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Abstract

We consider the rational versions of two of the classical problems in foundations of cryptogra-
phy: secret sharing and multiparty computation, suggested by Halpern and Teague (STOC 2004).
Our goal is to design games and fair strategies that encourage rational participants to exchange
information about their inputs for their mutual bene�t, when the only mean of communication is
a broadcast channel.

We show that protocols for the above information exchanging tasks, where players' values come
from a bounded domain, cannot satisfy some of the most desirable properties. In contrast, we
provide a rational secret sharing scheme with simultaneous broadcast channel in which shares are
taken from an unbounded domain, but have �nite (and polynomial sized) expectation.

Previous schemes (mostly cryptographic) have required computational assumptions, making
them inexact and susceptible to backward induction, or used stronger communication channels. Our
scheme is non-cryptographic, immune to backward induction, and satis�es a stronger rationality
concept (strict Nash equilibrium). We show that our solution can also be used to construct an
ε-Nash equilibrium secret sharing scheme for the case of a non-simultaneous broadcast channel.
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1 Introduction

1.1 Background

We consider rational (in a Game Theoretic sense) versions of two classical cryptographic problems,
Secret Sharing and Multiparty Computation (MPC), introduced by Halpern and Teague [7]. In the
classical problem of m-out-of-n secret sharing, a dealer wishes to entrust a secret with a group of n
players such that any subset of m or more players can reconstruct the secret, but a subset of less than
m players cannot learn anything about the secret. In the problem of mutiparty computation, a group
of players wish to evaluate a function on private inputs with no external help.1 Note that secret sharing
and MPC are closely connected: In a secret sharing scheme, players run an MPC protocol on their
shares in order to reconstruct the secret.

The traditional cryptographic setting assumes that players are either arbitrarily malicious or totally
honest. However, in some situations it may make more sense to view the players as rational individuals
trying to maximize their own gain. The goal of this work is to design fair, stable protocols in such
rational settings allowing all players to learn the designated value (the secret or the function's value).
Of course, such a task is only possible if the players have an initial incentive to collaborate. As suggested
in [7], to motivate players to cooperate, we assume that they prefer getting the value to not getting it.
In some cases it is further assumed that players prefer to get the secret while others do not.

However, even if players have an initial incentive to collaborate, they will only follow the protocol
if they cannot gain from deviating. The best known Game Theoretic concept capturing this �stability�
demand is that of a Nash equilibrium: A protocol is a Nash equilibrium if no player can get a higher
payo� by deviating from his prescribed strategy, given that all the others are following their strategies.
That is, in a Nash equilibrium, each player's strategy is a best response to the strategies of the others.

The main di�culty in designing such stable protocols is the players' tendency to deviate in the last
round of the protocol and keep their information to themselves. In order demonstrate the problem,
recall the m-out-of-n secret sharing scheme due to Shamir [17]: The dealer chooses a random polynomial
p(x) of degree at most m−1 with a free coe�cient that is the secret, and gives the share p(i) to player i.
Any set of m players can recover p (and hence the secret) by broadcasting their shares and interpolating
the polynomial, while no set of fewer than m players can deduce any information about the secret.

Although Shamir's scheme allows m honest players to learn the secret, it fails to do so in our
rational settings. For m = n Shamir's scheme is not a Nash equilibrium: Players will simply prefer
to keep silent rather than broadcast their shares in order to learn the secret alone. When m < n, the
scheme is an equilibrium, however players still prefer to keep silent, since the silence strategy is never
worse than the broadcasting one, and it is sometimes strictly better (e.g., if for some reason exactly
m− 1 other players broadcast).

The above example suggests that the rational settings are at times more challenging than the
standard ones. However, the two settings are really incomparable: Although perfect fairness cannot
be achieved in the usual cryptographic settings (i.e., it is possible that one party obtains his desired
output while others do not), it is possible in our Game Theoretic setting. The key di�erence is that
the speci�ed restrictions on players' preferences allow us to punish a deviating player by preventing
him from learning the designated value, whereas in the usual cryptographic setting malicious players
cannot be punished - they simply do not care about learning.

In this work we �rst discuss the desired Game Theoretic properties of protocols for exchanging
information. We argue that the previous iterated admissibility (a.k.a, surviving iterated elimination

1The MPC problem is easy (trivially) in the usual cryptographic setting, and in any model for which no party tries to
prevent others from learning the function's value: Each party simply sends his share to the others. In our setting players
prefer to learn the function's value alone, making rational MPC non-trivial.
The classical secure multiparty computation problem can be viewed as the task of �nding an MPC protocol that reveals

no additional information about the players' inputs, over what is already disclosed by the function.
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of weakly dominated strategies) criterion used to evaluate such protocols is problematic, and suggest
the stronger notion of strict equilibrium. Furthermore, we show that previously suggested protocols
in similar settings are susceptible to backward induction. We propose the new notion of everlasting
equilibrium that ensures immunity to backward induction.

Our main contributions are tight positive and negative results concerning MPC and secret sharing,
when the communication between players is via a broadcast channel. We consider the case of a simul-

taneous broadcast channel (SBC), where all player broadcast messages at the same time (no rushing),
as well as the case of a non-simultaneous broadcast channel (NSBC), where there is only a single sender
per round. For the 2 players case we show that no function with a bounded domain can be computed
using a Nash equilibrium protocol, even when the communication between the players is via an SBC.
We then conclude that there is no Nash equilibrium, 2-out-of-n secret sharing scheme, assigning the
players shares that are taken from a bounded domain. Our work holds for the NSBC model as well,
and extends (with some restrictions) to rational MPC with any number of players, and to rational
m-out-of-n secret sharing, for any 2 ≤ m ≤ n.

In contrast, we show that by allowing (�nite) shares taken from unbounded domains we can obtain
an m-out-of-n secret sharing scheme that is a strict everlasting Nash equilibrium for the simultane-
ous model, and an ε-everlasting Nash equilibrium for the non-simultaneous model. The schemes are
designed to be e�cient, although both our possibility and impossibility results hold for players with
unbounded computational resources as well. As far as we know, this is the �rst result connecting the
ability to achieve good protocols to the boundedness of the domain, and also the �rst result regarding
the non-simultaneous model2.

1.2 Related Works

Several information exchange protocols were o�ered by Halpern and Teague [7], Gordon and Katz [6],
Abraham et al. [1], and Lysyanskaya and Triandopoulos [12]. The key idea used is that in any given
round, players do not know whether the current round is going to be the last round, or whether this is
just a test round designed to catch cheaters. The protocol suggested in [1] is coalition-proof, and in [12]
the case of �mixed� security (when both arbitrarily malicious and rational players might be present) is
considered.

All the above results assume simultaneous channels (either a broadcast channel or secure private
channels). The protocols in [6, 1, 12] use cryptographic techniques relying on computational assump-
tions, and achieve approximated equilibria under the assumption that players can only run e�cient
strategies.

Another line of work was pursued by Lepinski et al. [10, 11] and Izmalkov et al. [8] in their recent
sequence of papers. Roughly speaking, they were able to obtain fair, rational SMPC protocols, prevent
coalitions, and eliminate subliminal channels. However, the hardware requirements needed for these
operations, including ideal envelopes and ballot boxes, are very strict; it is not clear how they can be
implemented for distant participants, if at all.

1.3 Our Contributions

The rest of this section lists our results and the organization of the paper:

Solution Concept (Section 2): When Game Theory and Cryptography are mixed, the �standard�
CS intuition often turns out to be false, and delicate Game Theoretic considerations must also be taken

2There has been quite a lot of e�ort into approximating an SBC via an NSBC using cryptographic techniques and
obtaining fair protocols (see [2, 3, 14] for recent work). Note, however, that such results do not take into account the
rationality consideration that we use in this work.
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into account. We point out two such problematic issues, and o�er new solution concepts intended to
correct them.

In Section 2.1 we argue that the iterated admissibility criterion suggested in [7] and adopted by
[6, 1, 12], should not be used to distinguish �good� information exchange protocols from �bad� ones,
since many bad strategies are not ruled out by it. Instead, we suggest the stronger notion of strict Nash
equilibrium, in which every player's strategy is a strict best response. Due to the restrictive nature of
this notion, we regard it as a su�cient condition and not as a necessary one. It is only used in the
positive results, while the impossibility results use a much weaker criterion.

In Section 2.2 we claim that the previously suggested protocols for the SBC model, making use
of cryptographic tools, are problematic: After an exponential number of rounds (say b rounds) the
cryptographic primitives can be broken, thus players will no longer follow their strategies if round b is
reached. Furthermore, using a the Game Theoretic backward induction process, it can be shown that
players prefer to deviate from the start. To prevent such phenomenon from taking place, we suggest
the notion of everlasting equilibrium that ensures that players strategies are best responses after any
sequence of rounds.

Our Settings (Section 3).

Impossibility Results (Section 4): We de�ne the notion of a revelation point in a rational MPC
protocol, and use it to rule out �unreasonable� protocols. A revelation point is a point in the execution
of a protocol, recognizable by all the players, for which some players still do not know the value f(x),
however at any point after the revelation point, f(x) is known to everyone.3 Informally speaking,
protocols with revelation points are problematic from the following reason: We expect rational players
not to broadcast any meaningful information when a revelation point is reached, since they learn f(x)
during the next round anyway. However, since everyone learns after the revelation point, some players
must have given out information.

We show that in both the SBC and NSBC communication models, for every non-constant function
f with a �nite domain there is no Nash equilibrium protocol that computes f without a revelation
point. We then deduce that there are no strict equilibria protocols for MPC of any non-constant
function, and that there are no plain Nash equilibria protocols for two parties. For a comparison of
our impossibility results to the results o�ered by Halpern and Teague [7] see Remark D.1.

A Strict Rational Secret Sharing Scheme with Unbounded Shares (Section 5): Since every
secret sharing scheme requires the players to evaluate a non-trivial function of their shares, the impos-
sibility results imply that there is no �reasonable� exact Nash equilibria, secret sharing schemes with
shares taken from �nite sets.

One way of getting a positive result is allowing (�nite) shares taken from in�nite domains. We
present such a strict everlasting equilibrium scheme that uses an SBC. The key idea is to assign players
shares of di�erent lengths, and use the uncertainty of each player as to the lengths of the shares assigned
to the others, to prevent players from foreseeing which iteration is last.

An ε-Rational Secret Sharing Scheme for the NSBC Model (Section 6): For the NSBC
model, no strict equilibria or even plain Nash equilibria protocols cannot be obtained, even when
allowing unbounded shares (at least in the 2 players case). Therefore, we settle for the relaxed notion
of ε-Nash equilibrium: An ε-Nash equilibrium protocol is close to equilibrium in the sense that no player
can gain more than ε by deviating.

3Several stable protocols with an �on-line dealer� (a dealer that is involved in reconstruction protocol) were suggested in
[7, 6, 1], all having points similar to our revelation point. However, those points could not be recognized by the players.
In the protocols of [6, 1], the dealer chooses the revelation time and hides it from the players. In [7], the broadcast
channel is not the only mean of communication and additional private channels are used, making the revelation point
undetectable. Our claim is for protocols with no on-line dealer and no private channels.
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In this section we o�er such an ε-Nash equilibrium, secret sharing scheme for the case of an NSBC,
where ε is exponentially small in the share sizes. The scheme is based on the protocol for the SBC
model, is an everlasting equilibrium, and does not rely on any computational assumptions.

For formal de�nitions of Game Theoretic concepts, please see Appendix B.

2 Solution Concept

2.1 On Iterated Admissibility

As pointed out by Halpern and Teague [7], when considering information exchange tasks, requiring
protocols to induce a Nash equilibrium is not enough to ensure stability (e.g., Shamir's scheme is a Nash
equilibrium for m < n, but is unstable). Therefore, they were interested in protocols that are not only
Nash equilibria, but are also iterated admissible. Recall that a strategy σ is said to be weakly dominated

if there is another strategy τ that is always at least as good as σ, but is sometimes strictly better, and
that iterated admissible strategies are the ones surviving the iterative deletion of dominated strategies.
In this section we show that iterated admissibility should not be used to distinguish �good� information
exchange protocols from �bad� ones, and suggest the stronger notion of strict Nash equilibrium.

On Iterated Admissibility. We �rst note that the notion of iterated admissibility was criticized
within the Game Theory community, see discussion in Appendix A.1. Furthermore, Theorem A.3
shows that many bad strategies are not ruled out by the iterated admissibility criterion. For example,
we show that the strategy talk-once (a player broadcasts his share during the �rst round and then
keeps silent forever), whose �nite version was given by Halpern and Teague as an example of a bad
solution, is actually iterated admissible. Note that since they show that there are no rational secret
sharing protocols with bounded number of moves, the bounded version of talk-once is problematic
anyway, and it su�ces to deal with its in�nite version.

The theorem is proved by showing that for each candidate strategy τ �trying� to dominate a bad
strategy σ, there is a �savior�, a joint strategy of the others for which playing σ is preferable to playing
τ . Therefore, σ is not dominated. For example, the strategy saving talk-oncei from the silence
strategy (a player never broadcasts) is the joint strategy of the other players in which each keeps silent
during the �rst round, then reveals his share during the second round i� player i talked during the
�rst round. More generally, the savior strategy waits to see if player i follows his prescribed strategy,
then rewards or punishes him accordingly.

An alternative concept: strict Nash equilibrium. An informal explanation as to why talk-once
is �bad� is that when the other players are following talk-once, player i gets the same payo� for staying
silent, as he would have gotten had he also been following talk-once. In this case, a small change
introduced to player i's belief is enough to make the silence strategy preferable: E.g., if player i thinks
that the others would keep their silence with some arbitrarily small probability, he would prefer to
follow the silence strategy himself. The fact that player i's strategy radically changes when making
even minor modi�cations, points out that the suggested solutions is too fragile.

To rule out such bad solutions, we suggest the concept of strict Nash equilibrium, in which every
player's strategy is a strict (and only) best response to the strategies of the others. We claim that
strict equilibrium protocols do not su�er from the above problem: Since player i's strategy is a strict
best response, every other strategy yields a payo� lower by at least c for some positive value c. When
su�ciently small changes (as a function of c) are introduced to the rules of the game (e.g., slight
changes of the utilities or of the set of possible actions) or to i's belief, i's best response is still close
to his original strategy. Note that the notion of strict equilibrium is stronger than Nash equilibrium,
and since it ensures the uniqueness of a player's best response, it also implies iterated admissibility.
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2.2 On the Backward Induction Process

On the backward induction process. Previously suggested rational secret sharing schemes make
use of cryptographic primitives (e.g., see [1, 12]). However, unlike standard cryptographic protocols,
those schemes may run for an exponential number of rounds (at least with an exponentially small
probability). The key problem is that there is a (large) bound rounds b, such that after b rounds any
player can break the cryptographic primitives used in the �rst round and reveal the other players'
shares encoded by them. Therefore, round b is essentially the last, and players have no incentive to
cooperate if it is reached since they no longer fear future punishment. Consequently, round b − 1 is
now essentially the last round, and players deviate from the same reason. The process continues in this
way backwards in time, thus it is called backward induction, showing that players are better o� keeping
silent in rounds b− 2, b− 3, ..., 1 as well.

The backward induction process in computational settings, where presumably we are not concerned
with the protocol's stability in rare events, is as problematic as in the standard Game Theoretic settings,
since it causes exponential events to be ampli�ed (e.g., the instability of the cryptographic protocols
when they reach their bth round causes them to be unstable from round 1).

Everlasting equilibrium. In this paper we take a di�erent approach and o�er non-cryptographic
rational secret sharing schemes. The schemes are immune to the backward induction process since they
satisfy the additional property that after any history on the equilibrium path (i.e., a history that can
be reached by the protocol), following the protocol is still a Nash (strict Nash, ε-Nash) equilibrium.
We call such protocols everlasting (strict everlasting, ε-everlasting) equilibria, see formal de�nition in
Appendix B. The notion of everlasting equilibrium is related to known Game Theoretic concepts, see
discussion in Remark B.9.

The aforementioned property holds trivially for any (exact) Nash equilibria: If a player can get a
higher payo� by deviating - his strategy is not a best response. However, it does not necessarily hold
for approximated equilibria (such as ε-Nash equilibria) since the ignored �ε� term may indicate that
in some rare situations the prescribed strategies are far from optimal. For example, the cryptographic
protocols mentioned above are close to equilibrium, but after any history of length b− 1, the strategies
they prescribe are far from being best responses.

3 Our Settings

We review the models for rational MPC and rational secret sharing used in the paper.

3.1 Settings for Rational MPC

In rational MPC a set of players N = {1, ..., n} each holding an input are interested in evaluating an
n-ary function f : X→ Y (X ⊆ ×i∈NXi for some sets Xi) with a �nite range. Our input as protocol
designers is the function f , the distribution over inputs D, and players' preferences given as utility
functions (ui)i∈N . Recall that utility functions associate numeric values to outcomes of the game (in
our case, an outcome consists of the players' inputs, and the sequence of actions taken by them), the
value ui(o) is player i's payo� if outcome o was reached. Actually, as discussed later, we only require
partial information about the utility functions and the distribution. We should then output a game
and �rational� strategies for the players allowing all of them to learn f(x). We stress that the players'
utility functions are predetermined and cannot be changed.

We suggest a computing game for f , with respect to (ui)i∈N and D, that proceeds in a sequence
of rounds. In every round, players are allowed to broadcast any �nite binary string of their choice. A
player can leave the game in any round by broadcasting a quit sequence and outputting his guess of
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f(x). Players observe the actions taken by the others in previous rounds, but do not view their guesses
of the secret.

If an SBC is assumed, the broadcasts in every round are simultaneous, and the game is called a

simultaneous computing game (SCG) and is denoted ΓD,(ui)i∈N

f (Γf for short). Otherwise, an NSBC
is assumed, and only a single player may broadcast in every round. Such a game is called a non-

simultaneous computing game (NSCG) and is denote Γ̄D,(ui)i∈N

f (Γ̄f for short). In an NSCG, we make
no assumptions regarding the NSBC's behavior when two or more players try to broadcast at the same
time. In such cases, some or all players may get partial information about the messages. The rest of
the de�nitions are formulated for SCGs, but can be similarly formulated for NSBCs.

A protocol σ for Γf is an assignment of randomize strategies to players. σ computes f if it almost
always ends for every set of inputs x ∈ X used by the players, and whenever it ends all players output
f(x).

3.2 Settings for Rational Secret Sharing

A rational (strict rational, ε-rational) secret sharing scheme consists of a dealer's algorithm for issuing
shares, and a protocol allowing the players to reconstruct the secret. We make the following two re-
quirements: First, as in the classical settings, the shares should be such that any m or more determine
the secret, but less than m convey no information about the secret. Second, we require the recon-
struction protocol to be an everlasting (strict everlasting, ε-everlasting) equilibrium. If an SBC is used
we call the scheme a simultaneous rational scheme, otherwise it is a non-simultaneous rational scheme.
Formal de�nition can be found in Appendix C.

Rational MPC and rational secret sharing are closely related. In a rational secret sharing scheme
the dealer equips players with inputs to some non-trivial function f taken from a known distribution.
Then, the players interested in reconstructing the secret run a rational protocol for computing f in the
game Γf . Therefore, every rational secret sharing scheme requires a rational MPC of some function.

3.3 Assumptions on the Utility Functions

In the next sections we assume that each utility function ui satis�es some or all of the below properties.
We say that a player retrieves the designated value (the secret or f(x)) when outcome o is reached, if
according to o the player quits and outputs the right value. Let o and o′ be two possible outcomes of
the game, and let retrieve(o) be the set of players retrieving the value when o is reached:

1. ui(o) > ui(o′) whenever i ∈ retrieve(o) and i /∈ retrieve(o′) (players prefer to learn).

2. If i ∈ retrieve(o) then ui(o) > ui(o′) whenever retrieve(o′) = N and retrieve(o) 6= N (players
prefer to learn while others do not).

3. If i ∈ retrieve(o) then ui(o) = g(|retrieve(o)|) for some g : {0, 1, ..., n} → R (the payo� is deter-
mined by the number of players learning).

If the �rst property is satis�ed, we say that the utility functions are learning preferring. If all three
hold, the utilities are strictly competitive. Our negative results assume strictly competitive utilities,
whereas the positive results only use the learning preferring property.

3.4 The Linger Avoiding Assumption

In the following sections we assume that players will only follow computing equilibria protocols that
prescribe linger avoiding strategies, i.e., strategies in which players quit immediately after learning the
value. Since by the de�nition of an equilibrium, no player can gain from deviating, and in particular
no player can prevent others from learning the value, we are only requiring players to quit when they
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cannot gain from staying in the game. Clearly, players are never worse o� quitting in such cases, and
may even be better o� at times (e.g., if for some reason the game ends after this round).

This technical assumption is needed when in search of protocols satisfying the strictness property: If
a player runs a non-linger avoiding strategy, then the �linger avoiding version� of his strategy is another
best response, and thus no strict equilibria can be found. Therefore, we use the weaker notion of a
strict Nash equilibrium with respect to linger avoiding strategies, and only require each player's strategy
to be a best response that is strictly better than any linger avoiding strategy that acts di�erently on
the equilibrium path (for a formal de�nition see Appendix B).

4 Impossibility Results

We show that for every non-constant function f with a �nite domain there is no linger avoiding Nash
equilibrium protocol that computes f without a revelation point, as discussed in the Introduction and
de�ned below. Informally speaking, this implies that there is no �reasonable� Nash equilibrium protocol
for rational MPC. Formal de�nition and complete proofs of all the claims made in this section can be
found in Appendix D.

4.1 Transcripts Tree and Revelation Points

We formalize the concept of revelation points used to rule out �bad� solutions via the notion of a
transcripts tree. A transcript of length t of a protocol σ is a sequence of messages that players may
broadcast when running σ for t rounds. We view the transcripts of σ as vertices of a tree, called the
transcripts tree: The tree's root is the empty history, and the transcript m of length t is the parent of
the transcript m′ of length t + 1 if m is a pre�x of m′.

We say that player i learns (knows) f(x) after transcript m given input xi, if given player i's view
there is only one possible value for f(x). That is, there exists y ∈ Y such that f(x′) = y for every
x′ with x′i = xi for which the protocol σ ran with the input x′ can yield the transcript m. Finally, a
revelation point of σ is de�ned to be a transcript m that satis�es both of the following requirements:
First, there exists a player i and an input xi such that i does not know f(x) after m given xi. Second,
any player i knows f(x) after any child of m given any xi.

4.2 Impossibility Results for Rational MPC

We are now ready to state the main result of this section. Note that the impossibility results are
formulated for the SBC model, but hold for the NSBC model as well, since an NSBC can be viewed
as a special SBC: in this kind of SBC only one player sends a �real� message in each round, the others
are sending a special �not broadcasting� message that can be ignored.

Theorem 4.1. Let f be a non-constant function with a �nite domain and any number of players, and

let Γf be an SCG for f with respect to strictly competitive utility functions. There is no linger avoiding,

Nash equilibrium protocol for Γf that computes f and does not have a revelation point.

We next sketch the proof of the above theorem, a complete proof can be found in Appendix D. We
�rst note that a revelation point of a linger avoiding protocol is a vertex in the transcripts tree that
has children but not grandchildren. The proof constructs a path in the tree leading to such a vertex,
and uses the following claim: For every vertex p in the transcript tree, and every possible input vector
x, either players learn after all children of p when given x, or they do not learn after any child of p
when given x.

The claim clearly holds for the 2 players case: Suppose that players learn after the child m of p,
but do not learn after the child m′. Since it is possible that after reaching p player 1 will choose to
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act according to m′, while player 2 decide to act according to m, it is also possible that player 1 will
learn the secret alone. Since we assume that the protocol allows all players to learn the value, we have
reached a contradiction. To show that a similar claim holds for any number of players we use a hybrid
argument.

We now turn to �nd the �rst vertex on the branch leading to the revelation point. Before the game
begins, players do not know which input vector was selected. Assume that the game ends for some
possible inputs vector x after m′ was reached, and denote his parent by p. If p has no grandchildren,
then p itself is a revelation point. Otherwise, let m be child of p, giving it grandchildren. Using the
above claim, since all players learn f(x) after m′ given inputs x, they all learn it after m as well. Thus,
if the protocol proceeds past m, players know that they were not given the inputs x. m is now our
�rst landmark in the way to the revelation point.

We proceed by induction: The vertex m is viewed as a beginning of a new game, and the same
process is applied. Due to the �niteness of the inputs set, and the fact that we �lose� at least one input
in each such iteration, it can be concluded that the process can only be used a �nite number of times.
Since the process only ends when a revelation point is reached, the claim holds.

The next corollary shows that since there are no �reasonable� Nash equilibria protocols for rational
MPC, there are no strict ones as well:

Corollary 4.2. Let f be a non-constant function with a �nite domain and any number of players, and

let Γf be an SCG for f with respect to strictly competitive utility functions. There is no strict Nash

equilibrium protocol with respect to linger avoiding strategies for Γf that computes f .

For two players games a stronger result can be obtained:

Corollary 4.3. Let f be a two players non-constant function with a �nite domain, and let Γf be an

SCG for f with respect to strictly competitive utility functions. There is no Nash equilibrium protocol

for Γf that computes f .

For completeness, we state the following easy claim regarding the NSCG model:

Claim 4.4. Let f be a two players non-constant function with a countable domain, and let Γf be
an NSCG for f with respect to strictly competitive utility functions. There is no Nash equilibrium

protocol for Γf that computes f .

4.3 Impossibility Results for Rational Secret Sharing

Recall that rational secret sharing requires rational MPC of some non-constant function. In light
of Theorem 4.1, there is no �reasonable� (simultaneous or non-simultaneous) rational secret sharing
scheme for any set of secrets Y with |Y | > 1, in which the dealer assigns shares taken from �nite
sets. In particular, there are no such m-out-of-n strict rational secret sharing schemes, and no such
2-out-of-n rational schemes.

5 A Strict Rational Secret Sharing Scheme with Unbounded Shares

Fortunately, the impossibility results of the Section 4 rely heavily on the �niteness of the function's
domain. It turns out that by allowing the shares to be taken from unbounded domains, rational secret
sharing schemes can be obtained. In this section we suggest such a scheme that uses an SBC and
satis�es the strictness property. We �rst describe a scheme for 2-out-of-2 secret sharing, and then show
how to extend it to m-out-of-n for any 2 ≤ m ≤ n.
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The 2-out-of-2 Case. The basic idea is that the shares assigned to the player are lists of possible
secrets (elements of Y ), such that one of the lists is a strict pre�x of the other. We call the player
receiving the shorter share the �short player�, and the player with the longer share the �long player�.
Players are not informed whether their share is long or short.

In order to construct the desired shares the dealer �rst selects the index of the de�nitive iteration
` (which also determines the size of the shorter list), and then the number of extra elements in the
longer list d. Both ` and d are chosen according to a geometric distribution with parameter β, where
β depends on the utility functions. We will discuss how β is chosen later. The dealer then chooses a
random list of possible secrets of size d+`−1, such that its `th element is the real secret. The complete
list is given to one of the players, while the other player gets only a pre�x of the list, containing all
elements in positions prior to `.

The shares are designed so that the �rst possible secret to appear only in the long list is the real
secret. In order to reconstruct the secret, players are expected to broadcast the next secret in their list
in every iteration, and keep silent after their list ends. The �rst possible secret broadcasted by only
one player is assumed to be the real secret, and the iteration in which it is revealed (iteration `) is
called the de�nitive iteration. Note that a player's behavior does not depend on messages broadcasted
by the others (aside from when he leaves the game), but is determined by his share.

This basic idea has several weak points. One obvious problem is the ability of the short player to
detect the de�nitive iteration before it is carried out. Indeed, when the short player runs out of secrets
to broadcast, he knows that the next iteration is the de�nitive one. In such a case the short player
may broadcast a �ctitious secret instead of keeping quiet. With a (small) positive probability he will
be able to guess the next element in the long player's list, causing the long player to believe that the
secret was not yet revealed.

To prevent the short player from deviating during the de�nitive iteration, we divide every iteration
into a number of separate stages. The number of stages varies from iteration to iteration, and is again
chosen according to the geometric distribution with parameter β. Each player then receives the number
of stages in each iteration described in his list. We ask players to broadcast only during the last stage
of each iteration. Now, the short player knows when the de�nitive iteration is reached, but does not
know the exact number of stages in the iteration, whereas the long player knows the length of all
iterations, but is unable to identify the de�nitive iteration before it is carried out. An example for the
shares distributed by the dealer's algorithm (as described so far) is given in Figure 3 in Appendix E.

Another weak point of the basic idea is the possibility that most or all future secrets in the list
have the same value, allowing the players to guess the secret. This can be prevented by masking every
element in the list using a di�erent random mask. Shares of the random masks are dealt to the players.
In iteration t, players are required to broadcast their share of the mask that will be used in iteration
t + 1.

In order to prevent players from broadcasting false information (such as a �ctitious mask share), we
equip each with authentication information. Using the information, a player can verify the authenticity
of the messages broadcasted by the others, and prove the authenticity of messages sent by him.4

The General Case. To generalize the above to an m-out-of-n secret sharing scheme, the long list
is given to all but one player. Since now a subset of m or more players that does not contain the short
player is unable to identify the de�nitive iteration after it is carried out, we add a boolean indicator
(via secret sharing) showing whether the current iteration is de�nitive.

4For example, this can be done using the following method (see [19, 15]): If player i's true information is x ∈ F, then
si, bi ∈ F, bi 6= 0, are chosen at random and we set ci = bi · x + si ∈ F. The value si (the tag) is given to i. The other
players each get bi and ci (the hash function). Player i is required to broadcast si in order to prove that x is his true
information. The other players can then verify with high probability by checking that ci = bi · x + si.
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Formal description of the dealer's and players' algorithms, as well as some additional notes, can be
found in Appendix E.

Note 5.1. The described protocol is susceptible to coalitions. For example, if the short player colludes
with one of the long players, together they can learn the secret before the de�nitive iteration is carried
out.

Protocol Analysis. Theorem 5.2 (below) shows that the suggested scheme is a strict rational secret
sharing scheme with respect to learning preferring utility functions under the two following conditions
(note that we do not assume that players prefer to learn the secret without the others):

First, β should be chosen to be small enough. Clearly, in the case of strictly competitive utilities,
the greater the ratio between the payo� for learning the secret alone and learning with the others, the
smaller β must be in order to prevent players from guessing the de�nitive iteration and deviating: As
β is getting smaller, the probability of deviating in the wrong iteration, thus causing the game to end,
increases.

Second, players must have an initial incentive to cooperate: We cannot expect a player to participate
in a sharing scheme if he can a-priori guess the secret with a su�ciently high probability. If b ∈ Y
is the element with highest probability according to D, then every player can guess the secret with
probability at least D(b). Therefore, we must assume that D(b) is su�ciently small.

The theorem below holds for β < β0 and D(b) < c0. The values of β0 and c0 are functions
of the utility functions, and are calculated in Appendix E. The theorem's proof can also be found
the appendix, and it is based on the observation that a player cannot learn anything (information

theoretically) from non-de�nitive iterations, since the information broadcasted in such iterations was
randomly chosen. Therefore, after any history, players are still better o� following the protocol, and
there is no essential bound on the length of the protocol.

Theorem 5.2. Let Y be a �nite set of secrets with distribution D, and let (ui)i∈N be learning preferring

utility functions. If D(b) < c0, then for β < β0 and for all 2 ≤ m ≤ n, the scheme described above is

a simultaneous strict rational m-out-of-n secret sharing scheme for Y with respect to linger avoiding

strategies. It has expected running time O( 1
β2 ), and expected share size O( 1

β log 1
β ).

6 An ε-Rational Secret Sharing Scheme for the NSBC Model

In this section we describe an ε-rational m-out-of-n secret sharing scheme for the NSBC model, based
on the SBC scheme suggested in Section 5. The straightforward adaptation of the previous scheme is
having the players broadcast one after the other in a prede�ned order, instead of simultaneously (in
other words, every simultaneous stage is replaced by n non-simultaneous rounds, each allows one of
the players to broadcast).

However, the resulting scheme has a �aw: If the short player happens to be the �rst to broadcast
according to the prede�ned order, then the �rst stage of the de�nitive iteration starts with a silent
round. The long players can use the silent round as an indication that the de�nitive iteration was
reached, and quit while outputting the next unmasked secret. In such a case the short player stays
ignorant.

In order to overcome the problem, we select a di�erent broadcasts order for every iteration. The
broadcasts orders are determined by permutations selected (independently at random) by the dealer,
and each player receives the permutations for every iteration in his list. The player chosen to be the
last to broadcast in the de�nitive iteration is given the short share. A formal description of the dealer's
algorithm, as well as some additional remarks, can be found in Appendix F.

Claim 4.4 implies that there are no (exact) rational secret sharing schemes for the NSBC model
(at least for 2 players), even when shares are taken from an unbounded domain. Indeed, the suggested
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scheme is not an exact rational scheme, since the short player might broadcast a �ctitious secret
instead of keeping quiet during the de�nitive iteration. However, the scheme is ε-rational when we
use an authentication mechanism ensuring that attempts to authenticate �ctitious messages will fail
with probability at least 1 − ε

Umax
, where Umax is an upper bound on the payo�s that the players

may receive. Note that ε can be made arbitrarily small at the price of having longer shares (more
authentication data). Speci�cally, ε is exponentially small in the share sizes.

Theorem 6.1. Let Y be a �nite set of secrets with distribution D, and let (ui)i∈N be learning preferring

utility functions. If D(b) < c0, then there exists β′0 > 0 (a function of the utility function, the size of

the secrets set and the number of players) such that for β < β′0 and for all 2 ≤ m ≤ n, the scheme

described above is a non-simultaneous ε-rational m-out-of-n secret sharing scheme for Y . It has

expected running time O(n
β ), and expected share size O

(
n lg n

β (log 1
β + log Umax

ε )
)
.

The proof is similar to that of Theorem 5.2.

Note 6.2. The described protocol is susceptible to existence of a malicious player: Such a player can
cause the others to output a wrong value by simply aborting prematurely. However, the deviating
player will not be able to learn the secret himself. Since we assume that all players are rational
individuals that prefer to learn above all else, there will never be an incentive to such behavior.

7 Discussion and Open Problems

This paper raises several new open problems. The �rst is that of further exploring the Game Theoretic
considerations one needs to take into account when designing information exchange protocols. Other,
more concrete problems, are �nding ε-everlasting equilibria schemes with shares taken from bounded
domains (we have only shown that no such exact equilibria are possible), obtaining good everlasting
schemes that are also coalition-proof, and characterizing what MPC problems have such protocols.
Note that we o�er such cryptographic results, under computational assumptions, in the subsequent
work [9].
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A Solution Concept

A.1 On Iterated Admissibility

In this section we suggest further arguments as to why iterated admissibility should not be used to
distinguish �good� information exchange protocols from �bad� ones. We �rst review the de�nition of
iterated admissible strategies, as it appears in [7]:

De�nition A.1 (Iterated Admissible Strategies). Let Si denote a set of (randomized) strategies for

player i, S−i = S1 × ... × Si−1 × Si+1 × ... × Sn, and ui the utility function of player i. A strategy

σi ∈ Si is weakly dominated by a strategy σ′i ∈ Si with respect to S−i if:

• There exists a σ−i ∈ S−i such that ui(σi,σ−i) < ui(σ′i,σ−i) and
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• For all σ−i ∈ S−i it holds that ui(σi,σ−i) ≤ ui(σ′i,σ−i)

Strategy σi is weakly dominated with respect to S−i if there exists a σ′i ∈ Si such that σi is weakly

dominated by σ′i with respect to S−i.

Let DOMi(S1 × ... × Sn) denote the set of strategies in Si that are weakly dominated with respect

to S−i. Let S0
i denote the initial set of allowable strategies for player i. For all k ≥ 1, de�ne Sk

i

inductively as Sk
i = Sk−1

i 8DOMi(Sk−1
1 × ... × Sk−1

n ). S∞i =
⋂

k Sk
i is the set of (exhaustive) iterated

admissible strategies for player i.

One argument against using iterated admissibility is Game Theoretic: Samuelson [16] and Stahl
[18] showed that the assumption that rational players follow only iterated admissible strategies poses
extraneous and hard-to-justify restrictions on players' beliefs. Roughly speaking, Samuelson showed
that iterated admissibility is not equivalent to the natural notion of common knowledge of admissibil-
ity (everyone knows that everyone avoids playing weakly dominated strategies; everyone knows that
everyone knows it; and so on). Instead, it was shown by Stahl that a strategy survives elimination if
it is a best response to a belief that one strategy is in�nitely less likely than another if the former is
eliminated at an earlier round than the latter.

In addition, since the order in which strategies are eliminated can a�ect the outcome, Halpern and
Teague's choice of exhaustive elimination, i.e, removing all weakly dominated strategies in every round,
is not the only option.

Another argument is that the talk-once strategy, and many more �bad� strategies, are actually
iterated admissible in the one-time-shares model described below. The model is intended to match
the one used by Halpern and Teague, though there are many details they do not make explicit.

The one-time-shares model. The model consists of an honest dealer that chooses a secret out of
a �nite set, and n players that try to learn the secret. Each player prefers learning the secret to not
learning it, and secondarily, prefers that as few as possible of the other players learn it. A protocol
proceeds in a sequence of iterations, each iteration may consist of multiple communication rounds. At
the end of an iteration, the protocol always proceeds to the next one, thus the underlying game is
in�nite.

At the beginning of each iteration, the dealer privately distributes fresh m-out-of-n Shamir shares
of the secret to each of the players. During an iteration, the dealer does not take part in the protocol.
Instead, the players run the protocol amongst themselves by simultaneously broadcasting messages
(Halpern and Teague additionally allow private communication between the players; we omit the
private channels for simplicity).

It is assumed that in every round the players either broadcast their share, or otherwise keep silent.
That is, the deviating behavior of players is limited to refusal to cooperate, ignoring the case of a
player reporting an incorrect share. Player i �learns� the secret in a speci�c protocol run if there is a
round in which at least m− 1 players other than i have broadcasted their share.

Remark A.2. Halpern and Teague do not specify how and when the game ends. In the suggested
one-time-shares model, every run of every protocol is in�nite. However, our claim holds for di�erent
ending rules as well. For example, if:

• All players are required to send a quit message in order to end the game.

• The game ends when at least m− 1 players have broadcasted their shares in the same round. (If
m or more players broadcast, all players learn. When m − 1 players broadcast, the rest of the
players learn, and have no incentive to continue participating in the game. The remaining m− 1
players have no way of learning the secret by themselves).
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The following theorem shows that a large set of deterministic strategies denoted Ai, are iterated
admissible. The set Ai contains pure strategies for player i that do not depend on the dealer's random
tape. In other words, player i chooses his action for the next round by only considering which players
have broadcasted in each of the previous rounds. The values of the shares dealt to player i and to the
others are not taken into account. Note that talk-once is such a strategy.

Theorem A.3. In the one-time-shares model for rational m-out-of-n secret sharing (2<m < n),
for every i ∈ N it holds that Ai ⊆ S∞i . In particular, talk-oncei ∈ S∞i .

Proof Assume that every iteration consists of a single round. Let h = (b1, ...,bt) be a list of boolean
vectors of size n, bs = (b1

s, ..., b
n
s ) where bi

s ∈ {TRUE, FALSE}. We say that the boolean history of the
game until round t agrees with h if for every round s ≤ t and player j ∈ N , j has broadcasted his share
in round s i� bj

s = TRUE.

De�ne two pure strategies, σh,+
i and σh,−

i , based on h:

σh,+
i :

In round s

• for s ≤ t: if bi
s = TRUE broadcast your current share. Otherwise, keep silent.

• for s = t+1: if the history of the game until round t agrees with h, broadcast your current share.
Otherwise, keep silent.

• for s ≥ t + 2: keep silent.

σh,−
i is de�ned similarly, but in round s = t + 1 the player broadcasts his share only if the history does

not agree with h, and keeps silent otherwise.
Let σi ∈ Ai, and assume for contradiction that there is τi ∈ Si that weakly dominates σi. In

particular, there is τ−i ∈ S−i for which ui(τi, τ−i) > ui(σi, τ−i). Thus, there are random tapes for the
dealer and players r = (rD, r1, ..., rn), such that ui(Rτi) > ui(Rσi), where Rτi is the run for which each
player j follows τj and the random tapes are r, and Rσi is a similar run for which player i follows σi

instead of τi. Denote by t the �rst round for which the actions of player i in Rτi and Rσi are di�erent.

Let h = (b1, ...,bt) be a boolean history, where bs is:

• for s < t: for j ∈ N set bj
s = TRUE i� player j broadcasts his share in round s of Rσi .

• for s = t: for j 6= i set bj
s = FALSE; set bi

s = TRUE i� player i broadcasts his share in round t of
Rσi .

One of the following holds for Rσi :

1. There is a round s < t in which at least m players broadcast their shares.

2. There is a round s < t in which exactly m − 1 players other than i broadcast their shares, and
Option (1) does not hold.

3. For all rounds s < t, at most m− 2 players other than i broadcast their shares.

We next show that in every possible case there is a �savior� strategy for σi.
If (1) holds: all the players learn the secret. Since similar messages are broadcasted in the �rst

t− 1 rounds of Rτi and Rσi , we get ui(Rτi) = ui(Rσi), and thus a contradiction is reached.

If (2) holds: assume that the other players follow σh,−
−i . Player i gets maximal payo� when the

history until round t agrees with h: For such history i learns the secret and some of the others do not,
whereas if the history is not h, all players learn.

If player i follows τi, then with positive probability (when the random tape for player i agrees with
ri for all positions used by τi in the �rst t rounds of Rτi) the history of the �rst t rounds does not agree
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with h. However, when following σi the history always agrees with h. Thus, ui(σi,σ
h,−
−i ) > ui(τi,σ

h,−
−i ),

and σh,−
−i �saves� σi.

If (3) holds: assume that the other players follow σh,+
−i . Player i again gets maximal payo� when

the history until round t agrees with h, since this is the only case allowing him to learn the secret.
Hence, ui(σi,σ

h,+
−i ) > ui(τi,σ

h,+
−i ), and σh,+

−i �saves� σi.

None of the strategies in Ai are weakly dominated, because σh,+
−i and σh,−

−i save them. Since

σh,+
i , σh,−

i ∈ Ai, they also survive the �rst iteration. We conclude that all the strategies in Ai survive
the iterated elimination. �

Remark A.4. It might seem somewhat arti�cial to view talk-once as strategy in an in�nite game,
since it only has one �actual� stage. However, it is not hard to see that the following version of
talk-once is iterated admissible as well, and may have any number of �actual� stages:

talk-once*i:

In round s:

• If s = 0 or [s > 0 and
⊕

j∈N as−1
j 6= 0]: choose a bit at random (as

i ) and broadcast it.

• Else: broadcast your current share. From now on, keep silent.

B Game Theoretic De�nitions

B.1 Extensive Form Game with Imperfect Information and Behavioral Strategies

Information exchange protocols can be viewed as behavioral strategies in an extensive form game with

imperfect information. Extensive form games model multi-staged interactions between players. In
extensive form games with imperfect information we allow players to be imperfectly informed about
past events when taking actions (e.g., in our settings, players are uninformed of the inputs assigned
to the others). In addition, we permit exogenous uncertainty, that is, some moves may be made by
�chance� (e.g., in our settings, the role of �chance� is con�ned to choosing the players' inputs at the
beginning of the game). A behavioral strategy is a randomized algorithm, determining the player's
action in every situation.

De�nition B.1 (Extensive Form Game with Impefrect Information). An extensive form game with

imperfect information is a tuple 〈N,H, P, fc, (Ii)i∈N , (ui)i∈N 〉 where:
• N - Players: a �nite set of players denoted 1, ..., n.

• H - Histories: a set of sequences (�nite or in�nite) that satis�es the following properties:

� The empty sequence φ is in H.

� If (a1, ..., aK) ∈ H (where K might be in�nite) and L < K then (a1, ..., aL) ∈ H.

� If an in�nite sequence (a1, a2, ...) satis�es (a1, ..., aL) ∈ H for every positive integer L then

(a1, a2, ...) ∈ H.

Each member of H is a history; each component of a history is an action taken by a player. A

history (a1, ..., aK) ∈ H is a terminal history (or an outcome) if it is in�nite or if there is no

aK+1 such that (a1, ..., aK , aK+1) ∈ H. The set of actions available after a non-terminal history

h is denoted A(h) = {a | (h, a) ∈ H}, and the set of terminal histories is denoted Z.

• P - Next player: a function P : (H8Z) → N ∪ {c} for which P (h) is the player who takes an

action after the history h. If P (h) = c then �chance� determines the action taken after history h.

• fc - Chance's distributions: a function that associates with every history h for which P (h) = c,
a probability measure fc(·, h) on A(h) (i.e., fc(a|h) determines the probability that action a occurs

after the history h). The probability measures are independent.
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• Ii - Information partition for player i: for each player i ∈ N , the set Ii is a partition of

{h ∈ H | P (h) = i} with the property that A(h) = A(h′) whenever h and h′ are in the same

member of the partition. A set Ii ∈ Ii is an information set of player i.

• ui - Utility (payo�) function for player i: a function ui : Z → R determining player i's gain
for every outcome.

Note B.2. Using the above de�nition we can model simultaneous moves: Players choose actions one
after the other, but no player gets informed of the previous actions selected by the other players before
selecting his.

De�nition B.3 (Behavioral Strategy). Let Γ be an extensive form game with imperfect information.

A behavioral strategy for player i in Γ is a collection (γ(Ii))Ii∈Ii
of independent probability measures,

where γ(Ii) is a probability measure over the set of possible actions for every history in Ii.

Note that in games with perfect recall (information learned is not forgotten) such as ours, behavioral
strategies are equivalent to mixed strategies (probability measures over deterministic strategies).

B.2 Behavioral Strategies and Rationality Concepts

In this section we formalize the Game Theoretic stability notions used in the paper. We start o�
by reviewing the standard concepts. We call a vector of players strategies a strategy pro�le, and use
the following notations: α−i = (α1, ..., αi−1, αi+1, ..., αn), (α−i, α

′
i) = (α1, ..., αi−1, α

′
i, αi+1, ...αn), and

ui(σ) = Eo∼O(σ) [ui(o)] where O(σ) denotes the probability distribution over outcomes induced by the
protocol σ.

De�nition B.4 (Nash Equilibrium). A behavioral strategy pro�le σ for the game Γ is said to be a Nash

equilibrium if for every i ∈ N and any behavioral strategy σ′i, it holds that ui(σi,σ−i) ≥ ui(σ′i,σ−i).

De�nition B.5 (ε-Nash Equilibrium). A behavioral strategy pro�le σ for the game Γ is said to be

an ε-Nash equilibrium if for every i ∈ N and any behavioral strategy σ′i, it holds that ui(σi,σ−i)+ε ≥
ui(σ′i,σ−i).

De�nition B.6 (Strict Equilibrium with respect to A). Let σ be a behavioral strategy pro�le for

the game Γ, and let Ai be a subset of behavioral strategies for player i. σ is said to be a strict

Nash equilibrium with respect to A = (A1, ..., An) if for every i ∈ N and any σ′i ∈ Ai that assigns a

di�erent action to some information set of player i that can be reached when following σ, it holds that
ui(σi,σ−i) > ui(σ′i,σ−i).

Note B.7. The standard de�nition of a strict equilibrium is stronger than ours. It demands that σi

is a better response to σ−i than any σ′i that di�ers from it on some information set, whereas we only
require it to be strictly better than any strategy in Ai that acts di�erently on an information set that
can be reached.

Next, we formalize the notion of everlasting equilibrium suggested in Section 2.2.

De�nition B.8 (Everlasting, Strict Everlasting with respect to A, and ε-Everlasting Equilibrium).
Let Γ be a game, I be an information set of Γ, and µ be a probability measure on the set of histories in I.
We interpret µ as the probability that current player assigns to the history h ∈ I, conditional on I being

reached. For a behavioral strategy pro�le σ we de�ne O(σ, µ | I) to be the distribution over terminal

histories determined by σ and µ, conditional on I being reached, as follows. Let h∗ = (a1, ..., aK) be a

terminal history. Then:
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• If there is no subhistory of h∗ in I (i.e., the information set that the game has reached rules out

h∗), then O(σ, µ | I)(h∗) = 0.

• If the subhistory h = (a1, ..., aL) of h∗ is in I, where L < K, then O(σ, µ | I)(h∗) = µ(h) ·∏K−1
k=L σP (a1,...,ak)(a1, ..., ak)(ak+1), where σP (a1,...,ak)(a1, ..., ak)(ak+1) denotes the probability that

the player taking a move after history (a1, ..., ak) chooses the action ak+1.

σ is said to be an everlasting (strict everlasting with respect to A, ε-everlasting) equilibrium if for every

player i ∈ N , every information set Ii ∈ Ii that can be reached by σ, and any behavioral strategy σ′i for
player i, it holds that ui (O ((σ−i, σi), µIi | Ii)) ≥ ui (O ((σ−i, σ

′
i), µIi | Ii)), where ui (O) = Eo∼O [ui(o)]

and µIi is the distribution over histories in Ii induced by σ.
For a strict everlasting equilibrium replace �≥� by �>�, and for ε-everlasting add �+ε� to the the

LHS.

Remark B.9. The concept of everlasting equilibrium resembles the Game Theoretic notion of a
subgame perfect equilibrium (or sequential equilibrium), but is strictly weaker. In a subgame perfect
equilibrium, the prescribed strategies must be best responses after any history, even after histories

that cannot be reached by the protocol. Such protocols ensure that there are no �non-credible threats�,
in the sense that carrying them out will harm the player making the threat (e.g., a beggar threats to
commit suicide if you do not give him charity). An everlasting equilibria only requires the prescribed
strategies to be best responses on the equilibrium path, and it eliminates �non-credible promises� (e.g.,
players' non-credible promises to cooperate in the last round).

C Our Settings

C.1 Settings for Rational Secret Sharing

De�nition C.1 (Rational, Strict Rational with respect to A, and ε-Rational m-out-of-n secret sharing
scheme). Let Y be a �nite set of secrets, DY a distribution over Y (wlog assume that every y ∈ Y has

a positive probability), and (ui)i∈N the given utility functions. Let dealer : Y 7−→ X, (X ⊆ ×i∈NXi),
be a probabilistic mapping that associate shares to secrets, with a reconstruction function f : X → Y .

Let σ be a protocol for ΓD,(ui)i∈N

f .

The pair (dealer,σ) is a simultaneous rational (strict rational with respect to A, ε-rational) m-out-

of-n secret sharing scheme for Y with respect to DY and (ui)i∈N , if:

• The secret can be rationally reconstructed using σ by any subset C of m or more

players: there is a secret reconstructing function fC : XC → Y , (XC ⊆ ×i∈CXi), such that

the strategies prescribed to players in C are an everlasting (strict everlasting with respect to

A, ε-everlasting) equilibrium that computes fC in the corresponding computing game ΓfC
(the

distribution over inputs in XC is determined by DY and dealer, and the utility functions are the

ones induced by (ui)i∈C when players not in C are assumed to never broadcast).

• No subset C of less than m players can reveal any partial information about the

secret (in the information theoretic sense) before the game begins: the distribution over

inputs given any shares of players in C is identical to the original distribution DY .

Non-simultaneous rational schemes are de�ned similarly, by replacing ΓD,(ui)i∈N

f with Γ̄D,(ui)i∈N

f .

D Impossibility Results

In this section we proof the impossibility results of Section 4.
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Remark D.1. An impossibility result in the same spirit was o�ered by Halpern and Teague ([7],
Corollary 3.1). They claim that (under some harsh restrictions) there is no iterated admissible Nash
equilibrium protocol for 2-out-of-2 secret sharing in a model with simultaneous broadcast and private
channels. We remove those restrictions: We o�er results for more than 2 players, do not assume the
iterated admissibility of the protocols, Shamir shares as the player's inputs, unforgeable signatures, or
that the inputs are atomic and cannot be subdivided. In addition, as pointed out by Abraham et al.,
Halpern and Teague's proof seems to be problematic (see the discussion after De�nition 2 in Section 4
of [1]).

Note that we assume that the only mean of communication between players is a broadcast channel,
whereas in Halpern and Teague's setting communication via (simultaneous) private channels is also
allowed. However, in the 2 players case addressed by their impossibility result, the assumption of
private channels is equivalent to that of a broadcast channel. Therefore, our results do not pose any
new constraints.

D.1 Transcripts Trees and Revelation Points

We formally de�ne the terms described in Sections 4.1 and 3.4:

De�nition D.2 (Run). Let σ be a protocol for the SCG Γf . A run R of σ is a pair R = (x, r), where
xi is the private input of player i and ri is his random tape.

De�nition D.3 (Transcript, Explains). Let σ be a protocol for the SCG Γf . A transcript of σ is a

sequence m = (m1, ...,mt) of messages broadcasted by the players during the �rst t rounds of a possible

run R of σ. That is, for every s ≤ t, ms = (m1
s, ...,m

n
s ) and mi

s is a �nite binary string broadcasted

by player i in round t of R. In such a case we say that R explains m, and write m(R, t) = m.

Note that since σ is a randomized algorithm, it may have various transcripts of the same length.
Denote by M(σ) the set of all transcripts of σ. We view the elements of M(σ) as vertices of a tree:

De�nition D.4 (Transcripts Tree). Let σ be a protocol for the SCG Γf . The transcripts tree of σ is a

tree whose vertices are the elements of M(σ). The tree's root is the empty history, and m = (m1, ...,mt)
is the parent of m′ = (m′

1, ...,m
′
t+1) if for every s ≤ t, it holds that ms = m′

s.

De�nition D.5 (Learns / Knows). Let f : X → Y be a function, σ a protocol for the SCG Γf ,

R = (x, r) a run of σ, and m a transcript of σ. The following are phrases and their meanings:

• Player i learns (knows) f(x) after m given xi: There exists y ∈ Y such that for every run

R′ = (x′, r′) of σ with x′i = xi and m(R′, t) = m, it holds that f(x′) = y.

• Player i learns (knows) f(x) after round t of R: i learns after m = m(R, t) given xi.

• Player i learns (knows) f(x) during round t of R: Player i does not know f(x) after round t− 1
of R, but does know it after round t.

De�nition D.6 (Revelation Point). Let σ be a protocol for the SCG Γf , and m a �nite transcript of

σ. m is a revelation point of σ if:

• There exists an input x ∈ X and a player i ∈ N such that i does not know f(x) after m given
xi.

• For every input x ∈ X and any player i ∈ N , i knows f(x) after any child of m given xi.

De�nition D.7 (Linger Avoiding). A strategy σi for player i in Γf is linger avoiding if for every joint

strategy of the other players σ−i, and every run R of the protocol (σi,σ−i), if player i learns f(x)
during round t of R, he quits in round t + 1. A protocol σ for Γf is linger avoiding if the strategy σi

is linger avoiding for every i ∈ N .
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Figure 1: The transcripts tree for the protocol σ, and the selection
of the next vertex on branch leading to the revelation point.

D.2 Impossibility Results for Rational MPC

Theorem (4.1 restated). Let f be a non-constant function with a �nite domain and any number of

players, and let Γf be an SCG for f with respect to strictly competitive utility functions. There is no

linger avoiding, Nash equilibrium protocol for Γf that computes f and does not have a revelation point.

Proof Let σ be such a protocol. For m ∈M(σ) de�ne:

Cm = {(i,x) | i ∈ N, x ∈ X, and i does not know f(x) after m given xi}

Let m0 be the empty transcript. Cm0 6= φ, otherwise every player can always deduce f(x) by
himself, and thus f is constant. Choose x1 ∈ X and j1 ∈ N for which (j1,x1) ∈ Cm0 . Since the
protocol almost always ends, there is a run R′ = (x1, r′) of σ for which m′

1 = m(R′, t) is a descendant
of m0 for some t, and all players know the designated values after round t of R′. Assume that t was
chosen to be minimal, that is, some players do not know the value after round t− 1 of R′.

Denote m′
1's parent by p. If every child m of p satis�es Cm = φ, then p is a revelation point.

Otherwise, we show that there is a child m1 of p such that Cm1 6= φ and Cm1 $ Cm0 : Start from any
child m′′

1 of p for which Cm′′
1
6= φ. If (j1,x1) /∈ Cm′′

1
, the transcript m1 = m′′

1 satis�es our requirement.
Otherwise, there is a run R′′ = (x1, r′′) of σ explaining m′′

1 for which j1 does not know the value after
round t.

Denote r′ = (r′1, ..., r
′
n), r′′ = (r′′1 , ..., r′′n), and for i ∈ [n+1] let ri be the hybrid (r′1, ..., r

′
i−1, r

′′
i , ..., r′′n).

Due to the fact that both R′ and R′′ explain p, so does Ri = (x1, ri). This is shown by induction
on the length of p, since each party's public messages only depend on his own random tape and the
previous messages sent. See Figure 1 for a sketch of the tree's structure.

Since r1 = r′′ and rn+1 = r′, there is i ∈ N such that after round t of run Ri some players still do
not know the value, but after round t of Ri+1 all players know it. Player i being the only one assigned
di�erent random tapes by Ri and Ri+1, is the only player taking a (possibly) di�erent action in round
t of Ri and Ri+1. Since the other players make the exact same moves, we conclude that i knows the
value after round t of Ri, just as he knows it after round t of Ri+1.
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Figure 2: The transcripts tree for the protocol σ, and the
branch leading to its revelation point built by the proof.

We next show that player i must have learned the value during round t, and not before: Since σ
is linger avoiding, player i quits immediately after learning the value. Had player i learned the value
during a previous round, the massage broadcasted by him in round t is independent of his random tape:
A quit message is broadcasted if i learned during round t− 1, and an empty messages is broadcasted
if he learned before round t − 1. Consequently, all players learn the value after round t of Ri, just
as they learn it after round t of Ri+1. Since this contradicts our assumption about Ri, we deduce
that player i indeed learns during round t of Ri. By choosing m1 = m(Ri, t), we get Cm1 6= φ and
(i,x1) ∈ Cm0 8Cm1 .

A sequence of transcripts, m0,m1,m2, ..., such that N × X ⊇ Cm0 % Cm1 % Cm2 % ... is built
using the same arguments. Since the set N ×X is �nite, the sequence ends and a revelation point is
found. See illustration in Figure 2.

�

Remark D.8. Theorem 4.1 does not imply that there is an e�cient algorithm for �nding revelation
points, or that there even exists such an algorithm. However, since a revelation point mrev does exist,
player i may prefer to deviate from the strategy σi and follow σmrev

i (described below).

σmrev
i (x,m, r):

• If m = mrev: keep silent.

• If m is a child of mrev: quit and output the value you have just learned.

• Else: run σi(x,m, r).

Corollary (4.2 restated). Let f be a non-constant function with a a �nite domain and any number of

players, and let Γf be an SCG for f with respect to strictly competitive utility functions. There is no

strict Nash equilibrium protocol with respect to linger avoiding strategies for Γf that computes f .
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Proof Assume for contradiction that σ is such a protocol. Since σ is a Nash equilibrium protocol
that computes f , any strategy that allows player i to learn the value almost always is a best response
to σ−i (due to Properties 2 and 3 of strictly competitive utility functions). If σ is not linger avoiding,
then the linger avoiding version of σi (player i follows σi with one exception: he quits immediately
after learning f(x)) is another best response to σ−i. Therefore, σ must be linger avoiding, and by
Theorem 4.1, it has a revelation point mrev.

Consider the strategy σmrev
i described in Remark D.8 (player i broadcasts messages according to

σi, with the exception that after mrev he keeps silent). The strategy σmrev
i is a best response to σ−i

since the strategies σi and σmrev
i only di�er after the transcript mrev is reached, and when following

σmrev
i , player i retrieves the value after mrev.
Since σmrev

i is a linger avoiding strategy (as σi is such), and σ is a strict Nash equilibrium with
respect to linger avoiding strategies, σi and σmrev

i must act the same for every history reachable when
following σ. However, if every player i ∈ N follows σmrev

i , then all players are keeping silent after mrev

for every set of inputs. This behavior leads to mrev having a single child m. Since players learn f(x)
after m, they must have already learned it after mrev. This contradicts our assumption that mrev is
a revelation point. �

Corollary (4.3 restated). Let f be a two players non-constant function with a �nite domain, and let

Γf be an SCG for f with respect to strictly competitive utility functions. There is no Nash equilibrium

protocol for Γf that computes f .

Proof Assume for contradiction that that σ is such a protocol. We �rst show that both players must
learn the value during the same round. Assume that this is not the case, and let R = (x0 = (x0

1, x
0
2), r)

be a run of σ for which, wlog, player 1 learns the value after round t, but player 2 does not. Since
player 2 is still unsure of the value after round t, there is at least one input other than player 1's real
input that seems possible to player 2, but results in a di�erent value for f . By following the strategy

σ
x0
1

1 (described below) that guesses one of the other inputs and pretends to be holding it, player 1
can prevent player 2 from learning f(x) with a positive probability. Properties 2 and 3 of strictly

competitive utility functions imply that player 1 is better o� following σ
x0
1

1 .

σ
x0
1

1 (x,m, r):

• If m = m(R, t) and x = x0
1: randomly select an input x′ = (x′1, x

′
2) ∈ X with x′1 6= x, and

random tapes r′ = (r′1, r
′
2), such that the run R = (x′, r′) of σ explains m. From now on, use

the value x′1 instead of x, with the exception that when quitting, the secret guessed is the one
learned after m(R, t).
• Else: run σi(x,m, r)

Now, since players learn the value together, we may repeat the proof of Theorem 4.1 without the need
of requiring that σ is linger avoiding, and show the existence of a revelation point: Since player i learns
after round t of Ri, the other player must learn too, but this contradicts the assumption that some
players do not learn. Again, when the revelation point is reached player 1 is better o� deviating from
σi and pretending to be holding a �ctitious input. �

Claim (4.4 restated). Let f be a two players non-constant function with a countable domain, and

let Γf be an NSCG for f with respect to strictly competitive utility functions. There is no Nash

equilibrium protocol for Γf that computes f .

Proof As argued in the proof of Corollary 4.3, if one of the players learns before the other, he may
pretend to be holding a di�erent input and fool the other player with a positive probability (since X
is countable we can assume, that every x ∈ X has a positive probability according to D). Since it is
not possible for both players to learn together in the NSBC model, the claim holds. �
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Figure 3: Example of possible shares assigned by the dealer's algorithm.
In this example the set of secrets is S = {1, ..., 10}, the real secret is y = 7,
the de�nitive iteration is ` = 5, and the number of extra elements is d = 3.

E A Strict Rational Secret Sharing Scheme with Unbounded Shares

Formal description of the scheme. An example for (partial) shares distributed by the dealer's
algorithm is given in Figure 3. Formal description of the dealer's and players' algorithms described in
Section 5 can be found in Figures 4 and 5.

Some additional notes. The following are some additional notes regarding the suggested scheme:

Note E.1. The expected running time of the suggested protocol depends on the utility functions. For
example, in the case of strictly competitive utility functions assigning payo� 0 to players that do not
learn, the expected running time is a function of the ratio between the payo� for learning alone and
the payo� for learning with the others.

This property is inherent: suppose that there is an algorithm with expected running time indepen-
dent of the ratio. For a large enough ratio, a player is better o� guessing the last round of the protocol
and deviating.

Note E.2. Although the boolean indicator added in the general case allows a set of long player to
identify the de�nitive iteration by themselves, it does not replace the need of assigning a shorter share
to one of the players: if all shares are of the same size, the length of the game is known to all the
players, allowing them deviate in the last iteration.

The values of β0 and c0, and the proof of Theorem 5.2. We next calculate the values β0 and
c0, and then prove Theorem 5.2. As discussed in Section 5, we cannot expect a player to participate
in a sharing scheme if he can a-priori guess the secret with a su�ciently high probability.

More formally, let Ui and U+
i be the minimal and maximal payo�s of player i when he retrieves

the secret, and let U−
i be the maximal payo� of i in case he does not retrieve. Denote by α player i's

chance of guessing the secret at the beginning of the game, given his share and the initial distribution
D. If player i does not participate in the protocol, he guesses the right secret with probability at most
α and gets at most U+

i . However, with probability 1− α he guesses a wrong secret, and gets at most
U−

i . By participating in the game, player i ensures a payo� of at least Ui. Therefore, if the following
inequality is satis�ed, player i has an incentive to participate in a sharing scheme.
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Dealer(y, β)

Let F = GF (p) for p ≥ |Y | prime, and identify each element of the secrets set Y with an element of F.
Denote by G(β) the geometric distribution with parameter β.

• Create the list of possible secrets:
� Select `, d ∼ G(β). Iteration ` is the de�nitive one and L = ` + d− 1 is the size of the
full list of possible secrets.

� Select at random a list of size L of possible secrets (elements of Y ), such that its `th

element is y.

• Create shares: Create n vectors, one of length ` − 1 and the others of length L. Each
vector cell corresponds to an iteration of the reconstruction protocol and consists of the
following elements:

� Stages: The number of stages in the iteration chosen according to G(β).

� Mask: An m-out-of-n Shamir share of a randomly chosen element of F used to mask
the next possible secret.

� Masked secret: An element of F obtained by summing, over F, the corresponding
element in the secrets list and the mask shared between the players in the previous

cells.

� Indicator: An m-out-of-n Shamir share of a boolean value indicating whether this
iteration is de�nitive.

� Authentication information: A �tag� allowing the player to prove the authenticity
the previous elements in this cell, and �hash functions� allowing him to check the
authenticity of elements in the corresponding cells of the other vectors with probability
at least 1− β (can be achieved with tag and hash of size log 1

β ).

An additional cell is added to the beginning each vector (�cell 0�). The cell contains an m-out-of-n

Shamir share of a randomly chosen mask to be used during the �rst iteration, and authentication

information for it.

• Assign shares: Choose a random assignment of vectors to players.

Figure 4: The dealer's shares assignment algorithm
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Playeri(share)

Set secret_revealed← FALSE and cheater_detected← FALSE.

Repeat until secret_revealed = TRUE or cheater_detected = TRUE

• If your share ended:
� Keep silent.

� If someone has broadcasted, secret_revealed← TRUE.

• If your share did not end: use the corresponding cell of share to check whether this is
the last stage of this iteration.

� If this is not the last stage:

∗ Keep silent.

∗ If someone broadcasted cheater_detected← TRUE.

� If this is the last stage:

∗ Broadcast the the masked secret, tag, and shares of the random mask and indi-
cator, as they appear in the corresponding cell of share.

∗ If more than a single player did not broadcast, or if some messages do not
pass the authenticity check (the tags and hash functions do not match),
cheater_detected← TRUE.

∗ If all but a single player broadcasted, or if the reconstructed indicator shows that
the iteration is de�nitive, secret_revealed← TRUE.

Leave the game: Quit and output the current possible secret (obtained by subtracting the
mask reconstructed using the shares broadcasted in the previous iteration from the last masked
secret broadcasted).

Figure 5: Player i's reconstruction protocol
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αU+
i + (1− α)U−

i < Ui

α(U+
i − U−

i ) < Ui − U−
i

α <
Ui − U−

i

U+
i − U−

i

Denote ci = Ui−U−
i

U+
i −U−

i

and c0 = mini∈N {ci} (since the payo� functions are learning preferring, it

hold that U−
i < Ui ≤ U+

i , and thus ci > 0). Since α ≥ D(b), we at least need to require D(b) < c0.

The following proof shows that it su�ces to set β0 = mini∈N

{
ci−D(b)

(ci−D(b))+2z·n+1

}
where z = |Y | and Y

is the set of secrets (since ci > D(b), it holds that β0 > 0).

Theorem (5.2 restated). Let Y be a �nite set of secrets with distribution D, and let (ui)i∈N be learning

preferring utility functions. If D(b) < c0, then for β < β0 and for all 2 ≤ m ≤ n, the scheme described

above is a simultaneous strict rational m-out-of-n secret sharing scheme for Y with respect to linger

avoiding strategies. It has expected running time O( 1
β2 ), and expected share size O( 1

β log 1
β ).

Proof We need to show:

1. No group of less than m players is able to learn anything about the secret before the game begins.

2. Every subset of at least m players following their prescribed strategies reconstructs the secret.

3. The expected running time of the reconstruction protocol and expected share size are as claimed.

4. The strategies prescribed to every subset of at least m players are strict best responses after any
history h.

To show (1), recall that all values appearing in players' shares, aside from the masked secrets, are
chosen independently of the real secret, and thus cannot be used to extract any information about
it. Since the masks are randomly chosen and shared using an m-out-of-n scheme, a set of less than
m players cannot learn anything about the masks. Hence, the masked secrets cannot be used to gain
knowledge of the secret either.

To show (2) and (3) we claim that every subset of m or more players following the protocol learns
the secret after the de�nitive iteration `. Since the de�nitive iteration and the number of stages in any
iteration are chosen according to G(β), the expected running time is O( 1

β2 ). The expected share size

is O( 1
β log 1

β ) due to the fact that a share can either be of length ` − 1 or L = ` + d − 1 for d chosen

according to G(β), and the size of each cell is O(log 1
β ).

It remains to prove (4), that is, we need to show that as long as no deviation was detected, every
player that does not know the secret is strictly better o� following the strategy prescribed to him. We
denote by t the number of the current iteration, and by si the size of the share assigned to player i.
Consider the following cases:

Case 1. Player i's share has ended (t = si + 1)

In this case, player i knows he has the shorter share. By deviating, he only retrieves the secret if
the current stage happens to be the last in the iteration, or if he successfully guesses the secret. With
probability 1 − β, the current stage is not the last, and since i's share and the current transcript do
not convey any information about the secret, i's best guess is b. Denote by α′ the probability that i
guesses the secret correctly if he deviates in this stage. α′ satis�es:

α′ ≤ β + (1− β) · D(b) = β(1−D(b)) +D(b)

As shown before, it su�ces to demand:
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α′ < ci

β(1−D(b)) +D(b) < ci

β <
ci −D(b)
1−D(b)

β < β0

Case 2. Player i's share has not ended (1 ≤ t ≤ si)

Denote by definitive_prob the probability that the current iteration is de�nitive, given that player i
reached the information set I containing the history h (in other words, definitive_prob is the probability
that the current iteration is de�nitive when given player i's share and the transcript so far). We �rst
show that definitive_prob is rather small. Intuitively, if si is close t then i is fairly convinced that he
has the short share, and thus this iteration is probably not de�nitive. If si is a lot larger than t, player
i believes he has a long share, but then any future iteration might be the de�nitive one.

Claim E.3. definitive_prob ≤ z·n·β
(1−β) .

Proof The only parameters viewed by i that are relevant when determining whether the current
iteration is de�nitive, are: the number of the current iteration t, i's share size si, and the current
unmasked possible secret yt (learned by player i after iteration t− 1). All the other values viewed by
player i are independent of the secret and its revelation time. Assume that si = k (k > t), yt = a, and
that player i0 is the one with the short share.

definitive_prob = Pr [` = t | ` ≥ t ∧ yt = a ∧ si = k]

=
Pr [` = t ∧ yt = a ∧ si = k]
Pr [` ≥ t ∧ yt = a ∧ si = k]

=
Pr [i 6= i0 ∧ ` = t ∧ yt = a ∧ si = k]

Pr [i = i0 ∧ ` ≥ t ∧ yt = a ∧ si = k] + Pr [i 6= i0 ∧ ` ≥ t ∧ yt = a ∧ si = k]

We calculate the probabilities appearing in the last term. Recall that if t is the de�nitive iteration
(t = `) then yt = y where y is the real secret, otherwise yt = rt for a randomly chosen rt ∈ Y .

The term in the numerator:

Pr [i 6= i0 ∧ ` = t ∧ yt = a ∧ si = k]
= Pr[i 6= i0] · Pr[` = t] · Pr[y = a] · Pr[d = k − t + 1]

=
n− 1

n
· β(1− β)t−1 · D(a) · β(1− β)k−t

=
n− 1

n
· D(a) · β2(1− β)k−1

The �rst term in the denominator:

Pr [i = i0 ∧ ` ≥ t ∧ yt = a ∧ si = k]
= Pr[i = i0] · Pr[rt = a] · Pr[` = k + 1]

=
1
n
· 1
z
· β(1− β)k

The second term in the denominator:
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Pr [i 6= i0 ∧ ` ≥ t ∧ yt = a ∧ si = k]

= Pr[i 6= i0] · Pr[rt = a] ·
k∑

j=t+1

Pr[` = j] · Pr[d = k − j + 1] (t is not de�nitive) +

Pr[i 6= i0] · Pr[y = a] · Pr[` = t] · Pr[d = k − t + 1] (t is de�nitive)

=
n− 1

n
· 1
z
·

k∑
j=t+1

β(1− β)j−1 · β(1− β)k−j +

n− 1
n
· D(a) · β(1− β)t−1 · β(1− β)k−t

=
n− 1

n
· β2(1− β)k−1

(
1
z
· (k − t) +D(a)

)
Therefore,

definitive_prob =
n−1

n · D(a) · β2(1− β)k−1

1
n ·

1
z · β(1− β)k + n−1

n · β2(1− β)k−1
(

1
z · (k − t) +D(a)

)
=

(n− 1) · D(a) · β
1
z · (1− β) + (n− 1) · β

(
1
z · (k − t) +D(a)

)
≤ z · n · β

(1− β)

�

Next, we show that player i's ability to guess the correct secret was not signi�cantly improved from
the beginning of the game. Denote by D′ the distribution over the secrets induced by the information
set I of player i containing the history h (in other word, D′ is the distribution over secrets when given
player i's share and the transcript so far). Note that D′ may be di�erent from the original D: if the
current unmasked possible secret is yt, the probability that the real secret is yt increases. For the time
being, player i's best guess is the element b′∈Y with the highest probability according to D′. Therefore,
the higher D′(b′) is, the better i's ability to guess correctly.

Claim E.4. D′(b′) ≤ definitive_prob +D(b).

Proof It is easy to see that D′(b′) is maximal when yt = b, in such a case b′ = b. Thus:

D′(b′) ≤ Pr [y = b | ` ≥ t ∧ yt = b ∧ si = k]
= Pr [y = b ∧ ` = t | ` ≥ t ∧ yt = b ∧ si = k] +

Pr [y = b ∧ ` 6= t | ` ≥ t ∧ yt = b ∧ si = k]
≤ definitive_prob +D(b)

�

Finally, if player i deviates in the current iteration he is able to retrieve the secret only when one
of the following occurs: the current iteration is de�nitive; he was not caught cheating; or he was able
to guess the correct value. As before, we require:
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definitive_prob + β +D′(b′) < ci

2 · definitive_prob + β +D(b) < ci

2z · n · β
(1− β)

+ β < ci −D(b)

2z · n · β + (1− β)β < (1− β)(ci −D(b))
β(2z · n + 1 + (ci −D(b))) < ci −D(b)

β <
ci −D(b)

(ci − 2D(b)) + 2z · n + 1
β < β0

�

F An ε-Rational Secret Sharing Scheme for the NSBC Model

Formal description of the scheme. A formal description of the dealer's algorithm described in
Section 6 can be found in Figure 6. The changes made in previous the algorithm are emphasized.

Some additional notes. The following are some additional notes regarding the suggested scheme:

Note F.1. In the new protocol we cannot prevent the short player from deviating when the de�nitive
iteration is reached by dividing every iteration into separate stages, therefore the iterations are no
longer divided. Instead, the protocol makes sure that the short player's deviation will be detected with
a high probability.

Note F.2. By simply truncating the shares to size T and adding a cell containing the real secret to
the end of each vector, we get a scheme with bounded shares length. In particular, if T is chosen such
that the game ends after the �rst T iterations with probability at least 1− ε (i.e., (1− β)T < ε), then
the suggested scheme is 2ε-rational. Note, however, that the resulting scheme is not an ε-everlasting
equilibium, and is susceptible to backward induction.
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Dealer(y, β, ε)

Denote by Πn the set of all permutation on n elements. Let F′ = GF (p) for p ≥ |Y × Πn|
prime, and identify each pair of secret and permutation in Y × Πn with an element of F′.

Denote by G(β) the geometric distribution with parameter β.

• Create the list of possible secrets:
� Select `, d ∼ G(β). Iteration ` is the de�nitive one and L = ` + d− 1 is the size of the
full list of possible secrets.

� Select at random a list of size L of possible secrets (elements of Y ), such that its `th

element is y.

� Select at random a list of size L of permutations over n elements.

• Create shares: Create n vectors, one of length ` − 1 and the others of length L. Each
vector cell corresponds to an iteration of the reconstruction protocol and consists of the
following elements:

� Stages: The number of stages in the iteration chosen according to G(β).
(see Note F.1)

� Mask: An m-out-of-n Shamir share of a randomly chosen element of F′ used to mask
the next possible secret and permutation .

� Masked secret and permutation : An element of F′ obtained by summing, over
F′, the pair of corresponding elements in the secrets and permutations lists and the
mask shared between the players in the previous cells.

� Indicator (exists only for n > m): An m-out-of-n Shamir share of a boolean value
indicating whether this iteration is de�nitive.

� Authentication information: A �tag� allowing the player to prove the authenticity
the previous elements in this cell, and a �hash function� allowing him to check the
authenticity of elements in the corresponding cells of the other vectors with probability
at least 1 − ε′ for ε′ = min{β, ε

Umax
} where Umax is an upper bound on the

payo�s that the players may receive (can be achieved with tag and hash of size
log 1

ε′ ).

An additional cell is added to the beginning each vector (�cell 0�). The cell contains an m-out-of-n

Shamir share of a randomly chosen mask to be used during the �rst iteration, and authentication

information for it.

• Assign shares: Give the short share to the player chosen to broadcast last ac-

cording to the `th permutation. Choose a random assignment of the remaining

shares to the other players.

Figure 6: The dealer's shares assignment algorithm for the NSBC model
The changes made in previous algorithm are emphasized in blue
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