
Implicit O(1) Probe Search

�

Amos Fiat

Department of Computer Science

Tel-Aviv University

Tel-Aviv, Israel

Moni Naor

IBM Research Division

Almaden Research Center

650 Harry Rd

San Jose, CA 95120

Abstract

Given a set of n elements from the domain f1; : : : ;mg, we investigate how

to arrange them in a table of size n, so that searching for an element in the

table can be done in constant time. Yao (\Should Tables be Sorted", JACM,

28(1981) pp. 615-628) has shown that this cannot be done when the domain is

su�ciently large as a function of n.

We give a constructive solution when the domain m is polynomial in n,

the number of elements, and give a nonconstructive proof for m no larger than

exponential in poly(n). We improve upon a result of Yao and give better

bounds on the maximum m for which implicit O(1) probe search can be done.

We achieve our results by showing the tight relationship between hashing and

certain encoding problems which we call rainbows.

Key words: hashing, perfect hashing, spatial complexity, Ramsey Theory,

randomness in computation

AMS(MOS) subject classi�cation: 68P05, 68P10, 68Q05, 68R05, 68R10

�

Most of this work was performed while both authors were at UC Berkeley. The work of the �rst

author was supported by a Weizmann Postdoctoral Fellowship and by NSF Grants DCR 84-11954

and DCR 85-13926. The work of the second author was supported by NSF Grants DCR 85-13926

and CCR 88-13632.

1

1 Introduction

The problem addressed in this paper is searching a full table: A set S � f1; : : : ; mg

of size n is to be stored in a table T of size n, where every table entry holds a single

element of S. Given x 2 f1; : : : ; mg the goal is to locate x in the table or to indicate

that x =2 S, while probing the table as few times as possible. We assume that n and

m are known to the searcher.

Yao [8] has shown that if no storage is available in addition to the table T , then

there is no table organization that enables an element to be located in less than logn

probes. We refer to a table organization that requires no additional storage as an

implicit scheme. Yao's proof assumes that the domain size m is much larger than the

number of elements n. This immediately raises the following two questions:

1. For what values of m (relative to n) does an implicit O(1) probe search scheme

exist?

2. Given that an implicit scheme does not exist, how much additional storage is

required to ensure O(1) search?

In [4] Fiat, Naor, Schmidt and Siegel show that if m = O(n) then search can be

performed in O(1) time without any additional storage. As for the second question,

Fredman, Koml�os and Szemer�edi [5] show that one probe search can be performed

with O(n

p

logn + log logm) additional bits of storage. IN [4] an O(1) probe scheme

is given that requires only O(logn + log logm) additional bits of storage.

We give an implicit O(1) probe search scheme for a domain of size m which is

polynomial in the number of elements n. We prove that an implicit scheme exists

whenever m is bounded by 2

poly(n)

, based upon a probabilistic construction. It then

follows from [4] that O(log logm) additional bits are su�cient for any m.

We provide a re�nement to Yao's theorem mentioned above which yields a better

bound on the maximum m for which implicit O(1) probe search schemes exist. Our

proof technique gives a lower bound tradeo� between the number of probes and the

size of the domain that allows implicit search. In particular, if O(1) probe implicit

search is possible then we can show that

m � 2

2

2

�

�

�

2

n

o

O(1):

Yao's proof technique obtains a tower whose height depends on n.

2

These results are obtained by means of a class of structures we call rainbows. A

t-sequence over a set U is a sequence of length t, without repetitions, of elements in

U . A (c;m; n; t)-rainbow is a coloring of all t-sequences over f1; : : : ; mg with c colors

so that for any set S � f1; : : : ; mg, jSj = n, all c colors occur in the coloring of the

t-sequences over S. We show that the existence of (c = n;m; n; t = O(1))-rainbows is

essentially equivalent to the implicitO(1) probe search problem for a set of n elements

chosen from the domain f1; : : : ; mg.

The relationship between rainbows and implicit O(1) probe search schemes is

speci�ed by the following theorems:

Theorem 1 For m;n, let c = max(n; logm). The existence of a (c;m; n; t = O(1))-

rainbow yields an implicit O(1) probe search scheme for n elements from the domain

f1; : : : ; mg.

Theorem 2 Given an implicit O(1) probe search scheme for n elements chosen from

the domain f1; : : : ; mg, we can construct an (n;m; n; t = O(1))-rainbow.

To motivate rainbows we start in Section 2 by showing how they can be utilized

to provide virtual memory.

Theorems 1 and 2 are proved in Sections 3 and 4. Section 5 contains a proba-

bilistic construction for a (c = n;m = 2

poly(n)

; n; t = O(1))-rainbow, and an explicit

construction for a (c = n;m = poly(n); n; t = O(1))-rainbow. Thus, by Theorem 1,

achieving the bounds claimed in the beginning of this section.

From their de�nition it is apparent that rainbows are related to Ramsey Theory.

Indeed, the impossibility results we have are derived from Ramsey Theory, and are

expressed in terms of Ramsey numbers.

In Section 6 we show bounds on the maximal m, as a function of n, for which an

(n;m; n; t = O(1))-rainbow exists. Thus, Theorem 2 gives bounds on m for which

implicit O(1) probe search schemes exists. Section 6 also discusses the connection

between rainbows and colorings of the uniform hypergraph.

Section 7 deals with the relationship between the rainbow structure and other

structures, called dispersers, proposed in the literature (for completely di�erent ap-

plications). Speci�cally, we show that if an explicit construction for a certain kind

of dispersers is possible, then we can �nd an explicit construction for an implicit

O(1) probe search scheme for m which is n

log n

. For these dispersers Sipser [7] gave a

probabilistic construction.

3

2 Rainbows Provide Virtual Memory

We now show how Rainbows can be used to simulate additional memory. The virtual

memory problem with parameters c; n

0

; t; l is de�ned below:

Virtual Memory Problem

Given:

� A set R = fr

1

; r

2

; : : : ; r

n

0

g, where 1 � r

j

� m for 1 � j � n

0

.

� A series of values v

1

; v

2

; : : : ; v

l

where 0 � v

i

� c� 1 for 1 � i � l.

Arrange the elements of R in an array A of size n

0

(put each element of R in a

di�erent location) so that given 1 � j � l, v

j

can be reconstructed (decoded) quickly,

via t accesses to A.

Note that we do not require anything about locating elements of R, only that they

will reside somewhere in A.

The next lemma shows the relationship between this problem and the existence

of rainbows.

Lemma 1 Given a (c;m; n; t)-rainbow C, the virtual memory problem for parameters

c; n

0

; t; l such that n`� tl � n can be solved.

Proof: Divide the �rst t � l locations of the array A into blocks of size t. The elements

of R should be arranged in A so that the color assigned by C to the jth block, i.e.

to the sequence hA[jt+ 1]; : : : A[(j + 1)t]i, is v

j

. To achieve that, a greedy algorithm

can be applied:

Greedy Encoding

� Set U = R

� For j = 1 to l

{ Find a sequence s colored v

j

in U

{ Put the sequence s in the jth block of A

{ U U n s

� Arrange U in the rest of A arbitrarily

4

Throughout the execution of the loop the number of elements in U is n

0

� jt � n.

Hence there is a sequence in U colored by C, and the �nd step in the algorithm always

succeeds.

This arrangement means that in order to reconstruct v

j

, one has to determine the

color of the jth block under C and this can be done via t probes to A. This method

is constructive if the color of a sequence under C can be determined e�ectively. 2

3 Rainbows Yield Implicit O(1) Probe Search

Our goal in this section is to prove Theorem 1. This section is strongly dependent

on [4], which is the source of our techniques. A reader not familiar with the paper

should be able to understand the major steps explained hereinafter.

We note the following theorem from [4]:

Theorem 3 [4] n elements from the domain f1; : : : ; mg can be arranged in a table of

size n so that O(1) probe search is possible, provided O(logn + log logm) additional

bits of storage are available.2

We will concentrate on proving a slightly weaker version of Theorem 1:

Theorem 4 For m;n, let c = max(n; logm). The existence of a (c;m; n; t = O(1))-

rainbow yields an implicit O(1) probe search scheme for 4n elements from a domain

of size m.

Later, we will show that the rainbow construction is robust in that the con-

stants (4n) are irrelevant, a (c;m; n; t = O(1))-rainbow can be translated into another

(c

e

1

; m

e

2

; n

e

3

; t

0

= O(1))-rainbow for arbitrary �xed exponents e

1

; e

2

; e

3

> 0.

It now might seem trivial to prove Theorem 1, given Theorem 3: Given 4n elements

from a domain of sizem, we encode the O(logn+log logm) bits required by the [FNSS]

scheme above by choosing O(1) groups of t elements, and ordering the elements in

some �xed set of locations in the table as in the greedy encoding. During the search,

the O(1) special elements chosen for the encoding are read, if the search value is

not found then the elements are interpreted under the rainbow interpretation as

representing the extra bits of storage required by the scheme in [4].

Unfortunately, moving the required elements to their position as required by the

encoding ruins the original order suggested in [4]. To prove our claim we must start

afresh.

5

Given a set of n keys, S � f1; : : : ; mg, Fredman, Koml�os and Szemer�edi [5]

describe how to �nd a perfect hash function f : f1; : : : ; mg 7! f1; : : : ; ng with the

property that f is one-to-one and onto when limited to the domain S. This function

requires a description of O(log logm) + o(n logn) bits. The description is split into

O(1) words of size O(log logm+logn) bits, plus an additional o(n) words of O(logn)

bits each. Evaluating the function f requires reading only O(1) of these words.

We say that S is in the natural order in the table T relative to f if T [f(x)] = x,

x 2 S. The natural order is easy to search, given f 's description. Another order which

is easy to search is obtained by applying an arbitrary permutation � : f1; : : : ; n=2g 7!

f1; : : : ; n=2g to the �rst half of the table and applying �

�1

to the second half. (For

1 � i � n=2 set T [�(i)] := T [i], for n=2 < i � n set T [�

�1

(i�n=2)+n=2] := T [i+n=2]).

The idea is that both � and �

�1

are easy to compute. To compute �

�1

(i) simply

evaluate f(T [i]), to compute �(i) evaluate f(T [i + n=2]) � n=2. As both � and �

�1

can be computed with one probe to the table, search can be done by performing two

probes to the table.

This is a variation of Feldman's involution trick, as presented in [2].

The Method:

� Find an perfect hash FKS-function f for the 4n elements, as described in [5].

� Divide the elements into two sets depending whether f(x) � 2n or f(x) > 2n.

� Encode the description of f by arranging the elements x with f(x) � 2n in

the �rst half of T using the greedy encoding of Section 2. By Lemma 1 this is

possible.

� The arrangement de�nes a permutation � of the elements in the �rst half of T ,

so organize the elements x with f(x) > 2n in the second half of the table as

required under �

�1

.

Searching for an element now requires decoding O(1) words of the description of

the FKS-function. Each decoding requires probing the table at O(1) locations. The

natural order can be reestablished by appropriately computing either � or �

�1

, each

of which requires one probe plus O(1) probes to read the [5] function description.

Overall, search requires O(1) probes. 2

6

4 Implicit O(1) Probe Search Yields Rainbows

In this section we show that rainbows and O(1) probe search schemes relate in the

other direction as well; i.e., given a search scheme we show how to construct a rainbow.

More speci�cally, we prove a re�ned version of Theorem 2:

Theorem 5 Given an implicit t-probe search scheme for n elements from the domain

f1; : : : ; mg, an (n;m; n; t + 2 log t)-rainbow can be constructed.

Proof: The sequences are assigned colors based on simulating a search scheme, the

colors 1; : : : ; n correspond to locations 1; : : : ; n in some imaginary search array. The

idea is that in a t-sequence there is enough information to simulate a t probe search.

I.e., given a t-sequence over f1; : : : ; mg, e

1

; e

2

; : : : e

t

we simulate a search for e

1

in the

imaginary array, where e

i+1

, 1 � i � t� 1, is the element probed at step i. Since the

location probed at step i is determined by the search value and the elements probed

in steps 1 through i � 1, we know the location in the imaginary array at each step

of the simulation. The color assigned to the sequence is the last location we are to

probe.

The only problem with this description is that e

1

might be probed at any of the

t steps, not necessarily the last, but our sequences do not have repetitions. We can

use log t bits to indicate the step number, j, at which e

1

is probed. This can be done

by dedicating a pair of elements is allocated for each bit of j. If the elements are in

order they encode 0, otherwise 1. We assume that these elements are at the end of

the sequence, that is elements e

t+1

; e

t+2

; : : : ; e

t+2 log t

.

To summarize, the color assigned to the sequence

e

1

; e

2

; : : : ; e

t

; e

t+1

; : : : ; e

t+2 log t

is the location of e

1

in the array for which the search is being simulated, where e

1

is encountered in the step encoded by e

t+1

; : : : ; e

t+2 log t

. Sequences that cannot be

interpreted in such a fashion are colored arbitrarily.

Claim 1 Given a set S � f1; : : : ; mg of size n, and any color 1 � c � n, there is a

t+ 2 log t-sequence over S which is colored c.

Proof: Assume that the set S is arranged in the array A so that implicit t-probe

search is possible. Consider the sequence consisting of the elements probed in A

when searching for A[c], concatenated to 2 log t elements in S not appearing in the

probe sequence whose order encodes the step number at which cell c is probed. This

sequence is colored c, and consists only of elements in S. 2

7

5 Rainbow Construction

This section provides an explicit construction of rainbows when the number of colors

c = n and the length of the sequence t is a constant. We start with a construction

for a domain m that is quadratic in the number of elements n (Lemma 2). The ideas

behind this construction are later used in showing how to reduce a problem with

domain m to another problem with domain

p

m (Lemma 3) . This yields an explicit

recursive construction for any m that is polynomial in n (Theorem 6). Theorem 6

yields as a corollary that implicit O(1) probe search scheme is possible when m is

polynomial in n. We conclude the section by showing that a probabilistic construction

is good even when m is exponential in n (Theorem 7).

Lemma 2 For any prime p, there is an explicit construction of a (c = n;m = p

2

; n =

p+ 1; t = 2)-rainbow.

Proof: Consider a 1-1 mapping from all elements e 2 f1; : : : ; mg to pairs (x; y) such

that 0 � x; y � p � 1. (For instance, x = e (mod p), y = (e � x)=p (mod p).)

Given an element in f1; : : : ; mg, we will set its value to the value of the mapping.

Color the sequence hu; vi, u = (x

1

; y

1

), v = (x

2

; y

2

), with the color (y

2

� y

1

)=(x

2

�

x

1

) (mod p). If x

2

= x

1

then color the sequence hu; vi with the color p. We have

colored all edges of the full directed graph on m vertices. Note that the sequence

hu; vi is colored as the sequence hv; ui, hence we can consider the coloring as that

of a complete undirected graph. To prove that this is a good coloring we need the

following:

Claim 2 Consider the edge induced subgraph G

i

obtained by choosing all edges of

color i. G

i

consists of p vertex disjoint cliques of size p.

Proof: First, note that every vertex u = (x; y) has exactly p � 1 directed edges

(u; v

j

= (x

j

; y

j

)) colored i, for all 0 � i � p. For i = p these are simply pairs

(x; y

j

), y

j

6= y; for i < p the x

j

and y

j

values are the p� 1 solutions to the equation

(y

j

� y)=(x

j

� x) = i (mod p).

To show that the undirected induced subgraph consists of cliques, assume that

the hu; vi and hv; wi sequences are colored i: then the hu; wi sequence must also be

colored i. If u = (x

1

; y

1

), v = (x

2

; y

2

) and w = (x

3

; y

3

) either i = p in which case

y

1

= y

2

= y

3

and (u; w) is also colored p or i < p in which case (y

2

� y

1

)=(x

2

� x

1

) =

8

(y

3

�y

2

)=(x

3

�x

2

) = i (mod p). It now follows that (y

3

�y

1

)=(x

3

�x

1

) = i (mod p).

2

Remark: Note that all vertices u

j

, u

j

= (x

j

; y

j

), belonging to the same clique in G

i

,

have the same value y

j

� ix

j

(mod p). This means that we can identify the clique

in G

i

containing a vertex u.

We can now resume the proof of the lemma: Given a set S � f1; : : : ; mg of size

n = p + 1, for all 0 � i � p at least two elements u; v 2 S belong to the same clique

in G

i

. This means that both sequences hu; vi and hv; ui are colored i. 2

To construct a rainbow for m polynomial in n we use a recursive construction. We

explain how to use the construction above to transform the problem from a domain

of size m to a domain of size

p

m, by concatenating two elements to each sequence

in the

p

m domain.

Lemma 3 Given a construction of a (c = n;m = p; n � 2; t)-rainbow, p a prime, a

(c = n; p

2

; n; t+ 2)-rainbow can be constructed.

Proof: Let C

1

be a (p + 1; p

2

; p + 1; 2)-rainbow as described in Lemma 2 and let C

2

be an (n; p; n� 2; t)-rainbow that exists by assumption. Our goal is to construct an

(n; p

2

; n; t+2)-rainbow. Given a t+2-sequence e = e

1

; e

2

; : : : e

t+2

, over f1; : : : ; mg we

use e

1

and e

2

as indicators. If e

1

> e

2

, then color e with the color assigned to (e

1

; e

2

)

under C

1

.

Given a set S � f1; : : : ; mg, jSj = n, if all p+1 colors occur in the coloring of the

2-sequences over S under C

1

then we are done. (In fact, the rainbow contains more

colors than required).

Otherwise, at least one color is missing under C

1

, but there is at least one color

that appears (we assume n � 2). Therefore, there is a color i such that no pair in

S is colored by C

1

with i, but there exist u; v 2 S such that (u; v) is colored i � 1

(mod p+ 1) under C

1

.

Consider G

i

, the edge induced graph de�ned by edges colored i and introduced

above. Every element in S is in a di�erent clique of G

i

, otherwise there would have

been a pair colored i. The cliques of G

i

can easily be indexed as described by the

remark at the end of Lemma 2.

If e

1

< e

2

, we translate e to a t-sequence, d = d

1

; d

2

; : : : d

t

, over 1; : : : ;

p

m. We

color e by the color assigned to d by C

2

. Let d

j

be the index of the clique of G

i

containing e

j+2

, 1 � j � t, and i � 1 (mod p + 1) is the color assigned to (e

1

; e

2

)

under C

1

.

9

By the discussion above it follows that for every S � f1; : : : ; mg and for every

1 � k � c there is a t+ 2-sequence over S that is colored k. Thus we have described

a construction for an (n; p

2

; n; t+ 2) rainbow. 2

Since for any integer x there is a prime in (x; 2x), we can apply Lemma 3

recursively, each time reducing the domain from m to 2

p

m. Using Lemma 2

as the base case provides us for any d � 1 with an explicit construction of an

(c = n;m = n

d

; n; 2dlog de+ dlog log de)-rainbow. Thus we have

Theorem 6 For any domain m polynomial in the set size n there exists an

(n;m; n;O(1))-rainbow. Given a sequence, its color can be determined in O(1) time

assuming modular arithmetic in unit time.

Remark: Note that the proof implies that the existence of rainbows is a robust

property, meaning that if p

1

; p

2

; p

3

are polynomials, and m is as a function of n such

that a (c;m; n;O(1))-rainbow exists, then a (p

1

(c); p

2

(m); p

3

(n); O(1))-rainbow exists

as well.

It now follows from Theorem 1:

Corollary 1 For any domain m polynomial in the set size n there exists an implicit

O(1) probe search scheme for which search requires O(1) time, assuming modular

arithmetic in unit time. 2

Probabilistic Constructions: We now turn to probabilistic constructions of rain-

bows form which is exponential in n. Supposem = 2

n

`

and consider a random coloring

with n colors of all `+2 sequences over f1; : : : ; mg. For a set S � f1; : : : ; mg, jSj = n,

the probability that a speci�c color is missing in the ` + 2 sequences over S is less

than

(1� 1=n)

n(n�1):::(n�`�1)

:

There are n colors and

�

m

n

�

sets, hence the probability that there exists a set and a

color such that the color is missing over the set is less than

m

n

!

� n � (1� 1=n)

n(n�1):::(n�`�1)

� 2

n

`+1

� n � e

�n

`+1

� e

`

2

n

`

� 1:

Therefore we have:

Theorem 7 For any domain m exponential in the set size n there exists an

(n;m; n;O(1))-rainbow. 2

10

Corollary 2 For any domain m exponential in the set size n there exists an implicit

O(1) probe search scheme. 2

6 Bounds on Rainbows

In this section we give bounds on the maximum m, as a function of n and t, for

which a (c = n;m; n; t)-rainbow can exist. We will do that by showing the connection

between rainbows and colorings of the t-uniform hypergraph. Consider a coloring of

all t-subsets (subsets of size t) of f1; : : : ; mg with c colors. Ramsey Theory tells us

that there exists a function R(n; t; c) such that if m > R(n; t; c) then for any coloring

of the t-subsets of f1; : : : ; mg with c colors there exists a set S � f1; : : : ; mg of size

n such that all the t-subsets over S are colored with the same color. (See the book

by Graham, Rothschild and Spencer [6] for details on Ramsey Theory.)

Theorem 8 If there exists a (c;m; n; t)-rainbow and c > t! then

m � R(n; t; t! + 1)

Proof: Let C be a (c;m; n; t)-rainbow. De�ne a coloring of the t-subsets of f1; : : : ; mg

D: for each subset H � f1; : : : ; mg of size t consider all possible orderings of H. Each

of the t! possible orderings receives a color in the rainbow. Since there are more than

t! colors in the rainbow we know that there is a color i, 1 � i � t! + 1 which none

of the orderings receives. D colors H with the least such i. From Ramsey Theory it

follows that if m > R(n; t; t! + 1) then there will be a set S � f1; : : : ; mg of size n

such that all of S subsets of size t are colored under D with the same color i. Hence,

under C none of the t-sequences over S are colored i, and thus C is not a rainbow. 2

How fast does R(n; t; t! + 1) grow? Let the tower functions h

i

(x) be de�ned as

h

1

(x) = x and h

i+1

(x) = 2

h

i

(x)

for i � 1. That is

h

i

(x) = 2

2

2

�

�

�

2

x

o

i�1:

The Stepping Up Lemma in [6], page 91, yields the following: h

j�1

(c

1

� n

2

) �

R(n; j; 2) � h

j

(c

2

� n) for some �xed c

1

and c

2

. By the method of the proof of

Ramsey's Theorem, increasing the number of colors from 2 to t! + 1 does not add

more than log t! + 1 to the height, i.e. R(n; t; t! + 1) < h

t+dlog(t!+1)e

(c

2

n). Hence we

can conclude that for a (c � t! + 1; m; n; t = O(1))-rainbow to exist we must have

m � 2

2

2

�

�

�

2

n

o

O(1):

:

11

Applying Theorem 2, on the connection between rainbow and t-probe search we

get that an implicit t-probe scheme can exist only if m < R(n; t

0

; t

0

! + 1) where

t

0

= t+ 2 log t. Thus, for an implicit O(1) probe search to exist we must have

m � 2

2

2

�

�

�

2

n

o

O(1):

:

This constitutes a new proof of Yao's theorem [8] with better bounds. His bounds

imply that m < R(2n � 1; n; n!), which grows much faster. Yao's proof has the

advantage that it implies that whenever m � R(2n�1; n; n!), the lower bound on the

search time is dlogne. Our proof cannot give better bounds than
(logn=log logn)),

since t! + 1 must be less than n.

Any improvement on the lower bounds for rainbows would yield a better lower

bound for implicit O(1) probe search. Conversely, constructive implicit O(1) probe

search schemes for higher bounds imply better rainbow constructions. The reader

can interpret this as either an optimistic or a pessimistic statement.

Undirected Rainbows: We now show that the existence of rainbows is closely

related to that of undirected rainbows de�ned as follows: A (c;m; n; t)-undirected

rainbow is a coloring of all t-subsets over f1; : : : ; mg with c colors so that for any set

S � f1; : : : ; mg, jSj = n, all c colors appear in the t-subsets over S.

Since the order itself in directed rainbows can determine t! di�erent colors, we

know that (c = t!; m; n; t)-rainbows exist for any m and n such that m � n. However,

by Ramsey Theory, this is not true for undirected rainbows. On the other hand,

the next theorem shows that in order to give bounds on the maximum m for which

(c = n;m; n;O(1))-rainbows exist, it is enough to consider undirected rainbows.

Theorem 9 For every t there exists a constant b

t

, dependent only upon t, such

that a construction for a (c = n;m; n; t)-rainbow yields a construction for a (c =

n;m; dlog(t!) + 1e � n; b

t

)-undirected rainbow.

Proof: The idea is to provide enough information in the b

t

-subset so as to simulate an

ordered set. If in addition to a t-subset, dlog(t!)e bits are provided to determine the

order in the t-subset, then the color of the subset will be the color of the corresponding

t-sequence in the (c = n;m; n; t)-rainbow.

Let C be a (c = n;m; n; t)-rainbow. From Theorem 8 we know thatm < R(n; t; t!+

1) and thus m < h

t

0

(c

2

n) for some t

0

depending only on t. From the lower bound on

R(n; j; 2) of the Stepping Up Lemma there exists a (2; n;m; t

0

) undirected rainbow

12

A. Let b

t

= t + t

0

� dlog(t!)e. De�ne C

0

, a coloring of b

t

-subsets, as follows: Sort the

b

t

-subset and partition it into dlog(t!)e+ 1 subsets of consecutive elements such that

the subset of the largest elements is of size t and all the rest are of size t

0

. Compute

the coloring under A of each of the t

0

-subsets. Each of the dlog(t!)e t

0

-subsets supplies

one bit under its 2-coloring, and together those bits determine an ordering of the t-

subset. The color C

0

assigns is the one C assigns the t-sequence resulting from the

t-subset when it is ordered by the encoding given by the smaller subsets.

To see that C

0

is indeed a (c = n;m; dlog(t!) + 1e � n; b

t

)-undirected rainbow,

consider any S � f1; : : : ; mg of size dlog(t!) + 1e � n. Partition S into dlog(t!) + 1e�

subsets S

1

; S

2

: : :, such that each S

i

is of size n and all the elements of S

i

are smaller

than those of S

i+1

. For any color 1 � j � c, C colors at least one t-ordered subset of

S

dlog(t!)+1e

with j. The order of this subset determines dlog(t!)e bits b

1

; b

2

; : : : b

dlog(t!)e

.

In each subset S

i

there is a t

0

-subset colored b

i

under A. The b

t

subset of S which is

the union of all these subsets is colored j under C

0

. 2

7 Construction through dispersers

In this section we show how an explicit construction for dispersers, de�ned below,

yields an explicit construction for rainbows with m = n

log n

. An (m;n; d; a; b)-

disperser is a bipartite graph with m nodes on the left side, each with degree at

most d, n nodes on the right side with the property that every subset of a nodes in

the left side is connected to at least b of the nodes of the right side. These graphs

have been used, for instance by Ajtai, Koml�os and Szemer�edi [1] and Sipser [7], to

remove randomness in probabilistic algorithms. Cohen and Wigderson [3] provide a

survey of constructions and applications.

Let m = n

log n

. We �rst show how to construct a rainbow with logn colors for

such m and n, and then show how to apply it with a (m;n; log

2

n; n; n=2)-disperser

to get an (c = n;m; n;O(1))-rainbow.

Lemma 4 There exists an explicit construction for a (c = logn;m; n;O(1))-rainbow,

if m is n

polylog(n)

Proof: For 1 � x � m let x

i

denote the ith bit of x. Consider the coloring of pairs

that assigns the pair (x; y) min

1�i�logm

x

i

6= y

i

, i.e. the �rst bit in which x and y

di�er.

13

Claim 3 In any set S � f1; : : : ; mg of size n, the pairs must be colored with at least

logn di�erent colors.

To see that the claim is true, consider organizing the elements of S in a trie, i.e.

in a binary tree where each element appears as a leaf and its value is determined by

the path from the root. If a node in the ith level of the trie has two children, then

there is a pair hx; yi, where x is a descendent of the left child and y a descendent of

the right child, that is colored i. There must be at least logn levels in which there

is a node with 2 children, since each level at most doubles the number of nodes from

the previous one and there are n leaves.

The claim shows that rather than having a set of size n out of a domain of size m,

the problem can be reduced to that of a set of size logn from a domain of size logm.

If m is n

polylog(n)

, then logm is polynomial in logn, and hence the construction of

Theorem 6 can be applied to obtain the required rainbow. 2

Sipser [7] gave a probabilistic construction for an (n

log n

; n; log

2

n; n; n=2)-disperser.

Given such a disperser D, we now show how to use such dispersers to amplify

rainbows, and construct (c = n;m = n

log n

; n; O(1))-rainbows. Let C be a (c =

log

2

n;m; n � 1; t)-rainbow whose existence is assured by the previous lemma and

the remark following Theorem 6. Consider a coloring of t + 1-tuples over f1; : : : ; mg

de�ned as follows: The �rst t elements are used to obtain a color e 2 f1 : : : log

2

ng

via C. The t + 1st element, v 2 f1; : : : ; mg, is treated as a node on the left side of

D. e speci�es a neighbor of v on the right side of D. The neighbor is the color of the

t-tuple. Since any set of n nodes on the left side is adjacent to at least half the nodes

on the right side, and since C is a (log

2

n;m; n; t)-rainbow, it follows that for any set

S � f1; : : : ; mg of size n there is a set T � f1; : : : ; ng of size at least n=2 such that

one can specify in this manner any member of T . Using the construction of Lemma

2 this can be ampli�ed to include all the n nodes on the right. This construction

gives a (c = n;m = n

log n

; n; 2t+ 2))-rainbow. Therefore, an explicit construction for

a disperser with those parameters yields an implicit O(1) probe search scheme for

m = n

log n

.

No explicit construction with parameters close to the ones given in [7] is known.

The best explicit construction for such expanders is given in Ajtai, Koml�os and Sze-

mer�edi [1].

14

8 Conclusions and Open Problems

As a consequence of the results of this paper, the maximal m for which implicit

O(1) probe is possible lies between 2

poly(n)

and a constant height tower of powers.

One obvious open problem is to close this gap. Finding an explicit construction

for rainbows with m superpolynomial in n is another obvious research direction. A

di�erent question is whether rainbows are useful for implicit data representation in

other settings.

Acknowledgments

We thank Noga Alon, Joel Friedman, Nati Linial, Mike Luby, Jeanette P. Schmidt,

Alan Siegel and Avi Wigderson for helpful discussions and advice. We are grateful

to the two anonymous referees for their diligent reading and many useful remarks.

15

References

[1] M. Ajtai, J. Koml�os, E. Szemer�edi, Deterministic Simulation in LOGSPACE,

Proc. 19th ACM Symposium on Theory of Computing, 1987, pp. 132-140.

[2] A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal and A. Wigderson,

Tradeo� Between Search and Update Time for the Implicit Dictionary Problem,

Theoretical Computer Science 58, 1988, pp. 57{68.

[3] A. Cohen and A. Wigderson, Multigraph ampli�cation, manuscript 1989.

[4] A. Fiat, M. Naor, J. P. Schmidt and A. Siegel, Non-Oblivious Hashing, Proc. 20th

ACM ACM Symposium on Theory of Computing, Chicago, pp. 367{376.

[5] M.L. Fredman, J. Koml�os and E. Szemer�edi, Storing a Sparse Table with O(1)

Worst Case Access Time, Journal of the Association for Computing Machinery,

Vol 31, 1984, pp. 538{544.

[6] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Willey

1980.

[7] M. Sipser, Expanders, Randomness or Time versus Space, Journal of Computer

and Systems Sciences 36, 1988, pp. 379-383.

[8] A.C. Yao, Should Tables Be Sorted?, Journal of the Association for Computing

Machinery, Vol 28, 1981, pp. 615{628.

16

