
How Efficient can Memory Checking be?

Cynthia Dwork∗ Moni Naor† Guy N. Rothblum‡ Vinod Vaikuntanathan§

Abstract

We consider the problem of memory checking, where a user wants to maintain a large
database on a remote server but has only limited local storage. The user wants to use the
small (but trusted and secret) local storage to detect faults in the large (but public and un-
trusted) remote storage. A memory checker receives from the user store and retrieve operations
to the large database. The checker makes its own requests to the (untrusted) remote storage
and receives answers to these requests. It then uses these responses, together with its small
private and reliable local memory, to ascertain that all requests were answered correctly, or to
report faults in the remote storage (the public memory).

A fruitful line of research investigates the complexity of memory checking in terms of the
number of queries the checker issues per user request (query complexity) and the size of the
reliable local memory (space complexity). Blum et al., who first formalized the question, distin-
guished between online checkers (that report faults as soon as they occur) and offline checkers
(that report faults only at the end of a long sequence of operations). In this work we revisit the
question of memory checking, asking how efficient can memory checking be?

For online checkers, Blum et al. provided a checker with logarithmic query complexity in n,
the database size. Our main result is a lower bound: we show that for checkers that access the
remote storage in a deterministic and non-adaptive manner (as do all known memory checkers),
their query complexity must be at least Ω(log n/ log log n). To cope with this negative result,
we show how to trade off the read and write complexity of online memory checkers: for any
desired logarithm base d, we construct an online checker where either reading or writing is
inexpensive and has query complexity O(logd n). The price for this is that the other operation
(write or read respectively) has query complexity O(d · logd n). Finally, if even this performance
is unacceptable, offline memory checking may be an inexpensive alternative. We provide a
scheme with O(1) amortized query complexity, improving Blum et al.’s construction, which
only had such performance for long sequences of at least n operations.

∗Microsoft Research, Silicon Valley Campus, 1065 La Avenida Mountain View, CA. 94043 USA; email:
dwork@microsoft.com

†Incumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Math, The
Weizmann Institute of Science, Rehovot 76100, Israel; email: moni.naor@weizmann.ac.il. Research supported in
part by a grant from the Israel Science Foundation.

‡MIT, Cambridge, USA; email: rothblum@csail.mit.edu. Research supported by NSF Grants CCF-0635297,
NSF-0729011, CNS-0430336, Israel Science Foundation Grant 700/08 and by a Symantec Graduate Fellowship.

§IBM Research. Supported in part by NSF grants CCF-0635297 and Israel Science Foundation 700/08.

1 Introduction

Consider a user who wants to maintain a large database but has only limited local storage. A
natural approach is for the user to store the database on a remote storage server. This solution,
however, requires that the user trust the remote storage server to store the information reliably.
It is natural to ask whether the user can use his or her small (but trusted and secret) local storage
to detect faults in the large (but public and untrusted) remote storage. This is the problem of
memory checking, as introduced by Blum, Evans, Gemmel, Kannan and Naor [BEG+94] in 1991.
Since then, this problem has gained even more importance for real-world applications, see for
example the more recent works of Clarke et al. [CSG+05], Ateniese et al. [ABC+07], Juels and
Kaliski [JK07], Oprea and Reiter [OR07] and Shacham and Waters [SW08]. Large databases
are increasingly being outsourced to untrusted storage providers, and this is happening even
with medical or other databases where reliability is crucial. Another wide-spread and growing
phenomenon are services that offer individual users huge and growing remote storage capacities
(e.g. webmail providers, social networks, repositories of digital photographs, etc.). In all of
these applications it is important to guarantee the integrity of the remotely stored data.

Blum et al. formalized the above problem as the problem of memory checking. A memory
checker can be thought of as a layer between the user and the remote storage. The checker
receives from its user a sequence of “store” and “retrieve” operations to a large unreliable
memory. Based on these “store” and “retrieve” requests, it makes its own requests to the
(untrusted) remote storage and receives answers to these requests. The checker then uses these
responses, together with a small private and reliable “local” memory, to ascertain that all
requests were answered correctly, or to report that the remote storage (the public memory) was
faulty. The checker’s assertion should be correct with high probability (a small two-sided error
is permitted). Blum et al. made the distinction between online and offline memory checking.
An online checker verifies the correctness of each answer it gives to the user. An offline checker
gives only the relaxed guarantee that after a (long) sequence of operations a user can verify
whether or not there was an error somewhere in the sequence of operations. Two important
complexity measures of a memory checker are its space complexity, the size of the secret reliable
“local” memory, and its query complexity, the number of queries made to the unreliable memory
per user request. One may consider additional complexity measures such as the alphabet size
(the size of words in the public memory), and more measures such the checker’s and public
memory’s running times, the amount of public storage, etc. See Section 2 for formal definitions
and a fuller discussion.

In this work we revisit the question of designing efficient memory checkers. Our main result
is a lower bound on the query complexity of deterministic and non-adaptive online memory
checkers. We also present new upper bounds for both online and off-line memory checking.

Online Memory Checkers. The strong verification guarantee given by online memory
checkers makes them particularly appealing for a wide variety of applications. Blum et al.
construct efficient online memory checkers with space complexity that is proportional to the size
of a cryptographic key, and logarithmic query complexity. Their construction(s) assume that
a one-way function exists and that the adversary who controls the public memory is efficient
and cannot invert the function. In fact, this assumption was shown to be essential by Naor and
Rothblum [NR05], who showed that any online memory checker with a non-trivial query-space
tradeoff can only be computationally secure and must be based on the existence of a one-
way function. Even in the computational setting, the space complexity of Blum et al.’s online
memory checkers is intuitively optimal, since if the secret memory is s bits long, an (efficient)
adversary can guess it (and fool the memory checker) with probability at least 2−s. What is
less clear, however, is whether the logarithmic query complexity is essential (in a computational
setting). This is an important question, since while this logarithmic overhead is reasonable, in

2

many applications it remains a significant price to have to pay for data verification.
Where then does this overhead come from? The logarithmic query complexity is needed to

avoid replay attacks, in which the correct public memory is swapped for some older version of
it. In most applications replay attacks are a serious threat, and Blum et al. (and all other
solutions we know of) use a tree structure to overcome this devastating class of attacks. This
tree structure incurs a logarithmic overhead which is basically the depth of the tree. We begin by
asking whether it is possible to avoid the logarithmic overhead and construct memory checkers
with lower query complexity. We show that the answer is negative (even in the cryptographic
setting!) for all known and/or practical methods of designing memory checkers.

A Query Complexity Lower Bound. Consider online memory checkers, where for each
store or retrieve request made by the user, the locations that the checker accesses in the public
memory are fixed and known. We call such a checker a deterministic and non-adaptive checker.
Known checker constructions are all deterministic and non-adaptive, indeed tree authentication
structures all have this property. Our main result is a new lower bound, showing that any de-
terministic non-adaptive memory checker must have query complexity Ω(log n/ log log n). Thus
the logarithmic query complexity overhead is (almost) unavoidable for online memory checking.
This is stated more fully (but still informally) below, see Section 3 for the full details.

Theorem 3.1 Let C be a non-adaptive and deterministic memory checker for an n-index
boolean database, with space complexity s ≤ n1−ε for some ε > 0, query complexity q and a
polylog-length alphabet (public memory word size). It must be that q = Ω(log n

log log n).

Let us examine the above theorem more closely. Considering only checkers that are deter-
ministic and non-adaptive may seem at first glance to be quite restrictive. We argue, however,
that practical checkers will likely have to conform to this restriction:

An adaptive checker is one that chooses sequentially which locations in the remote storage it
reads and writes, and chooses these locations based on the contents of earlier read locations. This
means that the checker needs to conduct, for every user request, several rounds of communication
with the remote storage (the checker needs to know the contents of a location before deciding
which location it accesses next). Since this communication happens over a network, it may very
well lead to latency which results in more of an overhead than the logarithmic query complexity
of non-adaptive checkers. In addition, in cases where the memory contents are encrypted non-
adaptive memory access may be especially desirable, as the set of locations accessed reveals
nothing about the (decrypted) contents of the memory.

Another problem with adaptive checkers is that they make caching the results much more
difficult, since the actual locations needed to be stored in the faster memory change between
accesses.

A non-deterministic checker may also result in worse performance. Such a checker strategy,
with queries that are either significantly randomized or hard to predict (depending on the secret
memory), destroys locality in the user’s queries and makes it hard to utilize caching mechanisms.
In particular, user accesses to neighboring database indices would not necessarily be mapped to
checker accesses to neighboring locations in the remote storage, and repeated user accesses to
the same database index would not necessarily be mapped to the same locations in the remote
storage. For many of the applications of memory checking, this will result in an unacceptable
overhead for the remote storage server. We note that Blum et al.’s constructions, as well as all
of the constructions we present in this work, have the important property that they do preserve
(to a large extent) the locality of a user’s data accesses.

Finally, we note that the restriction on sub-linear space is essential, as the problem of memory
checking makes very little sense with linear secret memory; the checker can simply store the
entire database in reliable memory! Finally, it is interesting to ask whether the lower bound can

3

be extended to larger alphabets (we focus on polylog word lengths or quasi-polynomial alphabet
size). We do note that the best parameters attained both in our work and in [BEG+94] can be
attained with words of poly-logarithmic length.

Trading Off Reads and Writes. Is all hope of improving the performance of online
memory checkers lost in light of Theorem 3.1? We argue that this is not the case. While
we cannot improve the query complexity of online checkers beyond logarithmic, we observe
that in many applications read operations are far more numerous than write, and vice versa.
One example for frequent read operation is a database that is read frequently but updated
only periodically. An example for frequent write is a repository of observed data (say climate
measurements) that is constantly updated but polled much less frequently.

For these settings we show how to trade off the query complexity of read and write operations.
For any desired logarithm base d, we show how to build an online checker where the frequent
operation (read or write) is inexpensive and has query complexity O(logd n), and the infrequent
operation (write or read respectively) has query complexity O(d·logd n). The space complexity is
proportional to a security parameter (it can be poly-logarithmic under an exponential hardness
assumption), and the alphabet size is the logarithm of the desired soundness. The construction
uses a pseudo-random function (see [GGM86]), and can thus be based on the existence of any
one-way function. This means, for example, that if one is willing to have a polynomial (nε)
write complexity, then we can get a constant (O(1/ε)) read complexity (and vice versa). This
may be very useful for a database that is read frequently but only updated infrequently.

To achieve this tradeoff, we provide two constructions: one for efficient write and one for
efficient read. Both of these use a tree-based authentication structure, where the tree’s depth
is logd n. The efficient-write construction can viewed as a generalization of Blum et al.’s tree-
based online memory checker. The efficient-read construction is different in the way it stores
authentication information. Intriguingly, we do not know how to get a good read-write trade-off
based on UOWHFs where the checker’s memory only needs to be reliable (and not necessarily
private). Blum et al. were able to present such a construction (albeit with a nearly exponential-
size alphabet) with logarithmic query complexity, but their construction does not easily yield
itself to a read-write tradeoff. See Section 4 for the full details.

While we believe that these trade-offs are very useful for many applications, we still cannot
beat the lower bound of Theorem 3.1: the sum of read and write complexities is still at least
logarithmic in n (not surprisingly, since the above checkers are deterministic and non-adaptive).
For many other applications this may still be prohibitively expensive. This leads us then to
revisit Blum et al.’s notion of offline memory checking, where the verification guarantee of the
checker is weaker, but it is possible to achieve better performance.

An Off-Line Alternative. Blum et al. suggested the notion of an offline memory checker.
Such a memory checker gives the relaxed guarantee that after a (long) sequence of operations it
can be used to check whether there was an error. In other words, whether any value retrieved
from public memory was different from the last value stored at that location. The advantage
of offline memory checkers is that they allow much better parameters. Specifically, Blum et al.
gave a construction where for any long sequence of user operations (at least n operations) the
amortized query complexity is O(1) and the space complexity is logarithmic in n and in the
soundness parameter. Remarkably, the security of their checker is information theoretic, and
does not rely on any cryptographic assumptions.

We conclude that for applications in which the offline guarantee suffices, say when the user
does not mind that some of the data may be retrieved incorrectly as long as this is eventually
detected, the query complexity of both read and write can be reduced to O(1). It is natural
to ask what can possibly be improved in the above construction, as the (amortized) query and
space complexity seem optimal. One place for improvement is that Blum et al.’s construction is

4

highly invasive: the checker stores a significant amount of additional information in the public
memory on top of the database. Ajtai [Ajt02] showed that this invasiveness cannot be avoided
(see Appendix A for an overview of Ajtai’s results).

We focus on a different parameter. The above off-line checker only guarantees good amortized
performance for long sequences of at least n operations. We observe that for shorter operation
sequences, the amortized performance will be quite bad, as their checker needs to always scan
the entire public memory before deciding whether there were any errors. So for a k operation
sequence, the amortized query complexity will be O(n/k). In Section 5 we overcome this ob-
stacle. We present a simple and inexpensive offline memory checker where the amortized query
complexity for any sequence of operations (even a short one) is O(1). Moreover, we show that
similar ideas can be used to decrease the invasiveness of the checker, and that the invasiveness
(the amount of extra information stored in public memory on top of the database) only needs to
be proportional to the number of database locations that the checker actually accesses (instead
of always being proportional to the entire database size as in Blum at al.). We note that we
can overcome Ajtai’s invasiveness lower bound in this setting because the proof of that lower
bound considers sequences of operations that access every location in the database (again, see
Appendix A for the details).

Organization. We begin in Section 2 with definitions of memory checkers (we refer the
reader to Goldreich [Gol01, Gol04] for standard cryptographic definitions). In Section 3 we
state and prove our lower bound for the query complexity of online memory checkers. Construc-
tions of read-write tradeoffs are presented in Section 4. Finally, in Section 5 we present a
new and improved construction of offline checkers.

5

2 Memory Checkers: Definitions

A memory checker is a probabilistic Turing machine C with five tapes: a read-only input tape
for receiving read/write requests from the user U to the RAM or database, a write-only output
tape for sending responses back to the user, a read-write work tape (the secret reliable memory),
a write-only tape for sending read/write requests to the memory M and a read only input tape
for receiving M’s responses.

Let n be the size of the database (the RAM) U is interested in using. A checker is presented
with “store” (write) and “retrieve” (read) requests made by U to M. After each “retrieve”
request C returns an answer or outputs that M’s operation is BUGGY. C’s operation should be
both correct and complete for all polynomial (in n) length request sequences. Formally, we say
that a checker has completeness c (2/3 by default) and soundness s (1/3 by default) if:

• Completeness. For any polynomial-length sequence of U-requests, as long as M answers
all of C’s “retrieve” requests correctly (with the last value that C stored at that location),
C also answers all of U ’s “retrieve” requests correctly with probability at least c.1

• Soundness. For any polynomial-length sequence of U-requests, for any (even incorrect
or malicious) answers returned by M, the probability that C answers a user request
incorrectly is at most s. C may either recover the correct answer independently or answer
that M is “BUGGY”, but it may not answer a request incorrectly (beyond probability s).

Note that the completeness and soundness requirements are for any request sequence and
for any behavior of the unreliable memory. Thus we think of U and M as being controlled by a
malicious adversary. A memory checker is secure in the computational setting if the soundness
property holds versus any PPTM adversary. In this setting, if one-way functions exist, then
they can be used to construct very good online memory checkers (see [BEG+94]).

As previously noted, [BEG+94] make the distinction between memory checkers that are
online and offline. An offline checker is notified before it receives the last “retrieve” request in
a sequence of requests. It is only required that if at some point in the sequence a user retrieve
request was answered incorrectly, then the checker outputs BUGGY (except with probability s).
The task of an online checker is more difficult: if M’s response to some request was incorrect,
C must immediately detect the error or recover from it (with high probability). C is not allowed
(beyond a small probability) to ever return an erroneous answer to U . Note that after the
memory checker informs the user that M’s operation was BUGGY, there are no guarantees
about the checker’s answers to future queries.

Recall that the two important measures of the complexity of a memory checker are the size
of its secret memory (space complexity) and the number of requests it makes per request made
by the user (query complexity). The query complexity bounds the number of locations in public
memory accessed (read or written) per user request. We would prefer memory checkers to have
small space complexity and small query complexity. A memory checker is polynomial time if C
is a PPTM (in n).

A deterministic and non-adaptive memory checker is a checker C where the locations
it queries in public memory are set and depend (deterministically) only on the database index
being stored or retrieved. We call such a checker non-adaptive because it chooses the entire
list of locations to access in public memory without knowing the value of the public (or secret)
memory at any location. We note, though, that even a non-adaptive checker can decide which
values to write into those (non-adaptively chosen) locations in an adaptive manner, based on
values it reads and the secret memory. One way to think of a deterministic non-adaptive checker
is by associating with each index in the database a static set of locations that the checker accesses
when storing or retrieving that index.

1In fact in all our constructions we get perfect completeness; the checker answers all requests correctly with
probability 1.

6

Similarly, for a deterministic and non-adaptive checker, each location in the public memory
can be associated with the set of database indices that “access” it. We say that a location in
public memory is t-heavy if there are at least t database indices that access it (for store or
retrieve requests).

We say that C is a (Σ,n,q, s)-checker if it can be used to store a (binary) database of n
indices with query complexity q and space complexity s, where the secret and public memory
are over the alphabet Σ (we allow this alphabet to be non-binary).

7

3 Lower Bounds

Throughout this section we obtain a lower bound for memory checking by using restrictions of
memory checkers. When we talk about restricting a memory checker to a subset of database
indices, we start with a checker C say for databases with n indices, and obtain from it a checker C′
for databases with n′ < n indices. This is done simply by selecting a subset I of the indices that
C works on (|I| = n′) and ignoring all of the rest. Naturally, the completeness and soundness
of C carry over to C′. Intuitively, this may also mean that we can ignore some of the locations
in public memory or some of the secret memory, but we make no such assumptions in this
work. It may seem that this is a bad bargain: the number of indices is decreased without
gaining anything. However, when performing the restrictions below we gain (reduce) something
in other complexity measures such as the query complexity. Sometimes this will require making
additional changes to the checker, such as moving some locations from public to secret memory.

We will assume without loss of generality that the read and the write operations access the
same locations. This involves at most doubling the number of accesses per operation.

We now present our lower bound for non-adaptive and deterministic checkers.

Theorem 3.1. Let C be a (Σ, n, q, s) deterministic and non-adaptive online memory checker,
with s ≤ n1−ε for some ε > 0 and |Σ| ≤ npoly log n. It must be that q = Ω(log n

log log n).

of Theorem 3.1. Let q0 = q be the query complexity of the checker C. The proof proceeds by
iteratively restricting the checker, gradually lowering its query complexity until a lower bound
can be obtained. This is done by examining the memory checker and determining whether there
is a relatively large set of “heavily queried” locations in the public memory. I.e. whether there is
a polynomial size set of locations in the public memory, each of which is queried when reading or
writing many database indices. Recall that we call such heavily-queried locations in the public
memory “heavy locations”.2 If there is such a set of heavy locations, then those public memory
locations are moved into the secret memory and the query complexity of the checker is reduced
significantly. In this case we advance towards our goal of lower bounding the query complexity.
This intuition is formalized by Lemma 3.1 (the proof appears below):

Lemma 3.1. Let C be a (Σ, n, q, s) deterministic and non-adaptive online memory checker. For
every threshold t ∈ N such that n > t the following holds: If there exists m ∈ N such that there
are m or more t/m-heavy locations in public memory, then for some i ∈ [q] the memory checker
C can be restricted to a (Σ, t/2i+2, q − i, s + m)-checker.

Lemma 3.1 is used iteratively as long as there are heavy public memory locations, restricting
the memory checker to only a (large) subset of its indices while lowering its query complexity
(q). This comes at the cost of only a modest drop in the number of indices (n) and a moderate
increase in the space complexity (s). We repeat this iteratively, reducing the query complexity
until there is no set of “heavy” locations in the public memory. If we can apply the lemma many
times, then we get a lower bound on the checker’s query complexity: each application of the
lemma reduces the query complexity, so if we applied the lemma many times the initial query
complexity had to have been high.

The reason that we can apply Lemma 3.1 many times is that otherwise we are left with a
checker on many indices with no set of “heavy” locations. If there is no set of “heavy” public
memory locations, then the (possibly reduced) public memory can be partitioned into relatively
many parts that are disjoint in the sense that each part is queried only by a single index of
the database. We can restrict the checker again, but this time to obtain a checker with many
indices, relatively small secret memory and query complexity 1. This is formalized in Lemma
3.2 (proof below):

2I.e. locations accessed by many indices - more formally a location is t-heavy if there are t different queries i ∈ [n]
that access it.

8

Lemma 3.2. Let C be a (Σ, n, q, s) deterministic and non-adaptive online memory checker.
Then, for every α ∈ N such that α < n, and for every threshold t ∈ N such that n > 4t · q · log n,
the following holds:

If for every integer m ∈ {1, . . . , α}, there are fewer than m locations in public memory that
are t/m-heavy, then the memory checker C can be restricted to a (Σq, n·α/(2q ·t), 1, s/q)-checker.

Finally, we show that such a “disjoint” checker implies a contradiction. In particular, it
must have space complexity that is more or less proportional to the number of disjoint parts.
Unless the memory checker has already been restricted to very few indices (in which case we
have a query complexity lower bound), this results in a contradiction, since the checker’s space
complexity is bounded (by a small polynomial in n). The intuition that a disjoint checker must
have large space complexity is formalized in Lemma 3.3 (proof below):

Lemma 3.3. Let C be a (Σ, n, q = 1, s) deterministic and non-adaptive online memory checker,
i.e. a checker that makes only a single query, where the location that each index queries in public
memory is different. Then, s ≥ n

log |Σ| − 1.

We postpone proving the lemmas and proceed with a formal analysis. We take α = nd, for
a constant 0 < d < 1 to be specified later. We iteratively examine and restrict the memory
checker. Let Ci be the checker obtained after the i-th iteration (C0 = C is the original checker),
let ni be the number of indices in its database and si its space complexity. Taking a threshold
ti = ni

logc n , where c > 1 is a constant specified below, we check whether or not the “new” checker
Ci has a set of heavy indices in its public memory. We only iterate as long as ni > α. Formally,
there are two possible cases:

1. If Ci has a set of m ≤ α public memory locations that are at least ti/m-heavy, then by
Lemma 3.1:
For some j ∈ {1, . . . , q}, we can build from Ci a (Σ, ti/2j+2, q − j, si + α) deterministic
and non-adaptive online memory checker Ci+1.

2. If for every integer m ≤ α the checker Ci does not have a set of m public memory locations
that are ti/m-heavy, and choosing c, d such that ni > 4ti · q · log α, by Lemma 3.2:
We can build from Ci a (Σq, ni · α/(2q · ti), 1, si/q) deterministic and non-adaptive online
memory checker. If ni is reasonably large, i.e. has not been reduced by repeated iterations
of Case 1, then this will imply a contradiction.

Recall that q0 denotes the query complexity of the initial checker C, before any application of
Lemmas 3.1 and 3.2. Assume for a contradiction that q0 ≤ log n/(3c · log log n). Let j ∈ [q + 1]
be the total number of queries reduced by the iterative applications of Lemma 3.1, i.e., the
number of queries reduced by the iterations in which Case 1 occurred. Since we assumed
q ≤ log n/(3c · log log n), we know that j < log n/(3c · log log n). Thus, in the first iteration in
which Case 2 applies (say the i-th iteration in total), it must be the case that

ni ≥ n/(logc·j n · 23 log n/3c·log log n) = n/(logc·j n · 2log n/c log log n) > n1−ε/2.

Recall that we only iterate so long as ni > α, so we can choose any α < n1−ε/2. The space si

used by this restricted checker is at most s + i · α ≤ s + log n · α. As usual, ti = ni/ logc n, and
choosing c > 2 we get that

4ti · q · log α ≤ ni/(logc n · log n · d log n) < ni

Applying Lemma 3.2, we obtain a (Σq, ni · α/(2q · ti), 1, si/q)-checker. Now, by Lemma 3.3,
which bounds the space complexity of one-query checkers, we get that it must be the case that:

si ≥ ni · α/(2q · ti · log |Σ|) ≥ logc−1 n · α/(2 log |Σ|)

9

But on the other hand we know that

si ≤ s + log n · α.

We know |Σ| ≤ 2poly log n, and choose c such that logc−1 n/(2 log |Σ|) > 2 log n. We also set
α > 2s = 2n1−ε. Recall that we also needed α < ni, but this is fine since ni > n1−ε/2. In
conclusion, we set α by choosing d such that 1− ε < d < 1− ε/2, i.e. such that

2s = 2n1−ε < α = nd < ni = n1−ε/2

We get that
s > logc−1 n · α/(2 · log |Σ|)− log n · α > log n · α > 2s

This is a contradiction!

of Lemma 3.1. If there is a set M of m locations in public memory that are all t/m-heavy (i.e.
each accessed by at least t/m indices), then we “restrict” the memory checker to only work for
some of the indices that access one or more of the heavy locations. Let I ⊆ [n] be the set of
database indices that access at least one of the locations in M (the “heavy” locations).

We claim that for some i ∈ {1, . . . , q}, there are at least t/2i+2 indices in I that each access
at least i locations in M . To see this, assume for a contradiction that this is not the case. Then
the sum of the number of locations in M that are accessed by each database index (and in
particular by the indices in I) is less than:

q∑

i=1

i · t/2i+2 = t ·
q∑

i=1

i/2i+2 < t

On the other hand, since there are m locations in M that are at least t/m-heavy, the sum of
locations in M read by database indices must be at least t and we get a contradiction.

We restrict the checker to the indices in I that read at least i locations in M , and move these
locations to the secret memory. This increases the space complexity (size of the secret memory)
from s to s+m. By the above, there are at least t/2i+2 such indices. For each of them, we have
reduced their query complexity from q to q − i. The alphabet size remains unchanged.

of Lemma 3.2. If there are only a few relatively heavy locations in the public memory, then we
eliminate indices and split the public memory in “disjoint chunks”: subsets of the public memory
that are disjoint in the sense that no location in any chunk is accessed by two different indices.
This is done in a greedy iterative manner. We go over the locations in public memory one by
one; for each of them we choose one index (say j) that accesses them and eliminate any other
index that accesses a location in public memory also accessed by j. This is repeated iteratively
(for the analysis, we think of this as being done from the heavy public memory locations to
the lighter ones). After the checker cannot be restricted any more we are left with a checker
for which no two indices access the same location in public memory, and we will show that the
number of remaining indices is reasonably high.

More concretely, for any value i ∈ [1 . . . log α], we know that there are at most 2i−1 locations
that are between t/2i-heavy and 2t/2i-heavy. In fact, in the iterative restriction process, when
we consider i we have already restricted the memory checker so that no location in the public
memory is more than 2t/2i-heavy.

We go over these (at most 2i − 1) locations one by one, say in lexicographic order. For each
of them, we examine one index that accesses that location, say index j. We restrict the checker
by eliminating all “intersecting” indices: indices k such that there is a public memory location
queried by both j and k. Index j queries at most q locations in the public memory, and these
in turn are queried by at most 2t/2i indices each (since we have already restricted the checker

10

so that there is no 2t/2i-heavy location in the public memory). Thus, we eliminate at most
2t · q/2i indices per heavy location in the public memory, or at most 2t · q indices in all.

Repeating this for i ← 1 . . . log α, in the i-th iteration there are at most 2i locations that are
at least t/2i-heavy, and none of these locations can be more than 2t/2i-heavy. We go over these
locations one by one, and if they have an index accessing them that has not been eliminated
yet we restrict the checker as above. This eliminates at most 2t · q/2i indices per heavy public
memory location, or 2t · q indices in all.

In total, in all of these log α iterations, with their restrictions, the number of indices elimi-
nated is at most:

log α∑

i=1

2t · q = 2t · q · log α

If n > 4t·q·log α then we have only eliminated at most n/2 indices. Now, after all the restrictions,
there are no locations in the public memory that are t/α-heavy. We go over the remaining
indices in lexicographic order, and for each of them we restrict the checker by eliminating all
other indices that intersect its public memory accesses. Since there are no more t/α-heavy
locations in the public memory, each such restriction eliminates at most q · t/α indices.

In the end, we are left with a memory checker on at least n · α/(2q · t) indices, with the
property that no two indices access the same location in public memory. We can thus re-order
the public memory into “chunks”, of q symbols each, such that each chunk is queried only by a
single index and each index queries only that chunk. If we enlarge the alphabet to be comprised
of these q-symbol chunks, we get a checker with query complexity 1. The “price” is restricting
the checker to only n · α/(2q · t) indices and increasing the alphabet size to Σq. Since we have
increased the alphabet size, we can represent the secret memory as fewer symbols of the new
larger alphabet, so the secret memory is of size s/q new alphabet symbols.

of Lemma 3.3. The intuition is that the public memory has a single location for storing infor-
mation about each database index. When reading or writing the value of the database at that
index, the only information read from public memory is the information held in that index’s
location. Further, for two different database indices, their locations in public memory are differ-
ent. To achieve soundness the checker must (intuitively) store, for every index in the database,
separate “authentication information” in the secret memory about the value at that index’s
location. There are n indices (say holding boolean data base values), and only s · log |Σ| bits of
secret memory, and thus s should be at least on the order of n

log |Σ| .
To prove this we examine an adversary A, who begins by storing the all 0 database into

the memory checker. This yields some public memory ~p1. A then picks a random database
~r ∈ {0, 1}n and stores it into the checker: for every index in ~r which has value 1, A uses the
checker to store the value 1 into that index. Say now that at the end of this operation sequence,
the public memory is ~p2 and the secret memory is ~s2. The important thing to note is that
for indices of r whose values are 0, the value of their locations in the public memory has not
changed between ~p1 and ~p2 (since each index has a unique location in public memory that it
accesses).

The adversary A now replaces the public memory ~p2 with the “older” information ~p1.3 Now
the adversary tries to retrieve some index of the database, say the i-th (i ∈ [n]). The checker
runs with secret memory ~s2 and public memory ~p1 to retrieve the i-th bit of ~r. Note that if
~r[i] = 0, then the value of the i-th index’s location in public memory is unchanged between ~p1

and ~p2. By completeness, the checker should w.h.p. output 0 (the correct value of ~r[i]). On
the other hand, if ~r[i] = 1, then by its soundness guarantee the memory checker should w.h.p.
output either 1 or ⊥ - we take either of these answers as an indication that ~r[i] = 1. We conclude

3Note that this is a “replay attack”. As noted above, the Lemma and this section’s query complexity lower bounds
do not hold for checkers that are not required to work against replay attacks.

11

that for each index i ∈ [n], the checker can be used to retrieve the i-th bit of ~r w.h.p. The checker
achieves this using only the public memory ~p1, which is completely independent of ~r, and the
secret memory ~s2. Intuitively, ~s2 holds nearly all the information about the (randomly chosen)
vector ~r, and thus ~s2 cannot be much smaller than ~r, an n-bit vector.

More formally, suppose that s < n
log |Σ| − 1. We can view the above procedure as allowing us

to transmit a random n-bit string using only s log |Σ| bits and succeeding with high probability:
the sender and the receiver share the initial assignment to the secret memory ~s1 and the public
memory ~p1 resulting from writing the all 0 vector (all this is independent of r). Given the string
~r ∈ {0, 1}n the sender simulates writing ~r to the memory as above and the resulting secret
memory at the end is ~s2. This is the only message it sends to the receiver. The receiver runs
the above reconstructing procedure for each 1 ≤ i ≤ n, i.e. using secret memory ~s2 and public
memory ~p1 tries to read location i and decides that ~r[i] = 0 iff it gets as an answer a 0 (1 or ⊥
are interpreted that ~r[i] = 1). Since for each i the procedure the receiver is running is just what
the memory checker will run with the above adversary, the probability of error in any of the i’s
is small. Therefore we get that the receiver reconstructs all of ~r correctly with high probability.
But by simple counting this should happen with probability at most 2s log |Σ|

2n < 1/2.

12

4 Read-Write Tradeoffs for Online Checking

In this section we present two read-write tradeoffs for the query complexity of online memory
checking. These can be viewed as counterparts to the lower bound of Theorem 3.1 (all of the
memory checkers in this section are deterministic and non-adaptive). While Theorem 3.1 states
that the sum of the query complexities of read and write operations cannot be low, in this section
we show that the query complexity of either read or write can be made significantly lower, at
the cost of increasing the query complexity of the other operation (write or read respectively).

We present two trade-offs. The first gives an memory checker with efficient write operations
but expensive read operations. The second is a checker with efficient read but expensive write. In
particular, in both these tradeoffs, for any well-behaved function d(n) : N → N, the “efficient”
operation (write or read) has query complexity O(logd(n) n), and the “inefficient” operation
(read or write respectively) has query complexity O(d(n) · logd(n) n). In both cases the space
complexity is polynomial in the security parameter, and the checker uses a pseudo-random
function. For desired soundness ε the length of alphabet symbols is O(log(1/ε) + log n).

Overview of the Constructions. We proceed with an overview of the common elements
of both constructions, the details are below. Following Blum et al. (Section 5.1.2), we construct
a tree structure “on top” of the memory. Where they constructed a binary tree, we construct
instead a d(n)-ary tree. Each internal node has d(n) children, so the depth of the tree is logd(n) n.
The n leaves of the tree correspond to the n database indices. We assume for convenience w.l.o.g
that n is a power of d(n).

In both constructions we associate a time-stamp with each node in the tree. The time-
stamp of a leaf is the number of times that the user wrote to the database index that the leaf
represents. The time-stamp of an internal node is the sum of its children’s time-stamps, and
thus the time-stamp of the root is the total number of times that the user has written to the
database. We use tu to denote the current time-stamp of tree node u. The time-stamps are used
to defeat replay attacks (where the adversary “replays” an old version of the public memory).
If the adversary replays old information, then the replayed time-stamps will have smaller values
than they should.

For each tree node u, we store in public memory its value vu ∈ V and its time-stamp tu ∈ [T].
For an internal node u, its value is simply 0, for a leaf `, its value represents the value that the
user stored in the database index associated with that leaf. The root’s time-stamp is stored in
the secret reliable memory, together with the seed of a pseudo-random function (PRF). This
simply a generalization of Blum et al.’s construction (the tree is d(n)-ary and not binary).

Our two construction differ from each other and from [BEG+94] in their use of authentica-
tion tags to authenticate different nodes’ values and time-stamps. In the first construction
(efficient write), we store for each node u an authentication tag which is the PRF evaluated
on (u, tu, vu). When writing a new value to a leaf, we verify the tags of all the nodes on the
path from the root to that leaf and then update the leaf’s value and the time-stamps of all the
nodes on the path to the leaf. Thus the write complexity is proportional to the tree depth,
or O(logd(n) n). To read the value from some leaf, we read the values, time-stamps and tags
of that leaf, all nodes on the path from the root to the leaf and all their children, a total of
O(d(n) · logd(n) n) public memory locations. We verify the consistency of all the tags, and that
the time-stamp of every internal node is the sum of its children’s time-stamps. This prevents
replay attacks, as the root’s time-stamp is in the reliable memory and thus always correct. The
second construction (efficient read) is different. For each tree edge connecting a node u and
one of its d(n) children w, we store in public memory a tag which is the PRF evaluated on
(u, tu, vu, w, tw, vw). Now, to read the value from a leaf we read the values and time-stamps of
all nodes on the path from the root, and the tags of the edges. For each edge we verify that the
tag is consistent. This requires making O(logd(n) n) queries to public memory. To write a new

13

value to a leaf, read and write the values and time-stamps at the leaf and all nodes on the path
from the root to the leaf, as well as all their children and edge tags, a total of O(d(n) · logd(n) n)
queries. Verify that all tags are consistent and that the time-stamp of each internal node is the
sum of its children’s time-stamps. If all checks pass, update the proper time-stamps and the
leaf’s value. We proceed with full descriptions of the constructions.

Notation and Assumptions. Fix n and take d = d(n). Following the notation of
[BEG+94], we take T to be an upper-bound on the number of system operations, V the set of
values that can be written into a database index.4 Throughout this section we take κ(n) to be a
security parameter and we assume the existence of a one-way function that cannot be inverted
on inputs of length κ(n) by poly(n)-time adversaries. In particular, let ε be the desired sound-
ness, and take ` = log(1/ε). We will use a family of pseudorandom functions F = {fs}s∈{0,1}κ ,
where each function has range {0, 1}`. We choose κ such that no polynomial PRF adversary
has noticeable advantage in distinguishing (from black-box access) a randomly chosen fs ∼ F
from a truly random function. In particular, no efficient adversary (with black-box access to fs)
can predict fs’s value on any previously unseen input with probability noticeably greater than
1/ε. The size of the checker’s alphabet will be O(T + |V |+ 1/ε).

4.1 Efficient Write

The Construction. In this section we design a checker with cheaper write complexity at
the cost of more expensive read complexity. We will use a family of pseudorandom functions
F = {fs}s∈{0,1}κ , where each function fs is from [2n]× [T]× V to {0, 1}`. The checker chooses
a random function from the PRF collection by selecting a random key s, and stores that key in
the secret memory. For every node u with value vu and time-stamp tu, the checker stores an
authentication tag fs(u, tu, vu) in public memory.

Reading. To read the value in index i of the database, the checker reads the value, time-stamp
and tag of the leaf corresponding to that database index, as well as the values, time-stamps and
tags of all the nodes on the path from the leaf to the root and all of their children. This requires
reading a total of O(d(n) · logd(n) n) public memory locations. The checker then verifies that the
tags are all consistent with their respective values and time-stamps, and that the time-stamp
of every internal node is the sum of its children’s time-stamps. If this is not the case then the
memory checker rejects, otherwise it returns the value read from i’s leaf.

Writing. To write a value v to location i, the checker reads and writes the value, time-stamp
and tag of location i’s leaf, as well as the values, time-stamps and tags of all the internal nodes
on the path from that leaf to the root (without reading or modifying any of their children). The
checker first verifies that all the tags it read were valid (otherwise it rejects), and then updates
the leaf’s value, increases by 1 the time-stamps of the leaf and all the nodes on the path from
the leaf to the root, and updates all of these nodes’ tags with the new time-stamps (and the
leaf’s with the new value). This requires reading and writing to a total of O(logd(n) n) locations
in the public memory.

Security Analysis. Because the checker uses a pseudo-random function, which in particular
is also unpredictable, no adversary can modify any individual node’s value and time-stamp to
any combination that has not occurred before, while also avoiding detection by generating a
legal tag (with probability noticeably greater than ε, the probability of “guessing” the relevant
tag).

4In this work we focus on binary memory checkers, where V = {0, 1}, but this is easily generalized.

14

This leaves the question of replay attacks, in which the adversary cheats by replaying an
old value time-stamp combination for a node. In particular, the replayed time-stamp must be
strictly smaller than the correct one (as the time stamp is increased every time there is a write
to a node’s descendant). Say that we read the value of index i and the adversary replays an old
value and time-stamp. The root’s time-stamp (and value) are in secret memory and we are thus
guaranteed that they are correct. There must be some “lowest” node on the path from the root
to i’s leaf whose time-stamp is correct, but one of whose children’s time-stamps is too small.
The checker verifies that each node’s time-stamp is the sum of it’s children’s, so the time-stamp
read for one of that node’s children must be higher than it should be. The checker verifies all
children’s tags, and so this means that to fool the checker the adversary has to predict the tag on
a previously unseen time-stamp! Such an adversary could break the pseudo-random function.

We note that during write operations the adversary can, in fact, replay the values and time-
stamps of tree nodes without being caught (since we do not check that each node’s time-stamp
is the sum of its children’s). This is not a problem: such modifications do not compromise the
checker’s security. This only allows the adversary to obtain tags for time-stamps that are smaller
than they should be, but it will still be caught if it tries to give incorrect values or time-stamps
during read operations. This insight allows us to avoid checking the tags of all the children of
each internal node during write operations, and thus to obtain a reduced write complexity.

4.2 Efficient Read

The Construction. In this section we construct an online memory checker with cheaper
read complexity at the cost of more expensive write complexity. In addition to storing the tree
leaves, the checker uses the public memory to store information about the tree’s internal nodes
and edges (Blum et al. and the construction of Section 4.1 only store information about the tree
nodes). For each tree edge j connecting a node u and one of its d children w, we store in public
memory an authentication tag fs(u, tu, vu, w, tw, vw).

Reading. To retrieve the value at the database’s i-th index, the checker reads the value
stored at the leaf corresponding to that index as well as all the tags and values on the path
(nodes and edges) from that leaf to the root. This requires reading a total of O(logdn) locations
in public memory. The checker verifies that for each pair of nodes (u, w) along the path, if the
values and time-stamps read for these nodes were (respectively) v′u, t′u and v′w, t′w, then the tag
stored for the edge (u, v) is indeed, as it should be, fs(u, t′u, v′u, w, t′w, v′w).

Writing. To modify the value stored at the database’s i-th index (a write operation), the
checker reads and writes the value and time-stamp stored at the leaf corresponding to that index,
as well as all the values and time-stamps on all the internal nodes on the path from the root to
that leaf. In addition, for each such internal node, the checker reads the tags of all the edges
leading to its children and the time-stamps and values of all its children. This requires accessing
(reading and writing) a total of O(d·logdn) locations in public memory. The checker first verifies
that all the tags read are consistent with the time-stamps and values of their respective nodes,
and that the time-stamp of each of the internal nodes is the sum of its children’s time-stamps
(the memory checker rejects if this is not the case). The time-stamps of the nodes on the path
from the leaf to the root, and the leaf’s value, are then updated (each time-stamp is increased
by 1), and finally the checker updates all of the authentication tags accordingly.

Security Analysis. As above, the checker uses a pseudo-random function, which is in par-
ticular also unpredictable. This means that no adversary can modify any pair of adjacent nodes’
values and/or time-stamps to any combination that it has not seen before for that particular

15

pair, while also avoiding detection by generating a legal tag (with probability noticeably greater
than ε, the probability of successfully “guessing” the relevant tag).

This leaves the issue of replay attacks. Suppose an adversary successfully replays old values
or time-stamps during a read or write operation. The time-stamp of the root is in the (reliable)
secret memory, so there must be some lowest node that is accessed during the operation whose
time-stamp is read correctly, but one of whose children has a lower time-stamp than it should.
The combination of the node’s time-stamp and that of its child has not occurred before (because
the node’s time-stamp is increased whenever one of its children’s time-stamps is increased).
Thus, either the tag of the edge from the node to its child is illegal, and the checker will reject,
or the adversary has successfully predicted the value of the pseudo-random function on a point
it has not seen before. If this happens with probability noticeably greater than ε, then this
adversary can be used to break the pseudo-random function.

16

5 Offline Checking of RAMs

In this section we describe how to check “offline” the operation of a RAM, that is a sequence of
read and write (or store and retrieve) operations. To check that a RAM operates correctly we
must verify that the value we obtain from reading an address in public memory is equal to the
last value we wrote to that address. Blum et al. [BEG+94] showed an (invasive) scheme, where
if one scans the whole memory at the end of the sequence of operations, then it is possible
to detect (with hight probability) any malfunction. The cost (in query complexity) is O(1)
per operation, plus the final scan. Thus, for sequences of n operations or more, the amortized
query complexity is O(1). As discussed in the introduction, our goal is to improve upon that,
by not running a final scan of all the memory. Instead, we scan only the locations that were
changed. This implies that at any point, after t operations, we can check that the memory
worked appropriately by investing time O(t), so for any sequence of operations (not only for
long ones) the amortized query complexity is O(1). This result can be viewed as a generalization
of those in Amato and Loui [AL94].

Our ideas follow closely those of Blum et al. [BEG+94]. First, add to each memory address
a slot for the time it was written - a “timestamp”. The “time” can be any discrete variable
that is incremented whenever a write or read operation is performed. The timestamp of each
location is actually updated after either read or write. So one can view each operation as read
followed by write. The offline checker needs to verify that the set of (value, address, time) triples
which are written equals the set of (value, address, time) triples which are read. More precisely,
consider the following two sets:

R = {(v, a, t)|location a was read with value v and timestamp t}

W = {(v, a, t)|location a was written with value v and timestamp t}
Suppose that at no point in time did a read operation return a timestamp larger than the

current time (call this the timestamp condition), a clear malfunction, and suppose that the
memory is scanned (i.e. read completely) at the end of the sequence of operations. Then Blum
et al [BEG+94] showed

Claim 5.1. W = R iff the memory functioned properly.

In other words, a procedure that checks online for the timestamp condition plus an offline
test for W = R results in an offline checker for the RAM. It is useful to note that the proof
actually implies that if the timestamp condition was not violated, then actually W * R.

We modify slightly the above and note that if we scan only those locations that were actually
modified, then we can similarly say that W = R iff the memory functioned properly. This is
true, since the locations that were not written do not affect W and hence whether we access
them or not does not make R = W .

Now the question is, how do we scan only the locations that were modified? For this we keep
a linked list of all locations that were accessed. When a new location is read it is added to the
end of the list. The starting and ending locations of the list are stored in the secure memory.
To scan the locations accessed we trace the list, see below on possible implementations of the
list, the important thing is that adding a memory location to the list and checking whether a
memory location is already in the list can be done with O(1) queries (possibly amortized).

A natural question now is how to authenticate the list to ensure that an adversary did not
tamper with it (i.e. who guards the guard?). The point here is that the list itself need not be
authenticated. To address the issue of faults in the linked list, observe that as indicated above
to make the checker accept the adversary needs to “cover” W by R. If the adversary tampers
with the list, and a wrong set of locations is accessed in the final scan, then it will not cover W .
Since we do not authenticate the list, the one remaining concern is that a faulty memory can

17

even lead the scanning process into loops (by putting loops into the list). To prevent this, we
use a simple counter that bound the number of locations we traverse in the list.

To check whether W and R are the same or not, we can use the same methods as described
in Blum et al. The problem can be thought of as one in streaming, since the sets are accessed
one value at a time. We assume there is a secret hash function h mapping sets to some range
and we can compute on the fly h(R) and h(W) and compare the results. That is, h can be
updated incrementally in each operation (read or write).

Specifically, we require that where for every k there exists a family H where: (i) representing
a member h ∈ H of the family takes O(k + logn) bits (ii) the range of h ∈ H can be represented
by O(k) bits (iii) the probability that two different sets hash to the same value is at most 1/2k

(the probability is over the choice of the function in the family) and (iv) given h ∈ H an element
x and the value of H(S), the value of h(S∪{x}) can be computed in O(1) operations. There are
constructions of such functions (see e.g. Naor and Naor [NN93] and the analysis in [BEG+94]).
The procedures for reading and writing are now as follows:
Write of value v to address a

• read the value v′ and time t′ stored in address a.

• verify that t′ is less than the current time.

• update the hash h(R) of set R with (v′, a, t′).

• write the new value v and current time t to address a.

• update the hash h(W) of set W with (v, a, t).

• if location a is not in the linked list add it to the end and update the endpoint in the
secure memory.

Read of address a

• read the value v′ and time t′ from address a.

• verify that t′ is less than the current time t.

• update the hash h(R) of set R with (v′, a, t′).

• write v′ and t to address a.

• update the hash h(W) of set W with (v′, a, t).

• if location a is not in the linked list add it to the end and update the endpoint in the
secure memory.

To check the functioning of the RAM at the end of any sequence of operations, the checker
reads all the memory locations in the linked list, starting from the first location in the list, which
is stored in the secure memory. As the scan proceeds h(R) is updated accordingly. Assuming
initially W = R = 0 and the RAM is empty, h(W) should equal h(R) if the memory functioned
correctly, and should be different from h(R) with high probability if the memory was faulty.
To maintain the list of modified locations, we can use a simple linked list (see below for a more
efficient alternative). It is enough to add a pointer to each address in public memory (together
with the value and timestamp of that address). The pointer is initially NULL (or 0), and
whenever we access a public memory location for the first time we modify the pointer of the
current list tail to point to the new list end and update the list end (there is no need to update
R and W for list maintenance operations, faults in the list will be detected).

Note that we do not have to assume that the memory is initialized to be all 0 before the
beginning of the operations, since it is possible to use the “uninitialized memory trick”, where
one keeps a list of pointers to the modified locations and all other locations are 0. See [AHU74],
exercise 2.12 or [Ben86, Cox, BT93].

Since the scheme is invasive (has to change the memory), it makes the most sense when the
basic unit we read is relatively large. Suppose the length of a database word is µ, then the

18

additional timestamp takes log n bits and the pointer to the linked list takes another log n bits.
We summarize the results in the following theorem.

Theorem 5.1. For a RAM with n words of size µ there exists an invasive, offline memory
checker using n memory locations storing µ + 2 log n-bit words, which uses O(log n + log 1/ε)
private memory. Each read or write operation takes O(1) queries, and a procedure for detecting
error can be executed after any sequence of t steps at the cost of O(m) where m is the actual
number of locations that were used. An error is detected with probability at least 1− ε.

Finally, we re-examine the issue of invasiveness. We note that in fact we do not need to store
time-stamps and list-pointers for all of the database indices, just for those that are accessed.
This leads to a method for reducing the invasiveness of the checker (the total number of non-
database bits that it stores in public memory). We can maintain the timestamps and the list
itself as a separate data structure, whose size is proportional (say linear) to the number of
database indices which have been accessed. Any data structure that supports insertion and
membership queries in amortized O(1) time work. We note once more that Ajtai [Ajt02] proved
a lower bound on the invasiveness of offline memory checkers, but his proof uses long sequences
of operations that access every database index, and thus it does not apply to our setting of short
sequences of operations that access only a few locations in the database.

19

References

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores.
Cryptology ePrint Archive, Report 2007/202, 2007.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms (Addison-Wesley Series in Computer Science and Information
Processing). Addison Wesley, January 1974.

[Ajt02] Miklós Ajtai. The invasiveness of off-line memory checking. In STOC, pages 504–513,
2002.

[AL94] Nancy M. Amato and Michael C. Loui. Checking linked data structures. In Pro-
ceedings of the 24th Annual International Symposium on Fault-Tolerant Computing
(FTCS), pages 164–173, 1994.

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

[Ben86] Jon Bentley. Programming Pearls. ACM, New York, NY, USA, 1986.

[BT93] Preston Briggs and Linda Torczon. An efficient representation for sparse sets. ACM
Letters on Programming Languages and Systems, 2:59–69, 1993.

[Cox] Russ Cox. http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-
and.html.

[CSG+05] Dwaine E. Clarke, G. Edward Suh, Blaise Gassend, Ajay Sudan, Marten van Dijk,
and Srinivas Devadas. Towards constant bandwidth overhead integrity checking of
untrusted data. In IEEE Symposium on Security and Privacy, pages 139–153, 2005.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct pseudorandom func-
tions. Journal of the ACM, 33(2):792–807, 1986.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1. Cambridge Univer-
sity Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2. Cambridge Univer-
sity Press, 2004.

[JK07] Ari Juels and Burton Kaliski. Pors: proofs of retrievability for large files. In CCS ’07:
Proceedings of the 14th ACM conference on Computer and communications security,
pages 584–597, New York, NY, USA, 2007. ACM.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

[NR05] Moni Naor and Guy N. Rothblum. The complexity of online memory checking. In
FOCS, pages 573–584, 2005.

[OR07] Alina Oprea and Michael K. Reiter. Integrity checking in cryptographic file systems
with constant trusted storage. In USENIX Security Symposium, 2007.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In ASI-
ACRYPT, pages 90–107, 2008.

20

A Ajtai’s Invasiveness Lower Bound

In this Section we review Ajtai’s invasiveness lower bound for offline memory checkers. Ajtai
showed that there are no non-invasive offline checkers with logarithmic space complexity (even
if one allows small polynomial query complexity). Beyond this, he even showed a lower bound
on the amount of extra invasive information that the checker needs to store in public memory.
Ajtai defined an α-invasive checker as a checker that adds α bits of invasive information per
database index. It is assumed that this additional invasive data is accessed only when reading or
writing to its index (as in the case both in the construction of [BEG+94] and in our construction
above). Formally, he showed:

Theorem A.1 (Ajtai [Ajt02]). For every c > 0 there exists ε > 0 such that there is no ε · log n-
invasive offline memory checker with space complexity at most c · log n and soundness 1/n. This
lower bound holds even if one considers only efficient adversaries.

In this work we show that the amount of invasiveness can be reduced if one considers short
operation sequences: the invasiveness can be proportional to the number of database indices
accessed by the user. This does not contradict Ajtai’s theorem, since his theorem (and proof)
only lower-bound the amount of invasiveness required for long sequences of operations that
access all the database indices.

21

