proof. LetSX be all the quorum sets contained inX, i.e.,SX = {S|S ∈ S ∧S ⊆ X}. LetR be all the sets
which are an intersection ofX with a quorum; i.e.,

R = {R|R = S ∩X,S ∈ S}.

By the intersection property each setR ∈ R intersects all the sets inSX . Therefore, if for a setR ∈ R
all elements inR fail thenX does not contain a live quorum. We show thatR must contain manydisjoint
sets of small cardinality. Letf be a distribution over quorum sets which imposes the optimal loadζ, and let
a = |X|ζ. Distributionf induces a marginal distribution over the setsR ∈ R by takingS ∩ X for each
sampled setS. Under this distribution, the expected size ofR is at mosta (i.e.,Ef [|R|] ≤ a), otherwise the
load on the elements ofX would be higher thanζ. By Markov’s inequality we have that with probability at
least12 the sampled set is of size at most2a, so we have∑

R:|R|≤2a

Pr
f

[R is sampled] ≥ 1
2

(1)

On the other hand since the load induced byf is at mostζ we have

4

∀x ∈ X
∑
R:x∈R

Pr
f

[R is sampled] ≤ ζ (2)

Next we show that inequalities (1) and (2) imply thatR contains a collectionsR′ of at least 1
2ζ disjoint

sets of size at most2a. To see this employ the following procedure: pick a setQ ∈ R such that|Q| ≤ 2a and
putQ in R′. DefineRQ ⊂ R to be all the small sets inR which intersectQ, i.e.,RQ = {R ∈ R|R ∩Q 6=
∅ ∧ |R| ≤ 2a}. Now sinceQ has at most2a elements then by inequality (2) we have∑

R∈RQ

Pr
f

[R is sampled] ≤ 2aζ (3)

Remove the setsRQ fromR and repeat the procedure by picking another setQ, until all the sets of cardi-
nality≤ 2a were removed. By inequalities (1) and (3) we can perform this procedure14aζ times. Clearly all
the setsQ chosen in this process are disjoint and of small cardinality. For each setQ ∈ R′ the probability
that all its elements fail is at leastp2a. Since the sets are disjoint, these events are mutually independent. In
order for the probability of finding a live quorum to be at least1

2 we must have then that

(1− p2a)
1

4aζ ≥ 1
2

exp
(
− p

2a

4aζ

)
≥ e−1

2a · log(1/p) + log a ≥ log(1/4ζ)

a ≥ log(1/4ζ)
2 log(1/p) + 1

Now since|X| = a
ζ this implies the theorem.

Theorem3 lower bounds the probe complexity ofnon-adaptivealgorithms. The smaller the load is,
the larger the probe complexity is. The Paths system has a load ofΘ(1√

n
). The theorem implies that any

non-adaptive algorithm would have to probe a predefined set ofΘ(
√
n log n) processors, in order to succeed

with probability 1
2 . If the load is very large, say constant, then the bound given by Theorem3 is Ω(1). In

case of the Majority system, the bound is much worst than the trivial lower bound ofn
2 . This however is

unavoidable since quorum systems with high load may have quorum sets of small cardinality, so any bound
which uses the load alone will deteriorate when the load increases.

3 The Paths Quorum System

We recall the construction of thePathssystem from [28]. We start with a precise definition of the grid we
will be using.

Definition 4. LetG(`) be the subgrid ofZ2 with vertex set{(v1, v2) ∈ Z2 : 0 ≤ v1 ≤ ` + 1, 0 ≤ v2 ≤ `}
and edge set consisting of all edges joining neighboring vertices except those joining verticesu, v with either
u1 = v1 = 0 or u1 = v1 = `+ 1.

Definition 5. LetG∗(`), the dual of G(`) be the subgrid with vertex set{(v1, v2) + (1
2 ,

1
2) : 0 ≤ v1 ≤

`,−1 ≤ v2 ≤ `} and edge set consisting of all edges joining neighboring vertices except those joining
verticesu, v with eitheru2 = v2 = −1

2 or u2 = v2 = `+ 1
2 .

5

(0,0)

Figure 1: The gridsG(3) (thick lines) andG∗(3) (thin lines).

Note that every edgee ∈ G(`) has a dual edgee∗ ∈ G∗(`) which crossesit. We call suche and
e∗ a dual pair of edges. Note also thatG(`) andG∗(`) are isomorphic. BothG(`) andG∗(`) contain
`2 + (`+ 1)2 = 2`2 + 2`+ 1 edges.

Definition 6. ThePaths quorum systemof order` hasn = 2`2+2`+1 elements, and we identify an element
in U with a dual pair of edgese ∈ G(`) ande∗ ∈ G∗(`). A quorum in the system is a set of elements which
contains (elements identified with) the edges of a left-right path inG(`) and the edges of a top-bottom path
in G∗(`).

The Paths quorum system of order3 is depicted in Figure1. The intersection property of the quorum
system follows from the following fact:

Fact 7. Every left-right path inG(`) crosses every top-bottom path inG∗(`).

Naor and Wool proved that the load of the Paths quorum system is at most2
√

2√
n

(where 1√
n

is best
possible). Furthermore it is shown that if each processor fails with probability smaller than half, then the
probability a live quorum exists is at least1− e−Ω(

√
n).

3.1 Algorithmic Probe Complexity

The analysis of the algorithms we present is based on Theorem8 bellow due to Menshikov [24] from
Percolation Theory. Consider the infinite two dimensional gridZ2 and fix a vertexu. DefineS(k) to be
the ball of radiusk with u at its center, where the distancek is taken according to the gridL1 metric. The
setϑS(k) consists of the vertices in the boundary of the ball. Assume each edge fails with some fixed
probabilityp > 1

2 . Note that since the failure probability is greater than1
2 , we discuss the case in which

mostedges fail. DefineAk to be the event that there is a path of surviving edges betweenu and some
vertex inϑS(k). The following is Menshikov’s Theorem. A good reference for its proof could be found in
Grimmett’s book [12].

Theorem 8. Let 1
2 < p ≤ 1 be some failure probability, and letAk be defined as above. There exists some

positive constantψ(p) such thatPr[Ak] < e−ψ(p)k for all k.

Let G(`) be the dual grid ofG(`) (just likeG∗(`)), however if an edge inG(`) survives then its dual
edge inG(`) fails and if an edge inG(`) fails then its dual edge inG(`) survives. The graphG(`) is used
for the analysis and is not a part of the construction itself. Now, since the failure probability inG(`) is
smaller than1

2 , the failure probability inG(`) is greater than12 , and we can use Theorem8. Theorem8

6

r

Figure 2: The dashed lines indicate the duals of failed edges. The bold line indicates a left-right path.

bounds the radius of a connected component ofG(`). It states that the radius of a connected component has
an exponential decay.

Corollary 9. If each edge ofG(`) fails with probabilityp < 1
2 , there exists some constantδ = δ(p) such

that with high probability1 every connected component ofG(`) is contained in some ball of radiusδ log n
(where the balls are defined by the metric of the grid before failures).

Proof. Theorem8 states that the probability that a ball of radiusδ log n centered at vertexu does not
contain the component ofu in G(`) is less thane−ψ(p)δ logn. Setδ such thatδ · ψ(p) ≥ 2. Now for each
vertexu this probability is less than1

n2 . When applying the union bound over all then vertices we have:
Pr[All components are contained in balls of radius≤ δ log n] is at least1− 1

n .

3.1.1 A Non Adaptive Algorithm.

We show an algorithm that matches the lower bound of
√
n log n for non adaptive probes from Theorem3. A

left-right path inG(`) mustavoidall the components of surviving edges inG(`). See Figure2. We describe
a non-adaptive algorithm that finds a left-right path, when each element fails with probabilityp < 1

2 . The
case of a top-bottom path is analogous. Choose a horizontal strip of width at least2δ log n + 1 (whereδ is
taken from Corollary9) and examine all the edges. The algorithm tries to find a left-right crossing within
the boundaries of this strip.

Claim 10. If each element in the quorum system fails independently with probabilityp < 1
2 , then after

probing non-adaptively2`(2δ log n+ 1) = Θ(
√
n log n) elements, the algorithm finds a quorum with high

probability.

Proof. Corollary9 implies that there is no path inG(`) that crosses the strip top to bottom (otherwise this
path is part of a component which can not be contained in aδ log n radius ball). By Fact7 this implies a
left-right path in the strip. See Figure2.

Note that while the we showed that probingO(
√
n log n) elements is sufficient to succeed with high

probability, Theorem3 states thatΩ(
√
n log n) probes are necessary to succeed with merely probability1

2 .
As mentioned, since the algorithm is non adaptive it could be implemented in parallel. The actual running
time of the algorithm depends on the implementation of the network.

1The term ‘with high probability’ (w.h.p) means with probability1− n−ε whereε is some positive constant.

7

The Load After Failures Naor and Wool show in [28] (Proposition5.8) that the load of the Paths system
is Θ(1√

n
) even after failures. In this section we present an efficient non-adaptive algorithm for picking a

quorum which meets this bound w.h.p.

Lemma 11. If each edge fails with probabilityp < 1
2 , then there exists a positive constantα = α(p) such

that in every strip of widthα log n there existslog n left-right paths that are edge disjoint.

Proof. Denote byLR the event that there exists a left-right path in a strip of widthα log n (the constantα
will be fixed later). Denote byLRr the event that there arer edge disjointleft-right paths in the strip. Fix
somep′ such thatp < p′ < 1

2 . Proposition5.8 in [28] uses a known result from percolation theory [6] in
order to show the following:

Pr
p

(LRr) ≥ 1−
(

1− p

p′ − p

)r

(1− Pr
p′

(LR))

Whenr = log n we have that
(

1−p
p′−p

)r
isO(nk) for some constantk. Sincep′ < 1

2 , by Corollary9 and

Claim10we can chooseα to be large enough so that1−Prp′(LR) < n−(k+1) and the Lemma follows.

The strategy of picking a quorum is the following: First pick atrandoma strip and probe all its elements.
Find the edge disjoint left-right paths and pick at random one of these paths.

Corollary 12. If p < 1
2 then the load imposed on the elements by the strategy described above isΘ(1√

n
).

Proof. Given a nodeu, the probability that nodeu belongs to the randomly chosen strip isΘ(logn√
n

). Lemma
11 implies that given thatu is in the strip, the probability it belongs to the chosen quorum set is at most
Θ(1

logn). As the second event is conditioned upon the first, we may multiply the probabilities and deduce

that the load imposed by the strategy isΘ(1√
n
) even after failures.

3.1.2 An Adaptive Algorithm for Paths

Adaptive algorithms can do better than non adaptive ones. Hassin and Peleg presented in [14] a lower
bound of c

1−p + O(1) on the expected probe complexity, whenc is the cardinality of the smallest quorum
set. They proved that for some quorum systems this bound is tight. We note that it is proved in [28] that
ζ(S) ≥ max{1

c ,
c
n} therefore this lower bound is at best linear in the inverse of the load. In the following

we present an adaptive algorithm for the Paths quorum system which needs onlyΘ(
√
n) probes. It is

optimal in the sense that every quorum system with optimal load must havec = Ω(
√
n). Various adaptive

algorithms for quorums were analyzed by Hassin and Peleg [14]. The only quorum system with a better
probe complexity is the Crumbling Walls system. This system however suffers from high load. Bazzi
presented in [7] the Triangle Lattice quorum system, which resembles Paths, and an adaptive algorithm for
finding quorums in case of failures. Bazzi proves that its cost of failures (i.e., the communication overhead
due to encountering a failed processor) is constant. Our algorithm, is an adaptation of Bazzi’s algorithm
to the grid, and therefore Bazzi’s analysis applies in our case and shows the following: letQ be the set of
processors probed by the algorithm until a quorum was found. LetF ⊂ Q be the subset of which that failed,
then there exists a constantα such that|F | ≤ |Q|

α . This result does not bound thetotal numberof probed
processors. Our goal in this section is to show thatwith high probability, the total number of processors
probed isO(

√
n).

We start with a formal description of the algorithm, as before it is sufficient to show how to find a left-
right path. The algorithm is a variant of a DFS-search with a specified strategy for picking the next edge to

8

r

Figure 3: The dashed lines indicate the duals of failed edges. The bold line indicates a possible path
taken by the adaptive algorithm.

probe. We say that a pathcircumventsa component ofG(`) if it travels along the surface of it; i.e, it travels
along edges, the duals of which are adjacent to the component and not part of it. The algorithm would try
to find a path which is a straight left-right line. Whenever a component ofG(`) is encountered it would be
circumvented. More formally:

1. Chooser at random1 ≤ r ≤ `. The search begins at edger of the left column, and aims to travel
along rowr.

2. Go to the right. When a failed edge is encounteredcircumventthe component until rowr is reached
again. Ifr ≤ 1

2` from above, otherwise from below. Return to rowr.

The path in bold presented in Figure3 demonstrates a possible path of the DFS search. The path taken
by the algorithm needs to circumvent a component ofG(`) only if it contains the dual of an edge in row
r. For each failed edgee of row r defineCe to be the number of edges in the component ofG(`) that
contains the dual ofe. If e did not fail thenCe = 0. The numberCe is an upper bound on the length of the
circumvention the path had to take in order to avoid the failed edgee.

Observation 13. The length of the path taken by the algorithm is at most`+
∑
Ce where the sum is taken

over the edges of rowr.

Theorem 14. The probe complexity of the algorithm isΘ(`) = Θ(
√
n) with high probability (where the

probability is taken over the occurrence of faults).

Proof. Assume that the random starting point selected in Step(1) of the algorithm is a starting point of
some left-right path of the grid. By Lemma11 we know that the probability of this is constant. Thus we
repeat the procedure above, until a good starting point is found. We need to show that all the circumventions
taken in Step(2), i.e.,

∑
Ce, accumulate to no more thanΘ(`). Fix some edgee on rowr, and let vertexu

belong to its dual edge. LetCu be the number of edges in the component ofu in G(`). LetAu denote the
diameter of that component. Since the vertexu is adjacent to the dual ofe it holds thatCu ≥ Ce. The grid
topology implies that ifCu ≥ k thenAu ≥ 1

2

√
k. We have (by Theorem8)

Pr[Cu ≥ k] ≤ Pr[Au ≥ 1
2

√
k] ≤ e−ψ(p)

√
k for someψ(p) > 0 (4)

E[Cu] = µ ≤
∞∑
k=1

k · e−ψ(p)
√
k = O(1) (5)

9

The algorithm may need to avoid at most` components ofG(`). By linearity of expectation the expected
probe complexity of the algorithm isΘ(`). To show that this sum isΘ(`) with high probability we need
a slightly different argument. Divide the grid into(`

δ logn) vertical strips each of widthδ log n, whereδ is

taken from Corollary9. Each strip is wide enough such that w.h.p it is wider than any component ofG(`).

Assume this high probability event occurs. DefineXi
def
=

∑
Ce where the sum is taken over edges of rowr

and stripi. The length of the path the algorithm took is at most`+
∑
Xi.

Lemma 15. E[Xi] ≤ µδ log n and w.h.p for alli we haveXi ≤ 2δ2 log2 n.

Proof. The width of the strip isδ log n and the expected size of each component isµ, therefore by linearity
of expectationE[Xi] ≤ µδ log n. By Corollary9 we know that w.h.p all the components are contained in
a δ log n radius ball. Therefore w.h.p all the components are confined into a rectangle of area2δ2 log2 n.
which proves the second claim.

DefineIσ = {1 ≤ i ≤ `
δ logn : i mod 3 = σ}, σ ∈ {0, 1, 2}.

Lemma 16. Conditioned on the event that all the components are of diameterO(log n), which by Corollary
9 occurs with high probability, the set{Xi}i∈Iσ consists of independent random variables.

Proof. If all components are of small diameter, then every connected component ofG(`) belongs to at most
two strips. ThereforeXi depends only upon the probes of edges in stripsi − 1, i, i + 1. This means that
Xi, Xi+3 are independent.

By using the appropriate Chernoff Hoefding bound (cf. [11] page17) we have

Pr

[∑
Iσ

Xi −
∑
Iσ

E[Xi] ≥ t|Iσ|

]
≤ 2 exp

(
− 2t2|Iσ|

(2δ2 log2 n)2

)

Since|Iσ| is in the order of
√
n

logn , the probability that there is a large deviation decays exponentially fast.

In particular settingt to be some large enough constant implies thatPr[
∑

Iσ
Xi > Θ(`)] ≤ 1

n2 for σ ∈
{0, 1, 2}. Now we apply the union bound over the high probability events of Corollary9 and Lemmas
15,16, which means that with high probability the probe complexity of the algorithm isΘ(`) = Θ(

√
n).

This concludes the proof of Theorem14.

Network implementation In order to calculate theactualrunning time and message complexity of these
algorithms we need to take into consideration the topology and implementation of the network over which
the quorum system is defined. The most natural network topology to consider is that ofG(`), G∗(`) them-
selves. Each processor is associated with a pair of dual edges, and is connected to the processors that are
associated with edges that are adjacent to its own edges. In other words, the topology of the network is the
line graphof the two dimensional grid. In Figure4 the thick solid edges belong to the line graph ofG(`),
the dotted edges belong to the line graph ofG∗(`) and the diagonal edges belong to both. A quorum set
therefore is composed of processors (nodes) that form a left-right path using the solid horizontal, vertical and
diagonal edges and a left-right path using the dotted and diagonal lines. In this implementation the message
complexity and the time complexity of the adaptive algorithm are indeedΘ(`). The non-adaptive algorithm
can probe its chosen strip in parallel, and achieve a running time ofΘ(`) and a message complexity of
Θ(
√
n log n). Other data structures that are implemented on the network might support the implementa-

tion of the quorum system. For instance if the network implements a DHT (such as the one presented in
[26]) then the DHT could be used for probing the strip in parallel and the time complexity would reduce to
Θ(log n) with an extra logarithmic factor in the message complexity.

10

Figure 4: The line graph of a4× 4 grid and its dual.

Figure 5: A possible sample from the distribution over inputs. The bolded edges are closed. The third
row is an open path.

Worst case model Assume an adversary is given the possibility to crash a constant fraction of the el-
ements. It is easy to see that an adversary can ‘kill’ all the short paths, and leave only paths of length
Ω(`2) = Ω(n). However an adversary may force any algorithm (even probabilistic) to probeΩ(n) ele-
ments, even if we are guaranteed that there exists a short left-right path. We sketch the proof using Yao’s
minimax principle (cf. [25]). We need to supply a distribution of theinputssuch that every deterministic
algorithm would need to probe an expectedΩ(n) elements. The distribution over inputs is as follows:

1. Kill every line of even index.

2. From the remaining lines choose at random one which would remain alive.

3. Kill each remaining line by choosing at random one element from it and deleting it.

An example of a possible input is seen in Figure5, where the third row from the top is the only surviving
row. Now everydeterministicalgorithm needs to find the line that survived. Every such algorithm will
need to probeΩ(`) lines, each of these lines should be probedΩ(`) times. All in all every deterministic
algorithm would probe on expectationΩ(`2) edges. We conclude that for every algorithm (deterministic
or randomized) there is an input, for which the expected probe complexity of the algorithm isΩ(n). Peleg
and Wool analyze in [30] the probe complexity of several quorums under the model of adversarial deletion.

11

Figure 6: Addition of a new generator.

They show several lower bounds, all of which turn to beΩ(`) in the Paths system. Note that even though
the algorithmic probe complexity is high, thecost of failures(as were defining by Bazzi [7]) is a constant.

4 The Dynamic Paths Quorum System

In this section we suggest a quorum system that operates in a dynamic model, where processors may join
and leave. The applications of quorum systems in a dynamic setting were considered in a wide range of
papers cf. [1],[15],[17]. Previous constructions of dynamic quorums focused onimplementingquorum
systems in a dynamic environment and designing algorithms that allowed a group of processors toform a
new quorum in a consistent way (cf. [16],[19],[31], [13],[20]). We focus on thecombinatorialproperties
of dynamic quorums. Our goal is to design dynamic quorums that enjoy low load, high availability, low
probe complexity and that scale gracefully in respect to these parameters. The good properties of the Paths
quorum system motivates us to design adynamic versionof the Paths system. The main idea is to substitute
the grid with thecontinuousunit square[0, 1)× [0, 1) ⊂ R2. The unit square is then decomposed into cells,
where each processor is associated with a cell. The entrance and exit of a processor dynamically changes
the decomposition. The decomposition of the square into the cells is done via Voronoi Diagrams. Our
technique is similar to the one presented in [26] for building DHT’s. Stojmenovíc and Pẽna [35] suggest a
location based dynamic quorum system for use in ad-hoc wireless networks. The system is composed of
North-South and West-East paths which are constructed dynamically according to the physical location of
the nodes. Our work differs by assigningvirtual coordinates to processors, thus using the quorum system
in a more general setting. We then provide a rigorous analysis in which the combinatorial properties (load,
availability, integrity) of the system are analyzed.

4.1 Dynamic Voronoi Diagrams

Definition 17 (planar ordinary Voronoi diagram). Given a finite number (at least2) of distinct points in
the Euclidean plane, we associate all locations in that space with the closest member(s) of the point set with
respect to the Euclidean distance. The result is a tessellation of the plane into a set of regions associated
with members of the point set. We call this tessellation theplanar ordinary Voronoi diagramgenerated by
the point set, the points are sometimes referred to asgeneratorsand the regions constituting the Voronoi
diagramVoronoi cells. The dual triangulated graph is called theDelaunay triangulation.

See Okabeet al [29] for a thorough overview of Voronoi diagrams and their applications. Given an

12

existing Voronoi diagram, the entrance of a new generator and the exit of an existing one affects only
the cells adjacent to the location of the generator. Therefore a Voronoi diagram can be maintained by a
distributed algorithm, in which every cell is calculated separately andlocally. The time and memory needed
to compute a single Voronoi cell isΘ(d) whend is the number of neighbors the cell has; i.e., the degree
of the generator in the Delaunay tessellation. See Figure6 for a demonstration of an insertion of a new
generator. It is well known that the average degree of a Voronoi cell is6. It follows that if the generators of
a Voronoi diagram are entered in random order, then the average ofd is at most6 as well. In the worst case
d might be as high asn− 1.

4.1.1 The Join/Leave operations

Processors are associated with generators of a Voronoi diagram. Each processor holds its own location on
the plane and the location of its neighbors in the Delaunay triangulation. A processor that wishes to join the
system does the following:

1. Choose a locationx in the unit square (typicallyx would be chosen randomly and uniformly from
[0, 1)× [0, 1)).

2. Find the processor whose cell containsx. Learn the location of its neighbors.

3. Calculate the boundaries of the new Voronoi cell and inform the neighbors so that they can update
their tables.

Before analyzing the algorithm we show the properties of a Voronoi diagram in which the location of
each generator was chosen randomly and uniformly. We show that with high probably the Voronoi diagram
decomposes the square into more or less equal cells.

Theorem 18. If the location of each generator of the Voronoi diagram was chosen uniformly and randomly
in [0, 1)× [0, 1) then with high probability the following holds:

1. The area of the largest Voronoi cell is at mostO(logn
n).

2. The number of neighbors each Voronoi cell (the maximum degree of the Delaunay graph) isO(log n).

3. The projection of each Voronoi cell on the axis lines is at mostO(
√

log n/n).

Proof. Divide the square into n
logn squares of size

√
logn
n ×

√
logn
n . Now model the process as puttingn

balls in n
lgn bins. It is well known that whenn balls are put uniformly at random intonlogn bins, then w.h.p

every bin containsΘ(log n) balls. Assume this high probability event occurs and each small square contains
Θ(log n) balls. Fix a generatorxi. A simple geometric argument demonstrated in Figure7 shows that all
the neighbors ofxi must lie within the25 squares that compose the5 × 5 grid which surrounds the square
of xi. This asserts claims(1), (3). Since each square containsO(log n) generators the number of neighbors
of xi is also bounded byO(log n).

Since the computation of a Voronoi cell is a local operation, Step(3) of the Join algorithm takesO(d)
time and memory, whered is the degree of the Voronoi cell in the Delaunay graph. The average degree
is 6 and Theorem18 assures that w.h.p all degrees are at mostO(log n). Step(2) of the the algorithms
requires locating the processor whose cell contains the pointx. The complexity of Step(2) depends upon
the topology of the network and the search options it provides. If the topology of the network is that of the
Delaunay graph, then the processor holdingx could be found by a greedy algorithm along the geometry of
the Voronoi diagram; i.e., the query moves along the Delaunay edges in a greedy way to the direction ofx.

13

u

Figure 7: If each square contains at least one vertex, then the cell generated byu is contained in the
circle.

Thus the time complexity and the message complexity of Step(2) areO(
√
n). A similar approach is taken

in CAN [32]. Additional structure of the network may reduce the complexity of Step(2). The Distance
Halving DHT suggested in ([26]) is implemented using the same Voronoi diagram and therefore requires
low overhead. Using it Step(2) could be performed inO(log n) time andO(log n) messages. The interface
of a DHT allows searching for a processor whose cell contains a certain point, without knowing a-priori the
processor’s i.d.

The Leave operation is done similarly. When a processors wishes to leave the system, it informs its
neighbors which in turn divide and redistribute the area of its cell among themselves.

4.2 The Quorum System

In the Dynamic Paths quorum system, a quorum set is the union of (elements identified with) the vertices
(generators) that form a left-right path and a top-bottom path in the Delaunay graph.

Load We upper bound the load by analysing a specific distribution over quorum sets: choose at random
two points(x, y) in the interval[0, 1). Now the pick the quorum set that is composed from all the cells that
intersect the horizontal linex and the vertical liney. An example of a quorum set is depicted in Figure10.
The bound on the projection of a cell in Theorem18 implies that with high probability the load imposed by
this strategy is at mostΘ(

√
logn√
n

).

Availability Basic results in percolation theory imply that if the locations of the generators were picked
uniformly at random, and the failure probability is strictly less than half, then with probability that tends
to 1 (asn → ∞) there exists a left-right path. This could be proved using planar duality in the same
manner in which the critical probability of edge percolation is proven. A rough outline of the argument
is as follows: If there is no left-right crossing, then there must be a top-bottom crossing offailed Voronoi
cells. The procedure of creating the Voronoi diagram is symmetric and imposes the same probability over a
top-bottom and a left-right crossing. Therefore if the failure probability is less than1

2 we expect a crossing
to exist. Currently an analysis of the actual probability of the crossing, (i.e., the rate in which the probability
of a crossing converges to1) is unknown.

14

A1

A2
uv

A

u

A

u
v

(c)(b)(a)

Figure 8: When adding a processor either the load of quorumA is split between quorumsA1, A2 as seen
in (b), orA grows, as seen in(c).

Integrity It is necessary that processors save some information about the quorum sets that were used.
A quorum set is associated with a path. Every time a quorum is used, a processor that participates in
the quorum should remember the identity of the processors before and after it in the path. When a new
processor joins the system either the quorum set grows or the load should be divided evenly between the
new quorums. Figure8 demonstrates the process. Figure(a) shows the Voronoi diagram before the entrance
of v. Figure(c) demonstrates the case wherev is added to quorumA. Figure(b) shows the case where the
responsibilities of quorumA (represented by the line in bold) should now be split between quorumsA1, A2.
If for instance the application of the quorum system is mutual exclusion, and quorumA is currently active,
then processorsu, v should decide among themselves which one of them remains active, and inform their
neighbors. If the quorum system is used for replication of data, then the procedure is slightly more delicate.
Each data item is associated with a quorum set. Processorsu, v should divide among themselves the data
items that were previously associated with quorumA, and of course inform their neighbors.

Algorithmic probe complexity The algorithms described in Section3 have obvious analogs in the Dy-
namic Paths system. In order to prove that the probe complexity of the non-adaptive and adaptive algorithms
is Θ(

√
n log n),Θ(

√
n) respectively we need an analog for Theorem8; i.e., we need that for a small failure

probability, the radius of a component offailed cells would decay in sub-exponential rate. Unfortunately
such a theorem is yet unknown, yet prominent researchers in the field (e.g. [9]) conjecture that it is true. If
indeed the conjecture is true then the performance of the algorithms could be analyzed in the same manner
as in Section3 and the Dynamic Paths quorum system enjoys excellent probe complexity.

4.3 A Balanced Voronoi Diagram

The reason some of the parameters ofDynamic Pathsare not as good as the parameters ofPathsis that
when each processor chooses its location randomly, some of the Voronoi cells are quite big. The load of the
system is proportional to the size of the projection of the cells over the axis lines. Theorem18 bounds the

size of the projection (and therefore the load) byO(
√

logn
n), in the case where the location of the processors

is chosen uniformly and randomly in[0, 1) × [0, 1). Furthermore the existence of large cells makes the
analysis of the availability and probe complexity of the system very difficult. A more sophisticated and
coordinated procedure for choosing the location upon entrance may reduce the size of the largest cell and
create abalancedVoronoi diagram. Abalanced Voronoi Diagramis a diagram in which every Voronoi cell

15

is contained in a square of areaΘ(1
n). One such procedure is the following: upon entrance a processor

chooses at randomlog n points and chooses its location to be inside the largest cell it encounters. An easy
alteration of Theorem10 in [26] shows that this procedure guarantees that as long as there are no deletions
each cell would be contained in a square of areaΘ(1

n). This approach however cannot deal with random or
worst case deletions of processors. In order to handle deletion some sort of balancing mechanism must be
introduced. Balancing mechanism for the one dimensional case were introduced in [23], [26] and [2].

In a balanced diagram the projection of each cell on the axis lines isO(1√
n
), therefore the load of the

quorum system would be optimal. Balancing the Voronoi diagram enables us to analyze the availability and
probe complexity of the quorum system. As mentioned before, we conjecture that the availability and probe
complexity of the quorum system based on random entrance is indeed similar to that of Paths. However if
the diagram is balanced and each Voronoi cell is contained in square of areaΘ(1

n) then we can prove our
claims. Intuitively if the Voronoi diagram is balanced then ‘it looks like a grid’ and therefore theorems that
are correct for the grid should apply for the diagram. The technique we use follows this intuition, though
it is rather delicate. We use domination by product measures as shown by Liggettet al in [18]. We need
some definitions from probability theory. In the following we define the necessary definitions and sketch the
idea of the proof. A good exposition of the notions we use appears in Grimmett’s book[12]. The discussion
below follows it.

4.3.1 Domination by Product Measures

We begin by defining stochastic domination in our context. Say we have a finite setS and a state space
Ω = {0, 1}S . The setS may be the set of edges in a two dimensional grid andΩ the set of configurations
when some of the edges fail. Givenω1, ω2 ∈ Ω we say thatω1 ≤ ω2 if ∀s ∈ S ω1(s) ≤ ω2(s). In our case
ω1(s) ≤ ω2(s) if all the surviving edges inω1 have also survived inω2.

Given a functionf : Ω → R we say thatf is increasingif

ω1 ≤ ω2 ⇒ f(ω1) ≤ f(ω2).

For instance the function that assigns the value1 to a configuration that contains a left-right crossing and0
otherwise, is anincreasing function.

Now, given two probability measures onΩ, µ andν we shall say thatµ stochastically dominatesν - and
write µ � ν - if for any increasing functionf we haveEµ(f) ≥ Eν(f). This is a very strong condition
which amounts to saying that in every possible way,µ puts more mass on bigger elements ofΩ thanν does.
In case thatf is defined as above, it means that the probability there exists a left-right path is larger inµ than
it is in ν. A canonical example for domination is the following: Assume we have a two dimensional grid.
Denote byπp the product measure with probabilityp, i.e., the case in which each edge fails independently
with probability1− p. It is intuitive (though requires proof) thatπp1 � πp2 , whenp1 ≥ p2.

The analysis ofPathsused bounds on increasing events on theproduct measureover the grid. Our
approach would be to show that the process of randomly failing cells in a balanced Voronoi diagramdomi-
natesa product measure on the grid, thus lower bounding the probability there exists a left-right path in the
Voronoi diagram.

Let T be a balanced Voronoi diagram withn generators and assume that each cell survives with proba-
bility p > 1

2 and fails with probability1− p, independently from all other cells. Now construct a
√
n×

√
n

grid calledG on topof the Voronoi diagram, as shown in Figure9. We say that an edgee ∈ G failed iff
it intersects a failed cell ofT . LetXe be the indicator of the state ofe (i.e.,Xe = 1 iff e survived). Now
Pr[Xe = 1] is exactlyp to the power of the number of cells it intersects. However sinceT is balanced, we
know that this power is bounded by some constant, therefore there exists somep′ < p independent ofn,
such that for alle ∈ G, Pr[Xe = 1] ≥ p′. Assume thatp was large enough such thatp′ > 1

2 .

16

Figure 9: The gridG is put on top of the diagramT .

Observation 19. If there exists a left-right crossing of survived edges inG then there exists a left-right
crossing of survived Voronoi cells inT (i.e., a crossing in the Delaunay graph).

Sincep′ ≥ 1
2 one is tempted to use known results from percolation theory that show that the probability

of a crossing is very high, as was used in [28] to prove the availability ofPathsand as was used in this
paper to prove the low probe complexity ofPaths. The problem is that the random variables{Xe}e∈G are
not mutually independent. In particular, if two edges are contained in the same cell inT , then the state of
both of them is determined by the state of that cell. The key observation is that sinceT is balanced,Xe is
independent from all buta constant numberof other edges. Letµ be the probability measure thus defined
on{Xe}e∈G. Liggettet al show in [18] that in this caseµ dominatesthe product measure over the edges of
G for some other valuer′ ≤ p′. Theorem1.3 in [18] could be stated in our case as follows:

Theorem 20. Letµ be some probability measure over the set of configurations of the edges ofG. Assume
that each edge inG survives with probability at leastp′, and that the state of each edge is dependent on the
state of at mostk other edges for some constantk. Then there exists somer′ which is a function ofp′, k and
independent ofn such thatµ � πr′ . Furthermore by increasingp′, r′ could be made arbitrarily close to1.

Intuitively speaking Theorem20 states that if we have a two dimensional grid, and each edge fails
‘almost’ independently from all other edges, then by reducing the failure probability, we may think as if
each edge failed independently. Note that the existence of a left-right path in the grid is an increasing
event. The diameter of a connected component in the dual graph (which is bounded in Theorem8) is also an
increasing function. Theorem20implies that by reducing the failure probability, we may use these theorems
to bound those random variables in the balanced Voronoi diagram.

Denote byGµ(p′) the random graph induced by{Xe}e∈G. Denote byGπ(r′) the random graph induced
by the product measure with probabilityr′.

Corollary 21. Let p′ be close enough to1. There exists somer′ ≤ p′ independent fromn, such that the
probability there exists a crossing inGµ(p′) is at least the probability there exists a crossing inGπ(r′), and
the probability a component of the dualGµ(p′) is of diameterk, is at most the probability a component of
the dual ofGπ(r′) is diameterk. Furthermore by increasingp′, r′ could be made arbitrarily close to1.

Corollary21 is directly used to analyze the availability and probe complexity ofDynamic Paths:

Theorem 22. LetT be a balanced Voronoi diagram, and letS be the Dynamic Paths quorum system derived
by it. Then the load of the systemζ(S) isO(1√

n
). There exists some12 < pc < 1 such that forpc < p < 1,

if each processor fails independently with probability1− p then the following hold:

17

Figure 10: An example of a quorum on a Voronoi diagram. The cells that belong to the quorum set are
the ones that intersect the dashed lines.

1. The probability a live quorum set exists is1− e−Ω(
√
n)

2. The non-adaptive algorithmic probe complexity isO(
√
n log n) w.h.p.

3. The adaptive algorithmic probe complexity isO(
√
n) w.h.p.

4.4 A simpler Quorum System:

A possible simplification of the Dynamic Paths system is the following: Define a quorum set to be all the
(elements identified with) cells that intersect the same horizontal and vertical line (see Figure10). This quo-
rum system is a dynamic adaptation of a quorum system suggested by Maekawa [22]. A slight improvement
was suggested by Agrawalet al in [5] where instead of looking at horizontal and vertical lines, they examine
diagonal lines that resemble the paths of billiard balls. Theorem18 implies that the load of these quorum

systems isΘ(
√

logn√
n

). The integrity of these systems could be maintained by associating each quorum set

with the numeric value of the vertical and horizontal lines, thus the implementation is simpler. The main
drawback of these systems is their low availability. If each processor fails with probabilityΘ(logn√

n
), then

with high probability no quorum set survives.

5 Conclusion and Open Questions

The main open problem is to improve the load of theDynamic Pathsquorum system so that it matches the
load ofPaths. The load ofDynamic Pathsis determined by the size of the projection of cells over the axis
lines. The Join algorithms as we described it guarantees that the projection of all cells is at mostO(

√
logn√
n

).
It is interesting to find other (perhaps more sophisticated) Join algorithms that guarantee a better load. A
deterministic Join algorithms that guarantees excellent load in the worst case is presented in [26]. A random
algorithm appears in [2]. These algorithms operate in theone dimensionaluniverse, i.e when processors are
located along a line. It would be interesting to find a two dimensional analog to that algorithm. Some work
in this direction was done in [4], however they considered splitting the plain into rectangles (as in CAN) and
not a Voronoi diagram.

A better understanding of percolation theory over Voronoi diagrams would improve the analysis of the
algorithms. In particular it is important to bound the probability of a diameterk component in a percolation
with p < 1

2 . A ‘Menshikov style’ theorem of this sort that states that this probability is exponentially small in

18

k, would imply aΘ(log n
√
n) algorithmic probe complexity forDyanmic Pathseven for the simple random

Join algorithm.

Conclusion The Paths quorum system is shown to have excellent adaptive and non-adaptive probing al-
gorithms. It was previously known that the Paths system has optimal load and availability, thus the Paths
system offers excellent balance between different quality measures. This makes Paths a natural candidate for
an adaptation into a dynamic setting. A general technique for designing scalable dynamic data structures is
presented in [26]. Applying this technique results with theDynamic Pathsquorum system which is scalable
and operates in a dynamic setting.Dynamic Pathsmaintains the good qualities of the Paths system. Its low
load, high availability and simple probing algorithms makes it an excellent candidate for an implementation
of dynamic quorums.

Acknowledgments

We gratefuly thank Itai Benjamini for pointing out some relevant theorems in probability and percolation
theory, and Dahlia Malkhi for useful discussions. We thank the anonymous referees for many helpful sug-
gestions and references.

References

[1] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. An efficient, fault-tolerant protocal for replicated
data management. InProceedings of the 5th ACM SIGACT/SIGMOD Conference on Principles of
Database Systems, pages 215–229, 1985.

[2] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair Bartal, Dahlia Malkhi, and Elan Pavlov. A generic
scheme for building overlay networks in adversarial scenarios. InProceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), page 40, April 2003.

[3] Ittai Abraham and Dahlia Malkhi. Probabilistic quorums for dynamic systmes. InProceedings of the
17th International Symposium on Distributed Computing (DISC), pages 60–74, 2003.

[4] Micah Adler, Eran Halperin, Richard M. Karp, and Vijay V. Vazirani. A stochastic process on the
hypercube with applications to peer-to-peer networks. InProceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing (STOC), pages 575–584, 2003.

[5] Divyakant Agrawal, Omer Egecioglu, and Amr El Abbadi. Billiard quorums on the grid.Information
Processing Letters, 64(1):9–16, 1997.

[6] Michael Aizenman, Jennifer Chayes, Lincoln Chayes, Jurg Frohlich, and L. Russo. On a sharp tran-
sition from area low to perimeter low in a system of random surfaces.Comm. Mathematical Physics,
(92):19–69, 1983.

[7] Rida A. Bazzi. Planar quorums. InDistributed Algorithms, 10th International Workshop, WDAG ’96,
volume 1151 ofLecture Notes in Computer Science, pages 251–268, Bologna, Italy, 9–11 October
1996. Springer.

[8] Mark Bearden and Jr. Ronald P. Bianchini. A fault-tolerant algorithm for decentralized on-line quorum
adaptation. InSymposium on Fault-Tolerant Computing, pages 262–271, 1998.

[9] Itai Benjamini. Private communication.

19

[10] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed system.Journal of the
Association for Computing Machinery, 32(4):841–855, October 1985.

[11] Oded Goldreich. Randomized Methods in Computation - Lecture Notes.
http://www.wisdom.weizmann.ac.il/˜oded/rnd.html, 2001.

[12] Geoffrey Grimmett.Percolation. Springer-Verlag, 1989.

[13] Zygmunt J. Haas and Ben Liang. Ad hoc mobility management with uniform quorum systems.
IEEE/ACM Transactions on Networking, 7(2):228–240, 1999.

[14] Yehuda Hassin and David Peleg. Average probe complexity in quorum systems. In20th ACM Sympo-
sium on Principles of Distributed Computing (PODC), 2001.

[15] Maurice Herlihy. Dynamic quorum adjustment for partitioned data.ACM Transactions on Database
Systems (TODS), 12:170–194, 1987.

[16] Sushil Jajodia and David Mutchler. Dynamic voting algorithms for maintaining the consistency of a
replicated database.ACM Transactions on Database Systems, 15(2):230–280, June 1990.

[17] Goutham Karumanchi, Srinivasan Muralidharan, and Ravi Prakash. Information dissemination in
partitionable mobile ad hoc networks. InProceedings of IEEE Symposium on Reliable Distributed
Systems, pages 4–13, 1999.

[18] Thomas L. Liggett, Roberto H. Schonmann, and Alan M. Stacey. Domination by product measures.
The Annals of Probability, 25(1):71–95, January 1997.

[19] Esti Yeger Lotem, Idit Keidar, and Danny Dolev. Dynamic voting for consistent primary components.
In Symposium on Principles of Distributed Computing (PODC), pages 63–71, 1997.

[20] Nancy Lynch and Alexander Shvartsman. Rambo: A reconfigurable atomic memory service for dy-
namic networks. InProceedings of the 16th International Symposium on Distributed Computing, pages
173–190, 2002.

[21] Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. InSymposium on Fault-Tolerant Computing, pages 272–281, 1997.

[22] Mamoru Maekawa. A
√
N algorithm for mutual exclusion in decentralized systems.ACM Transac-

tions on Computer Systems, 3(2):145–159, May 1985.

[23] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable and dynamic emulation of the
butterfly. InACM Conf. on Principles of Distributed Computing (PODC), pages 183–192, 2002.

[24] Mikhail V. Menshikov. Coincidence of critical points in percolation problems.Soviet Mathematics
Doklady, 33:856–859, 1986.

[25] Rajeev Motwani and Prabhakar Raghavan.Randomized Algorithms. Cambridge University Press,
1997.

[26] Moni Naor and Udi Wieder. Novel architectures for p2p applications: the continuous-discrete ap-
proach. InFifteenth ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
50–59, 2003.

20

[27] Moni Naor and Avishai Wool. Access control and signatures via quorum secret sharing.IEEE Trans-
actions on Parallel and Distributed Systems, 9(9):909–922, 1998.

[28] Moni Naor and Avishai Wool. The load, capacity, and availability of quorum systems.SIAM Journal
on Computing, 27(2):423–447, 1998.

[29] Atsyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu.Spatial Tessellations — Concepts
and Applications of Voronoi Diagrams. Wiley, Chichester, second edition, 2000.

[30] David Peleg and Avishai Wool. How to be an efficient snoop, or the probe complexity of quorum
systems.SIAM Journal on Discrete Mathematics, 15(3):416–433, August 2002.

[31] Roberto De Prisco, Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. A dynamic
view-oriented group communication service. InSymposium on Principles of Distributed Computing
(PODC), pages 227–236, 1998.

[32] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable content
addressable network. InProc ACM SIGCOMM, pages 161–172, 2001.

[33] Beverly A. Sanders. The information structure of distributed mutual exclusion algorithms.ACM
Transactions on Computer Systems, 5(3):284–299, August 1987.

[34] Ian Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable
Peer-To-Peer lookup service for internet applications. InProceedings of the 2001 ACM SIGCOMM
Conference, pages 149–160, 2001.

[35] Ivan Stojmenovíc and Pedro E. V. Pena. A scalable quorum based location update scheme for routing
in ad hoc wireless networks. Technical Report TR-99-09, SITE, University of Ottawa, September
1999.

21

	Introduction and Motivation
	Scalable Dynamic Data Structures - P2P
	Measures of Quality
	New Results and Paper Organization

	Non Adaptive Algorithms vs. Load
	The Paths Quorum System
	Algorithmic Probe Complexity
	A Non Adaptive Algorithm.
	An Adaptive Algorithm for Paths

	The Dynamic Paths Quorum System
	Dynamic Voronoi Diagrams
	The Join/Leave operations

	The Quorum System
	A Balanced Voronoi Diagram
	Domination by Product Measures

	A simpler Quorum System:

	Conclusion and Open Questions

