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Abstract

How to represent a graph in memory is a fundamental data structuring question. In

the usual representations of an n-vertex graph, the names of the vertices (i.e. integers

from 1 to n) betray nothing about the graph itself. Indeed, the names (or labels) on

the n vertices are just log n bit place holders to allow data on the edges to encode the

structure of the graph. In our scenario, there is no such waste. By assigning O(log n)

bit labels to the vertices, we completely encode the structure of the graph, so that

given the labels of two vertices we can test if they are adjacent in time linear in the

size of the labels. Furthermore, given an arbitrary original labeling of the vertices, we

can �nd structure coding labels (as above) that are no more than a small constant

factor larger than the original labels. These notions are intimately related to vertex

induced universal graphs of polynomial size. For example, we can label planar graphs

with structure coding labels of size < 4 log n, which implies the existence of a graph

with n

4

vertices that contains all n-vertex planar graphs as vertex induced subgraphs.

The theorems on �nite graphs extend to a theorem about the constrained labeling of

in�nite graphs.
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1 Introduction

We will consider graphs G = (V;E) with vertex set V and edge set E � (V � V ). The

graphs we consider will not have any self-loops, i.e. edges of the form (v; v). We will also

disallow parallel edges between two vertices as the de�nition of E above indicates.

De�nition 1 A vertex induced subgraph or simply an induced subgraph G

0

of G is a vertex

set V

0

� V together with the edge set E

0

= E \ (V

0

� V

0

).

De�nition 2 An edge induced subgraph or simply a subgraph is a subset V

0

� V together

with an edge set E

0

� E \ (V

0

� V

0

).

Consider the following problems:

Problem 1 Label the vertices of an n-vertex tree with labels that are O(logn) bits long

such that given the name of two vertices, one can determine adjacency quickly.

Solution 1 Root the tree. Prelabel each vertex with arbitrary, distinct, positive integers.

Let the label on each vertex be its prelabel appended with the prelabel of its parent.

The same procedure works for in�nite trees with in�nite degrees as well.

Problem 2 Given a tree prelabeled with distinct positive integers (imagine an adversary

choosing the prelabels), label the vertex prelabeled i with O(log i) bits, so that given

two vertices one can determine adjacency quickly.

Solution 2 Root the tree. Each vertex will receive a two part label. For the �rst part of

its label each vertex takes on the prelabel of its smallest child or itself, whichever is

smaller. There is also a ag bit in the �rst part to indicate if the prelabel remembered

is its own or a child's. The second part of each vertex's label will be the �rst part of

its parent's label. A vertex with prelabel i is labeled with at most 2(log i + 1) bits.

Given any two vertices there is a linear time procedure to tell adjacency. Two vertices

are adjacent i� the �rst part of one vertex's label is the same as the second part of the

other vertex's label.

Problem 3 Give an e�cient construction of an O(n

2

) graph that contains all n-vertex trees

as vertex induced subgraphs.

Solution 3 The following works for forests as well: let the vertices be the ordered pairs

(i; j), where 1 � i; j � n: Place an edge between (i; j) and (i

0

; j

0

), i� i = j

0

or j = i

0

.

For a wide variety of graphs these three problems are essentially equivalent. We will

formalize the notions above and present them in a more general setting.
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2 De�nitions

De�nition 3 A family F of �nite graphs has a k labeling scheme if there is a polynomial

time Turing Machine T, and a function f which labels the vertices of each graph G in F with

distinct labels of no more than k logn bits (n is the number of vertices of G), such that given

two vertex labels of a graph G in F, T will correctly decide adjacency of the corresponding

vertices in G.

If a family F has a k-labeling scheme for some k, we say that it has a labeling scheme.

For a family of graphs to have a labeling scheme is clearly a desirable property. It enables

representing graphs which are members of the family implicitly, just by having available the

vertex names. For instance, in a distributed system the graph need not be stored in one

place. But whenever a processor needs to determine adjacency, it can do so only by looking

at the names of the two vertices. If the vertices of a graph were ordered by the frequency of

their usage, we would want to assign the more frequent vertices a shorter label. In general

we could have other constraints on the size of the vertex labels. Hence we de�ne constrained

labeling.

De�nition 4 A family of graphs, F, has a constrained k-labeling scheme if 8G 2 F, jGj =

n, 8p such that p assigns distinct positive integers to the vertices of G, we can associate

kdlog p(v)e bits with each vertex v and use these labels to decide adjacency e�ciently.

As mentioned above labeling schemes are related to vertex induced universal graphs

which we de�ne:

De�nition 5 Given a �nite set of graphs S, a graph G is vertex induced universal for S, if

every graph in S is a vertex induced subgraph of G. We say a family F has universal graphs

of size g(n), if for every n, there is a graph of size less than or equal to g(n), which is vertex

induced universal for the set of all graphs in F with n or fewer vertices.

It is possible to de�ne the edge induced universal graph of a set of graphs S as a graph

G which contains each graph in S as an edge induced subgraph. However in our paper we

focus on vertex induced universal graphs. So we will refer to vertex induced universal graphs

simply as universal graphs.

The rest of the paper deals with the relationship among the three concepts de�ned above.

In Section 3 we give labeling schemes for a wide variety of graph families. Section 4 discusses

constrained labeling and shows that under a very weak hypothesis, all families which have

labeling schemes, also have constrained labeling schemes. Section 5 deals with the implica-

tions of labeling on the construction of universal graphs. Section 6 and 7 outline some of

the related work and open problems.
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3 Labelable Families

In this section we show that a wide variety of families of graph have labeling schemes. We

start by showing that trees and transitive closures of trees have labeling schemes. These two

schemes will be very useful as building blocks in labeling schemes we give for other families.

We then give a labeling scheme for graphs of bounded arboricity which can be viewed as

\uniformly sparse" graphs. This yields a 4-labeling scheme for planar graphs. Next we

present a general technique that applies to many families of intersection graphs. Finally we

give a labeling scheme for c-decomposable graphs, i.e. graphs which have small separators,

that decompose the graph.

Not all families of graphs are labelable. Since, we allow only O(n logn) bits to represent

an n-vertex graph, we can represent at most 2

O(n log n)

graphs. Hence we have

Proposition 1 A family of graphs that contains more than 2


(n log n)

n-vertex graphs cannot

be labeled.

As a corollary bipartite graphs and chordal graphs are not labelable.

3.1 Trees and Transitive Closures of Trees

In this subsection we give a 2-labeling scheme for trees and transitive closures of trees. These

two schemes will be used extensively as building blocks in the rest of section 3.

Finite Trees: We give a 2-labeling scheme for trees (not necessarily bounded degree):

Given an n-vertex tree, arbitrarily choose a root, and arbitrarily prelabel the vertices with

the integers from 1 to n. For each vertex concatenate the prelabel of its parent (if any) to

its own prelabel. The new vertex labels have no more than 2 logn bits. We can now quickly

decide parenthood given two vertex labels by checking if the �rst half of one is the second

half of the other. Thus we can decide adjacency. This also works for �nite forests.

Transitive Closures of Trees: Often we are interested in the ancestorhood relation in

trees rather than the adjacency relation. Let F be the family of transitive closures of rooted

�nite trees. The adjacency relation in F is the same as the ancestorhood relation in rooted

�nite trees. We can �nd a 2-labeling scheme for F: Let T be a tree and let T' be the

transitive closure of T. The label we assign each vertex is an interval on the integer line.

We traverse T in post-order. To each vertex we assign the interval between its smallest

numbered descendant and its largest numbered descendant. A vertex u is an ancestor of v

if and only if the interval for u contains the interval for v.
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3.2 Sparse Graphs or Graphs with Bounded Arboricity

Let G be a graph and let H range over all possible vertex induced subgraphs of G. Then

the arboricity of G is de�ned to be

max

H

jE(H)j

jV (H)j � 1

where jE(H)j is the number of edges in H and jV (H)j is the number of vertices in H. Nash-

Williams [11] showed that the edges of a graph G with arboricity k can be decomposed into k

forests. This means that there is a k+1 labeling scheme for graphs of arboricity k. Prelabel

the vertices arbitrarily with distinct integers from 1 to n. Concatenate to each vertex label,

the label of its parent in each of the k forests. The ordered k + 1 tuple is then the label of

the vertex. To decide adjacency of two vertices just check if one is the parent of the other in

any of the forests. It is clear that adjacency can be tested e�ciently. Using ow techniques,

Picard and Queyranne [13] have shown that the forest decomposition of a graph and thus

its labels can be computed e�ciently.

Several families fall into this category and hence have labeling schemes:

1. Graphs of bounded degree d clearly have arboricity bounded by bd=2c+ 1.

2. Graphs of bounded genus g fall in this category, since they have at most 6(g� 1) + 3n

edges and hence can be labeled succinctly.

3. In the special case of planar graphs which have arboricity 3, this technique yields a

4-labeling scheme.

3.3 Intersection graphs

In this section we consider many families of graphs which are characterized as intersection

graphs for certain types of sets. The general method used is to try to �nd a succinct

representation for the sets representing the vertices.

De�nition 6 An interval graph is a graph where each vertex can be represented by an in-

terval on the real line such that two vertices are adjacent i� the interval representing one

vertex intersects the interval representing the other.

The technique for labeling interval graphs is similar to the one for labeling transitive

closures of trees. This yields a 2-labeling scheme. Adjacency can be tested in linear time in

the length of the labels. In this case the de�nition of the sets gives us a labeling scheme.

This is so for a number of families: circle graphs, circular arc graphs, permutation graphs,

graphs with bounded interval number. See Golumbic for de�nitions of these families [8].

Path Graphs: Path graphs are graphs where each vertex is represented by a path in a tree.

Two vertices are adjacent i� the paths representing them intersect. There are several kinds

of path graphs mentioned in the literature. See Monma and Wei for details [10]. We will
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show how to label path graphs where the paths are undirected and two paths intersect if they

have a vertex in common. Similar methods will work for all path graph families, provided

the path representation is given. To label path graphs, we �rst label the transitive closure

of the tree containing all the paths. Now we can decide ancestorhood in the tree quickly.

To label the vertices of the path graph we concatenate the labels of the beginning, the

apex, and the end of the path representing that vertex. Here the apex of a path is the vertex

along the path closest to the root. To test adjacency of two vertices we have to test if the

apex of one vertex is sandwiched between the apex and an end vertex of the other path.

This requires at most six adjacency tests in a transitive closure of a tree. Finding the path

representation and thus the labeling of a graph can be done e�ciently [7]. It is interesting

to note that the closely related family of chordal graphs which can be characterized as the

intersection of subtrees in a tree cannot be labeled.

3.4 c-Decomposable Graphs

De�nition 7 A graph G is c-decomposable if for all subgraphs H with more than c vertices,

there exist c vertices such that their removal causes H to be disconnected with no component

containing more than 2jHj=3 vertices [6].

To label a c-decomposable graph G we construct a tree decomposition T, of G in the

following manner. Let S be a c-separator for G. Then S is assigned to the root of T. If H

1

and H

2

are the two components obtained by removing S from G, the left subtree will be the

tree for H

1

and the right subtree will be the tree for H

2

.

Every vertex v of G occurs in a vertex t(v) in T. T is binary, has depth no greater than

log

3=2

n, and each vertex of T is assigned at most c vertices of G. Assume an arbitrary

ordering among the vertices of the graph assigned to the same vertex of T. Two vertices in

G can be adjacent only if they are assigned to two vertices of T such that one is an ancestor

of the other.

To label G, for each vertex v, we remember the following:

1. The path in the tree from the root to t(v) which is of length at most log

3=2

n,

2. The rank of v in t(v) which is an arbitrary number from 1 to c

3. For each vertex of the tree, s, along the path from the root to t(v), a c-bit vector

giving adjacency information with all the vertices in G assigned to s. This is at most

c � log

3=2

n bits.

Given two vertices u and v of G we determine if t(u) is an ancestor of t(v) (or vice versa).

If so we determine the depth i of the ancestor, say u. The i

th

c-bit vector in v's label has a

bit at the position corresponding to u's rank which tells if u and v are adjacent. This is an

e�cient procedure to determine adjacency.
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4 Constrained Labeling Schemes

In this section we prove that any family of graphs that has a labeling scheme also has a

constrained labeling scheme as long as it is closed under vertex deletion. For example, let

F be the family of graphs bounded by degree k. A constrained k-labeling scheme for F is

obtained by associating with each vertex its own prelabel concatenated with the prelabels of

its neighbors with smaller prelabels. We have already seen a constrained 2-labeling scheme

for trees. Since graphs of bounded arboricity can be decomposed into a constant number of

forests, we also have a constrained labeling scheme for these graphs. In fact, all the families

of graphs for which we have given labeling schemes, also have constrained labeling schemes.

Theorem 1 A family of �nite graphs which is closed under vertex deletion, has a labeling

scheme i� it has a constrained labeling scheme.

Proof: We will call a family F of graphs hereditary if it is closed under vertex induced

subgraphs, i.e. under vertex deletion. Let G = (V;E) be a graph belonging to a family F,

and let S = (V

0

; E

0

) be some subgraph of G. An extension X of S is de�ned to be a subset

of V � V

0

, such that 8x; y 2 X, the neighbor sets of x and y in G intersect V

0

in distinct

sets.

For a family F, we de�ne an extension function, f

F

, as follows: f

F

(n) is the cardinality

of the largest extension of any n-vertex, vertex induced subgraph of any graph G 2 F. With

this de�nition the proof of the theorem reduces to the proof of the following two lemmas.

Lemma 1 If F is hereditary, k

1

-labelable and f

F

(n) 2 O(n

k

2

) , then F is constrained 4k

1

k

2

labelable. Note that the constant is independent of the prelabeling function and is entirely

determined by graph-theoretic properties of the family, F.

Proof: Let G 2 F, a k

1

-labelable family. Let p(v) denote the prelabel associated with vertex

v. Let G

i

denote the induced subgraph on the vertex set, fv : 2

2

i�1

� p(v) < 2

2

i

g. De�ne G

0

to be the singleton set consisting of the vertex with prelabel 1. The idea is that each vertex

in G

j

will remember its neighbors in G

i

8i � j. In fact, the label for a vertex in G

j

will

be a j + 1-tuple, the i

th

component of which contains information about neighborhood with

vertices in G

i

, i 2 [0; 1; :::; j]. Starting with 0, we consider the graphs G

i

in turn. We label

G

i

together with a maximal extension E

i

. The labels assigned here will be the i

th

component

of the vertex labels. For any vertex v there is a vertex u 2 E

i

such that v and u have the

same neighborhood in G

i

since E

i

is maximal. The i

th

component of v's label will then be

the same as the i

th

component of u's label. We now delete the vertices of G

i

and proceed to

G

i+1

.

It remains to prove that the labels assigned above satisfy the requirements of a constrained

labeling scheme. The i

th

component of a label comes from the labeling of G

i

with its

extension. If G

i

has n vertices, then by our hypothesis on F, the maximal extension contains

at most n

k

2

vertices. Labeling a graph in F with n + n

k

2

vertices requires k

1

(k

2

+ �) logn

bits, where �! 0 as n!1, provided k

2

� 1. By the de�nition of the G

i

, n is less than 2

2

i

.
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Hence the i

th

component of a label contains approximately k

1

k

2

2

i

bits. Hence a vertex in G

j

has in all

P

j

i=0

k

1

k

2

2

i

bits. This sum is bounded by k

1

k

2

2

j+1

. But the smallest prelabel in

G

j

is 2

2

j�1

and the log of this value is 2

j�1

. Hence the label size is bounded by 4k

1

k

2

times

the size of the prelabel.

Finally, these labels can be used to determine adjacency e�ciently. Given two labels, let

the vertex with the smaller prelabel belong to G

i

. Then adjacency can be tested by looking

at the i

th

components of both labels.

Conversely the following lemma shows that if the extension function is superpolynomial,

then the family of graphs does not even have a labeling scheme.

Lemma 2 If F is hereditary and the extension function is super-polynomial, then F is not

labelable.

Proof: Let F be a family of graphs with super-polynomial extension. Let f

F

(n) be n

�(n)

where �(n)!1 as n!1. We have a sequence of graphs, G

1

; G

2

; : : : such that G

n

contains

a subgraph, H

n

, with n vertices and H

n

has an extension of cardinality at least n

�(n)

. We

will prove that there are more than 2

O(n logn)

n vertex graphs in F, thereby proving that F

cannot be labeled.

To H

n

we can adjoin n vertices arbitrarily chosen from the extension. The induced

subgraph on these 2n vertices is in F. We can choose the n vertices from the extension in

 

n

�(n)

n

!

di�erent ways. This is approximately n

n�(n)

choices of graphs. Some of the graphs

we get may be isomorphic. However, each isomorphic copy can occur at most

 

2n

n

!

n!

times, since �xing the vertices of H

n

determines the other vertices as well. Thus, in all we

obtain approximately n

n�(n)

=(2n)

n

distinct graphs with 2n vertices. This number is n


(n�(n))

which is 2


(n log n�(n))

.

This concludes the proof of Theorem 1.

As a corollary we have constrained labeling schemes for all families we have discussed in

section 2. Theorem 1 has consequences for the labeling of in�nite graphs:

Theorem 2 Any in�nite graph with the property that the family consisting of all its �nite

vertex induced subgraphs has a labeling scheme, has a constrained labeling scheme.

Proof: Let G be an in�nite graph and let F be the family of all �nite, vertex induced

subgraphs of G. Clearly F is hereditary. Therefore, by Theorem 1, F has a constrained

labeling scheme. Consider the sequence S

0

of subgraphs of G, G

1

; G

2

; : : : where G

i

is the

induced subgraph on all vertices with prelabels � i. We have constrained labelings for all

the G

i

; any vertex has a �nite prelabel, and therefore only �nitely many possibilities for a

label. Thus the vertex with prelabel 1 is labeled with the same label l

1

in�nitely often in S

0

.

De�ne S

1

to be the in�nite subsequence where vertex 1 gets label l

1

. Vertex 1 is assigned the

label l

1

. Continuing in this manner, for the vertex prelabeled i, we can �nd a subsequence

8



in S

i�1

where it is labeled with some l

i

in�nitely often. Vertex i gets the label l

i

and S

i

is

the corresponding subsequence of S

i�1

.

Corollary 1 The in�nite version of all the classes discussed above has a constrained labeling

scheme.

5 Labeling Schemes and Universal Graphs

Labeling schemes and vertex induced universal graphs are closely related.

Theorem 3 If a family F has a k-labeling scheme, then it has universal graphs of size n

k

constructible in polynomial time.

Proof: Consider the polynomial time Turing machine T, to determine adjacency given two

vertex labels of a graph in F. Form the graph U with vertices labeled from 1 to n

k

, placing

an edge between a and b i� T(a,b) says \adjacent". U must contain all graphs in F with n

or fewer vertices, since all these graphs receive labels no greater than n

k

.

Note that we can determine adjacency in U in time polynomial in the length of the

vertex names. Hence, families with labeling schemes have e�ciently constructible universal

graphs. Furthermore the labels on the vertices of the universal graph make the embedding

of a graph in the universal graph easy to �nd. To embed a graph G in its universal graph,

all that is required is to label G. The labels then give the information about the embedding.

As a non-trivial example, planar graphs have a 4-labeling scheme and hence have n

4

sized

universal graphs.

6 Related Work

Several authors have worked on related problems. Breuer [3] and Breuer and Folkman [4]

considered the problem of labeling vertices such that adjacency would be determined by the

Hamming distance of the labels. This is a restricted labeling scheme. They prove that this

can be done for any graph; however, the length of the labels could be very large compared

to logn.

Turan [15] considered the problem of representing a graph as succinctly as possible. But

the representation is global; it gives an e�cient representation for the whole graph without

necessarily partitioning the information into small chunks for each vertex. In this context

it is clear that our labeling schemes always yield O(n logn)-bit representations of all graphs

which belong to labelable families. Furthermore from the representation of any graph it is

easy to derive the representation of any of its vertex induced subgraphs.

Fredrickson and Janardan [6], Santoro and Khatib [14] and Peleg and Upfal [12] consid-

ered the question of storing routing information at the vertices of a packet switching network

so as to compute near-optimal routes. Again, they look at the overall storage requirements
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rather than the requirements on a per vertex basis. This work has recently been extended

to limit the amount of storage in every processor [1].

A number of papers have considered the question of universal graphs for a family of

graphs. Most of these papers have focused on edge induced universal graphs which have

often just been called universal graphs. In this paper we reserve the term `universal graph'

for vertex induced universal graphs and we refer to edge induced universal graphs explicitly.

A graph G is edge induced universal for a set of graphs S if every graph in S is a subgraph

of G.

The important issue in constructing edge induced universal graphs is minimizing the

number of edges. Bhatt et al. [2] consider the question of constructing n vertex edge induced

universal graphs for n vertex bounded degree trees and planar graphs. They show that for

bounded degree trees there is an edge induced universal graph with cn edges where c is a

constant depending only on the degree bound. For bounded degree planar graphs they show

an edge induced universal graph with O(n logn) edges.

Recently Chung [5] has shown how to construct an edge induced universal graph for n

vertex trees having n vertices and O(n logn) edges. For planar graphs [5] gives a bound

of O(n

3

=2) on the number of edges in the edge induced universal graph. [5] also combines

these results with the techniques of our paper to improve the bounds on the sizes of (vertex

induced) universal graphs for trees and planar graphs. Speci�cally [5] proves that there is a

graph with O(n logn) vertices and O(n

2

) edges that contains all n-vertex trees as induced

subgraphs and that there is a graph with O((n logn)

3

) vertices and O(n

6

) edges that contains

all planar graphs on n vertices.

7 Open Problems

We know from Proposition 1 that any labelable family has at most 2

O(n log n)

n-vertex graphs.

The natural question is whether all such families which are hereditary have a labeling scheme.

Although this paper produces `small' universal graphs for various families, the question

of matching upper and lower bounds for the sizes of universal graphs for these families still

remains open.

All our results for labeling graphs are `static'. It is often useful to consider dynamically

changing graphs where vertices get added and deleted. Can labeling be done in such a

manner as to permit quick updates of the labels?

Can the ideas for labeling graphs be extended to hypergraphs? If this could be done

dynamically as well it would have applications to databases.
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