
Fast Interactive Coding Against Adversarial Noise∗

Zvika Brakerski† Yael Tauman Kalai‡ Moni Naor§

August 7, 2014

Abstract

Consider two parties who wish to communicate in order to execute some interactive protocol π.
However, the communication channel between them is noisy: An adversary sees everything that
is transmitted over the channel and can change a constant fraction of the bits arbitrarily, thus
interrupting the execution of π (which was designed for an error-free channel). If π only contains
a single long message, then a good error correcting code would overcome the noise with only
a constant overhead in communication. However, this solution is not applicable to interactive
protocols consisting of many short messages.

Schulman (FOCS 92, STOC 93) introduced the notion of interactive coding : A simulator that,
given any protocol π, is able to simulate it (i.e. produce its intended transcript) even in the presence
of constant rate adversarial channel errors, and with only constant (multiplicative) communication
overhead. However, the running time of Schulman’s simulator, and of all simulators that followed,
has been exponential (or sub-exponential) in the communication complexity of π (which we denote
by N).

In this work, we present three efficient simulators, all of which are randomized and have a
certain failure probability (over the choice of coins). The first runs in time poly(N), has failure
probability roughly 2−N , and is resilient to 1

32 -fraction of adversarial error. The second runs in
time O(N logN), has failure probability roughly 2−N , and is resilient to some constant fraction of
adversarial error. The third runs in time O(N), has failure probability 1/poly(N), and is resilient
to some constant fraction of adversarial error. (Computational complexity is measured in the RAM
model.) The first two simulators can be made deterministic if they are a priori given a random
string (which may be known to the adversary ahead of time). In particular, the simulators can be
made to be non-uniform and deterministic (with equivalent performance).

∗This paper is the full version of “Efficient Interactive Coding Against Adversarial Noise” by Brakerski and Kalai
(preliminary version FOCS 2012) and “Fast Algorithms for Interactive Coding” by Brakerski and Naor (preliminary
version SODA 2013).
†Dept. of Computer Science and Applied Math, Weizmann Institute of Science. zvika.brakerski@weizmann.ac.il.

Part of this work done while at Stanford University, supported by a Simons Postdoctoral Fellowship and by DARPA.
‡Microsoft Research, yael@microsoft.com.
§The Judith Kleeman Professorial Chair, Dept. of Computer Science and Applied Math, Weizmann Institute of

Science, moni.naor@weizmann.ac.il. Research supported in part grants from the I-CORE Program of the Planning and
Budgeting Committee, the Israel Science Foundation, BSF, IMOS and the Citi Foundation.

1 Introduction

Communication over a noisy channel is a fundamental issue in computer science, engineering and
related fields. Shannon [Sha48] and Hamming [Ham50] initiated the modern study of error correcting
codes, which continues to be a thriving research area to this day. A good (asymptotic) error correct-
ing code encodes a k-bit message into an O(k)-bit codeword, such that an adversarial change to at
most a δ-fraction of the bits of the codeword (for a constant δ), still enables decoding the original
message. One could consider error correcting against a stochastic channel that injects errors according
to some distribution (such as the binary symmetric channel), but also against worst case channels
that are allowed to inject errors adaptively and adversarially, so long as the prescribed error rate is
not exceeded. This work will address the latter type of channels. A landmark in this area is the work
of Justesen [Jus72] who showed the first explicit construction of such good codes. “Explicit” in this
context refers to the ability to encode and decode in (uniform) polynomial time.

Among other parameters (such as the information overhead and the allowed error rate), the com-
putational complexity of error correcting codes has been the focus of extensive research. The usability
of the code, both practically and theoretically, depends on the ability to encode and decode efficiently.
This research effort culminated in the work of Spielman [Spi95] who showed that good codes can be
encoded and decoded in linear time in the RAM model. Followup works (e.g. [GI05]) improved the
parameters of this result, achieving near optimal rates.

Error correcting codes, however, fall short in shielding interactive protocols against channel errors:
Consider two parties who wish to execute a multiple-message protocol, say each party sends one bit
at a time, and the channel is noisy. Using error correcting codes on each message at a time will
obviously not protect against an adversary that can change a constant fraction of the communication
over the channel. This motivated Schulman [Sch92, Sch93] to present the notion of interactive coding.
An interactive coding scheme is a simulator algorithm S such that given any interactive protocol
π = (A,B) (where A,B are interactive machines), (SA, SB) is a protocol which outputs the transcript
of π (and thus allows to compute whatever it was that π computed), even when executed over a
channel with constant adversarial error rate. Furthermore, the communication complexity of Sπ needs
to be linearly related to that of the original π.

Schulman showed that interactive coding is achievable for an error rate of roughly 1/240. However,
the computational complexity of his simulator is 2Θ(N), where N is the length of the transcript of the
protocol π. The high computational complexity stems from the use of a combinatorial object called a
tree code, introduced in Schulman’s work. Schulman showed how to construct and decode tree codes in
exponential time, which implied the aforementioned exponential-time simulator Sπ. Followup works
by Braverman and Rao [BR11] and by Braverman [Bra12] showed how to improve the error rate
to 1/8 (1/4 for non-binary alphabet) and how to improve the computational complexity to 2Θ(Nε),
respectively. Gelles, Moitra and Sahai [GMS11] showed that the computational complexity can be
improved to poly(N) if the channel errors are uniformly distributed (i.e. each bit is flipped with
the same fixed probability), however their simulator still required exponential time for adversarial
channels.

1.1 Our Results

In this work, we construct three interactive coding schemes that are both efficient and resilient to
adversarial errors, all three are over the binary alphabet. Our schemes are randomized, i.e. there is
some probability of not succeeding in the simulation, and this probability is over the internal coin

1

flips of the two parties.1 The first two schemes can be made deterministic in a non-uniform model of
computation, as described below.

Polynomial-Time Simulator with Exponentially Small Failure Probability. Our first scheme
PolySim (Section 3) consists of a simulator with computational complexity poly(N), failure probability
at most 2−µN , where µ > 0 can be any constant parameter, and is resilient to 1/32 − ε error rate
for any constant ε > 0. The constants µ, ε determine the communication overhead (which is roughly
O(µ)/ε). We further show that this performance is achievable even if the randomness is chosen ahead
of time and not in the course of execution, and moreover there exists a random tape that is guaran-
teed to succeed for all protocols of certain transcript length. This immediately implies a non-uniform
deterministic simulator by fixing the aforementioned random tape.

Theorem A. For all constants µ, ε > 0, there exists an interactive simulator PolySim with commu-
nication complexity O(N), failure probability 2−µN , and computational complexity poly(N), which is
resilient to 1/32 − ε-adversarial error rate. The simulator PolySim can be made deterministic in a
non-uniform model.

More generally, we show how to take any inefficient interactive simulator running in time 2O(N),
and convert it into an efficient one. Our simulator is resilient to (1−ε)·η

4 -fraction of adversarial error,
where η is the error-rate of the inefficient interactive simulator. The best currently known asymptotic
value of η is 1/8 due to [BR11], which implies asymptotic rate of 1/32 for our simulator. The factor
1/4 loss in the error rate is a technical artifact of our analysis. While this is the best that we could
extract from our methods, we do not see any barrier towards improving this factor.

Almost Linear-Time Simulator with Exponentially Small Failure Probability. Our second
scheme QLinSim (Section 4) improves the computational complexity of the simulator. The performance
here is comparable to PolySim, but the simulator runs in time O(N logN). The running time is
measured in a model where the simulator has RAM access to its memory and oracle access to the
machines which implement the original protocol. The tolerable error rate here, however, is only some
unspecified constant. Error rate 1/32 − ε as before can be achieved if we allow polynomial time
(protocol and input independent) preprocessing. A deterministic non-uniform simulator is possible in
this setting as well.

Theorem B. For every constant µ > 0, there exists an interactive simulator QLinSim with communi-
cation complexity O(N), failure probability 2−µN , and computational complexity O(N logN), which is
resilient to Ω(1)-adversarial error rate (which can be improved to 1/32− ε if preprocessing is allowed).
The simulator QLinSim can be made deterministic in a non-uniform model.

Linear-Time Simulator with Polynomially Small Failure Probability. Lastly, our third
scheme LinSim improves the running time to O(N) (which is optimal in a model where the origi-
nal protocol is provided as oracle). However, the cost here is that the failure probability drops to
1/Nµ, for any constant µ. The achievable error rate is similar to QLinSim.

Theorem C. For every constant µ > 0, there exists an interactive simulator LinSim with communica-
tion complexity O(N), failure probability N−µ, and computational complexity O(N), which is resilient
to Ω(1)-adversarial error rate (which can be improved to 1/32− ε if preprocessing is allowed).

1The schemes are public-coin in the sense that we allow the adversary to know the internal state of the communication
parties, including the random coins once they are flipped. We only require that the adversary does not know the value
of the randomness before it is drawn.

2

1.2 Our Techniques

In what follows we present the high level overview of our constructions. We start by presenting our
first simulator PolySim, and then explain how to improve the computational complexity to obtain
QLinSim or LinSim.

PolySim: Polynomial-Time Simulator with Exponentially Small Failure Probability. As
mentioned above, we build our first simulator by converting any exponential time simulator into an
efficient one. Thus, our starting point is the aforementioned exponential time deterministic simulator
from either [Sch96, BR11, Bra12], that we use in a black-box manner.2 In order to use such a simulator
and still achieve overall computational efficiency, we will use the simulator on logarithmic chunks of
the protocol.

The basic idea is simple: Given a protocol π = (A,B) with an N bit transcript, divide its transcript
into N/ logN chunks of logN bits each. Then run the exponential simulator chunk-by-chunk to
reconstruct the entire transcript of π efficiently. This idea indeed seems to work in the stochastic
model, where the errors are distributed roughly evenly between the different chunks (though the
failure probability will not be negligible).

However, in the adversarial setting this idea is prone to failure, since we are only guaranteed that
the average error rate over the chunks is constant, but it can be very high for any particular chunk.
Namely, if the adversary introduces high noise rate at a specific chunk, then it can make the parties get
that chunk all wrong, which will ruin correctness, even if all other chunks are computed correctly. We
thus have to introduce some control mechanism by which the parties can identify that such erroneous
event occurred, rewind their state back to the point of agreement, and try again. (This is the high
level logic governing all known solutions starting from [Sch92].)

As a first solution, we introduce a synchronization check before each chunk, where the two parties
compare their internal states to see that they are in sync. String comparison is known to be efficiently
possible using (private, non-shared) randomness: each party will draw a randomness-efficient universal
hash function, apply it to its local copy of the (simulated) transcript, and send the outcome, together
with the description of the hash function, to the other party.3 Using randomness efficient hash families
[NN93, AGHP92], only O(logN) bits need to be sent to achieve good detection probability, and since
the check only happens once for every logN bits chunk, its amortized effect on the information rate is
constant. We note that while the use of hashing introduces an error, the choice of the hash function
for each round of communication is independent, and therefore concentration bounds imply that the
number of hash faults will be low with all but exponentially small probability.

This solution, however, does not work as is: The adversary might realize that the string comparison
is the soft underbelly of our construction, and introduce errors during that stage. On the face of it,
even a small amount of error can completely ruin the comparison.

One can overcome this problem in two ways: Either apply a standard (non-interactive) error
correcting code to the (non-interactive) synchronization check, or incorporate the synchronization
check as part of the chunk that is being communicated. We choose the latter since it allows us
to prove higher error-resilience.4 Namely, we consider a protocol that first sends (and receives) the
synchronization information, and then the parties run the next chunk. We apply the exponential time

2This means that any future simulator, even non-tree based, can be used. In fact, we can also use probabilistic
simulators with exponentially small error probability, but it would complicate the analysis somewhat.

3Interestingly, [Sch92] also uses universal hashing to compare the internal state, however he could not afford to send
the description of the hash function along with the output, so he had to use pre-shared randomness.

4Jumping ahead, we note that our second and third simulator, whose aim is to further improve the computational
complexity, use the former approach, and apply a (non-interactive) error correcting code to the synchronization check.

3

simulator to each extended chunk (synchronization + next chunk), whose communication complexity
is still logarithmic. This will ensure that an adversary who wants to cause harm to the execution of any
extended chunk needs to introduce at least Ω(logN) errors (a constant fraction of the communication).

The parties will simulate each extended chunk over the channel and end up with a transcript, which
contains the information of whether they are in sync or not, as well as the logN bits of transcript
corresponding to the current chunk. If they were in sync, then they will use the logN bits of transcript,
and continue to the next chunk. If they were not in sync, then they discard this information, and go
back to the previous chunk (to try to get in sync).

Still there is a problem, since the adversary can adopt the following line of attack: It can invest
enough errors to corrupt the view of only one party, and corrupt the check accordingly. In such a
case, one party will revert to the previous chunk, while the other continues to the next. The protocol
we described so far gives no mechanism to help the parties verify that they are computing the same
chunk.

We therefore add an additional element to the synchronization check: in addition to the hash
description and hash value, each party will also send its position in the simulated transcript, which
comes at a tolerable cost of additional O(logN) bits (of course this is also incorporated into the
protocol that is “protected” by the exponential simulator5). Given this information, it is possible to
efficiently detect and correct gaps.

To analyze this protocol, we can think of the error correcting protocol as a game where we try
to make the adversary waste its allotted number of errors, without setting the protocol back by too
much. Intuitively, so long as the adversary only sets us back by less than the amount of steps required
to recuperate (up to a constant), then our simulator will succeed. In our protocol, the adversary needs
to invest Ω(logN) errors to create an initial inconsistency, and it needs to keep investing Ω(logN)
errors in each following step to prevent our synchronization mechanism from recovering. Our analysis
shows that the adversary will run out of errors at some point, allowing our recovery mechanisms to
complete the simulation of the transcript of π.

The last risk that remains is that the adversary might corrupt the final chunks, leaving no time
for recovery. This is treated similarly to previous works: We pretend that the transcript is actually
longer than it really is by padding it with zeros. This way, a corruption at the end of the simulation
can only harm the padding, which is thrown away anyway.

This simulator is formally presented and analyzed in Section 3.

A Deterministic Non-Uniform Simulator. The simulator PolySim (as well as QLinSim which is
described below) can be made deterministic and always successful in a non-uniform model of compu-
tation where the simulator is allowed an O(N) bit advice string which is also known to the adversary.

This is done, as is typical in applying the probabilistic method [AS92], by reducing the probability
of the bad event (error) to be very small and then use a simple union bound. However, in our case
we taking a union bound over all possible bad events requires some care, since the straightforward
counting will fail to yield the desired result.

As described above, PolySim uses hash functions (chosen at random from an appropriate collection)
in order to compare the states of the two communicating parties. This is the only place where
randomness is used, and the only potential point of failure for the simulators. In fact, a careful
examination of the analysis shows that the failure probability does not stem from the adversarial
behavior, but rather from the probability that a constant fraction of the comparisons yield a false
positive value. In particular, if this probability is 0, then the simulator will always succeed. If we use

5Jumping ahead, in the second and third simulator, this will be protected using a standard error-correcting code.

4

a hash family with seed length µ logN , then the probability of a false positive per comparison will
be N−Ω(µ), and the total failure probability will decay as 2−Ω(µ)N . Increasing µ therefore reduces the
failure probability, at the sole cost of increasing the communication complexity (though it remains
O(N) for any constant µ). In particular the number of rounds remains unchanged as µ increases.

We will next explain how taking µ to be a large enough constant implies that for all but an expo-
nentially small fraction of possible random tapes, the probability of false positive occurring anywhere
in the interaction is 0, regardless of the original protocol π and regardless of the adversarial behavior.
This will immediately imply a non-uniform deterministic simulator by fixing the random tape of the
simulator to one of those aforementioned good values.

if something is true on average with very high prob then it is true in the worst case, by a simple
union bound. I would say: ”Yes, it is true that in both the ”standard” trick and in our case we apply
a union bound over all possible ”bad” events, and that in our case the counting of these ”bad” events
requires some care. The straightforward counting will fail to yield the desired result

We have to be careful in our counting, since a priori one may think that we need to counter double
exponentially many possible protocols π (the number of different protocols of length N). However,
as we shall see, this is not the case: let us count how many possible sequences of inputs to the
hash function can occur when simulating a protocol with transcript length N . In each round of the
simulated protocol, a hash function is applied to the internal state of each party. This internal state
starts empty, and may change in poly(N) different ways at each round: Either an O(logN)-bit chunk
is appended, or a chunk is removed or there is no change. Therefore the total number of possible
sequences of calls to the hash function is poly(N)r, where r = O(N/ logN) is the number of rounds,
i.e. a total of 2O(N) possible sequences. It is important to note that this number is independent of µ.
For each such sequence of calls, the probability of failure of the simulator is 2−Ω(µ)N . It follows that
taking µ to be a large enough constant, we get that the probability of failure at any possible execution
also behaves as 2−Ω(µ)N (regardless of the adversary’s behavior!). The result follows.

For the formal analysis, see Section 3.3.

QLinSim: O(N logN)-Time Simulator with Exponentially Small Failure Probability. The
goal of QLinSim is to further improve the computational complexity of the first simulator from poly(N)
to O(N · logN).

The computational complexity of PolySim has two main sources: First, the exponential time sim-
ulator introduces some unspecified poly(N) computational complexity in each round of the protocol.
Second, and perhaps more importantly, our first simulator requires the parties to hash (all) their local
state T before communicating each chunk. Since the length of T will quickly grow into Ω(N) bits, the
total computational complexity of hashing throughout the protocol is Ω̃(N2).

To solve the first problem, we observe that the exponential time simulators of [Sch96, BR11] can be
made to run in linear time, given exponential-time preprocessing (in the RAM model). Furthermore,
this preprocessing does not depend on the specific protocol being simulated, only on its communication
complexity.6 This means that if we chose our chunk size to be small enough, i.e. some γ logN for a
small constant γ, the preprocessing will run in time O(N) and each chunk will be simulated in time
O(logN), which will bring the total computational overhead of chunk simulation to the desired O(N).
In a nutshell, the observation is that the previous simulators invest exponential time in decoding the

6As opposed to our first simulator, we don’t know how to construct nearly linear time simulators based on any
exponential time simulator. Our second and third simulators rely on the fact that the underlying exponential time
simulator is one of the simulators in [Sch96, BR11], or any simulator that can be made to run in linear time given
exponential-time preprocessing (and the preprocessing does not depend on the specific protocol being simulated, only on
its communication complexity).

5

transcript of the simulation so far, and this decoding is independent of the specific protocol. Therefore,
given that we apply the exponential simulator on chunks of logarithmic length, we can create a table (or
better, a decision tree) with the decodings of all possibilities, which will enable linear-time simulation
(in the RAM model).

This solution, however, has an unfortunate implication: The header that contains the synchro-
nization information cannot be made as short as we wish, and if the header is part of the chunk then
its size is too large to allow linear time preprocessing. This is solved by encoding this header using
a standard error correcting code with linear-time encoding and decoding. The outcome is that the
tolerable error rate of QLinSim is an intricate function of the error rate and information rate of the
error correcting code, the information rate, error rate and exponent of the exponential time simulator,
and the properties of the hashing solution that we use (see below). We therefore do not provide a
formula for the error rate, but rather show that it is some constant. As we mentioned above, allowing
polynomial time preprocessing will allow to incorporate the header into the simulator as is done in
our first simulator, and match its error rate.

We next turn to solve the second problem, which is the inefficiency caused by applying the hash
function Õ(N) times. In order to make the hashing process more efficient, we notice that randomness
efficient hashing can be viewed as nothing more than encoding the input using an error correcting
code, and then outputting specific locations in this codeword according to a random walk on an
expander; hence the randomness efficiency compared to sampling random locations, as in [NN93].
The computational complexity comes mostly from the encoding of the input, which is independent of
the randomness of the hash function.

In our case, the local transcript T , which is the input to the hash, changes very slowly during
the course of the algorithm. This means that consecutive applications of the hash function will have
almost the same input, up to a single O(logN)-length chunk. We take advantage of this property
by dividing T into segments, and encoding each segment using a linear-time error correcting code.
We start encoding a segment only after it was received in full, and encode lazily, at a pace that
is proportional to the communication over the channel.7 Then, when we need to hash the entire
transcript T , we will find a subset of the segments that have finished being encoded and that cover
the entire transcript, and evaluate the hash to each of their respective codewords (that is, probe the
codewords in the appropriate locations according to the hash function description).

But how long should the segments be? On the one hand, if the segments are too short, then many
of them will be needed in order to cover the entire transcript, which would make the evaluation step
too expensive (e.g. constant size segments will require evaluating the hash function a linear number of
times). On the other hand, if they are too long, then the encoding might not be ready when we need
it (since our encoding is lazy, the codeword will only be ready after the end of the following segment).
Our solution, therefore, is to encode in parallel segments of all sizes (in a logarithmic scale), see
Figure 1. This means that our computational overhead is logarithmic, since each bit of the transcript
is encoded in a logarithmic number of codewords, and this will also guarantee that the transcript can
be covered by a logarithmic number of segments.

At each round of the protocol, we will generate two hash functions: one will be evaluated on the
encodings of all segments (using the union bound we will show that the probability of failure remains
small). We will have O(logN) segments, each producing O(logN) bits of hash value. The total of
O(log2N) bits will still be too long to send over the channel (note that the hash value is an overhead
on top of an O(logN) long chunk). Therefore, we will encode it on the fly using our efficient error
correcting code, and evaluate the second hash function on it. This will produce an O(logN) hash

7Lazy evaluation is required since sometimes the protocol will roll back and erase a part of the transcript, and we
don’t want too much work to go to waste.

6

Figure 1: Dividing the transcript T into segments of all sizes. Each row represents a division. The
light-colored segments are the ones that are “ready” at point T in time. The starred segments are the
ones who will be chosen to “cover” the transcript T .

value with the desired properties.
Since the error resilience analysis of QLinSim is analogous to PolySim, we can apply the same

strategy to obtain a deterministic simulator in the non-uniform setting with the same performance.
We note that in the non-uniform setting, the preprocessing can also be considered as a part of the
advice string (which will now be of size poly(N)) and an asymptotic error rate of 1/32 is achievable.

The simulator QLinSim is formally presented and analyzed in Section 4.

LinSim: O(N)-Time Simulator with Polynomially Small Failure Probability. To achieve
linear running time, we use a different idea for hashing. When we come to hash a value T , we already
have the hash of T ’s “predecessor” T ′: a value that is the same as T but without the last chunk. Our
linear-time algorithm will use this hash value as representative of T ′ and “forget” about the rest of
the history altogether.

Let HH (for “hashed history”) denote the hash value that was computed in the previous round.
Say that this value corresponds to some local transcript T . When we append a new chunk L to T , we
will compute a new hash value HH ′ by applying a new hash function to (essentially) HH‖L (rather
than to T‖L as in the previous solution). Naturally, computing a hash on such a short value leads to
great efficiency improvement and ultimately to a linear-time algorithm.

This approach may seem a little risky, since the hash function has collisions. If the parties’ states
are not equal but still fall into the same equivalence class (namely hash into the same value) even at a
single point in the protocol, then this may never be corrected and the simulation will fail! However, we
can choose the hash function so that the probability of collision is at most 1/poly(N) per application
of a hash function. Since there are only O(N) rounds in the protocol, the union bound asserts that
the error probability is bounded by 1/poly(N).

We are still ignoring a very important factor in the simulation - the adversary who sees everything
that is going on over the channel. Even if the hash function is chosen in a way that the parties’
transcripts are in distinct equivalence classes, the adversary might cause the parties to receive the
wrong function, so that they are led to believe that they are in agreement. However, if the adversary
created errors in the hash function, then the states of the two parties will differ since one of them
received the wrong description of the hash function (while the party who generated the hash function
of course has the correct value). We thus append the hash function itself as a part of the state that will
be compared in the next rounds. This way, the adversary will be unable to make the parties “falsely
agree” by inserting errors on the channel, and the analysis becomes very similar to the analysis of the
first simulator.

7

1.3 Cryptography and Interactive Coding

The problem of interactive coding is non-cryptographic in nature, however concepts and techniques
from cryptography have clearly influenced this work. One important idea is using a succinct authen-
tication protocol in order to check the previous transcript: that it in order to authenticate a large
message it is possible to reduce it to authenticating a much shorter message (see [GN93, NSS08] where
the technique of cooperative hashing is used). Other inspirations come from the work on incremental
cryptography (see Bellare et al. [BGG94]) and memory checking (see Blum et al. [BEG+94]) where
the goal is to perform some sort of authentication of the current state of the data structure without
rereading the full memory. The tricky part is where should we embed the secret key (= hashing seed
in our context), since in our setting there are no shared secrets or a shared trusted key. One way to
view our solution to this problem is that the key is generated by one of the parties and sent to the
other party over the channel, however the transmission is postponed until after the key has been used.
Namely, we send our hash function to the other party only after it had been applied to the (past)
transcript. This is somewhat reminiscent of the way authentication is achieved in the Tesla protocol
of Perrig et al. [PCTS00] which is meant for synchronized environments. This postponement raises its
own issues that we need to deal with, most obviously the adversary’s ability to corrupt both the hash
function and value at the same time.

1.4 Followup Work and Open Problems

The main open problem this work suggests is the explicit construction of a deterministic algorithm
for interactive coding with polynomial or near linear complexity (whose existence is assured by The-
orem 3.7). An additional obvious challenge is to characterize the maximal tolerable error rate by
interactive coding schemes, and more generally the trade-off between communication overhead and
tolerable error. Braverman and Rao [BR11] describe an upper bound of 1/4 on the tolerable error rate
in a model where each party is required to speak “in turn”. Ghaffari, Haeupler and Sudan [GHS13]
suggest a model where time slots are not assigned to parties, and suggest that the upper bound in
this setting may be 2/7. They were able to match this bound using a scheme with communication
complexity N2. This was later improved to slightly super-linear communication complexity by Ghaf-
fari and Haeupler [GH13], using an explicit protocol. An alternative model with slightly different
bounds was suggested by Agrawal, Gelles and Sahai [AGS13]. However, the problem is still open
when communication complexity is bound to be linear.

Studying the maximal tolerable error rate with linear communication is only a special case of
the more general challenge which is to characterize the trade-off between tolerable error rate and
communication overhead. A first step in this direction was taken by Kol and Raz [KR13] who studied
the interactive channel capacity of the binary symmetric channel with asymptotically small noise rate.
In other words, their work studies the error-communication trade-off for such channels. An obvious
open problem is to extend their findings to worst-case channels and additional error regimes.

In the aforementioned works of [GHS13, AGS13], the parties do not speak “in turn”, but time is
still divided into well defined time slots. A yet unexplored area is that of protocols that work in a
completely asynchronous environment, where it is not obvious how to map the bits sent to the bits
received.

Lastly, the question of whether interactive coding conflicts with input privacy has been explored
by Chung, Pass and Telang [CPT13], and by Gelles, Sahai and Wadia [GSW14]. These works suggest
that the “rewinding” process that is implicit in all interactive coding schemes is in fact necessary,
and it may allow the communicating parties (or the adversary) to learn more about the inputs of the
parties than what it could have learned in the noiseless setting.

8

2 Preliminaries

2.1 Interactive Protocols

An interactive protocol π = (A,B) is a pair of interactive machines. Each machine implements a
function {0, 1}∗ → {0, 1} such that on an input T ∈ {0, 1}∗ (think about this as the transcript of
the communication so far) the machine outputs A(T) (alternatively B(T)) which is the next bit to be
transmitted. We define T0 = φ, and for every even i we let Ti = Ti−2‖A(Ti−2)‖B(Ti−2). The transcript
of π, denoted Trans(π) is the string TN for an even N which we call the communication complexity
of π, and also denote by CC(π). We choose to view A,B as machines that can compute indefinitely
rather than ones that decide to break after N steps.

We note that one can consider other communication models: for example to allow multi-bit mes-
sages at every round, or to define the rounds adaptively: Ti = Ti−2‖A(Ti−2)‖B(Ti−2‖A(Ti−2)). We
chose to present the simplest possible model, but our results extend to the aforementioned models as
well.

In this work, we consider simulators for interactive communication. A simulator produces a new
protocol, that uses the original protocol as an oracle, and computes the transcript of the original
protocol. It is sufficient to simulate deterministic protocols with no input, since we can always hard-
wire the randomness and input into the protocol.

2.2 Computational Model

In this paper we consider computational complexity of interactive protocol simulators. The most
straightforward model is to consider the simulator as an interactive Turing machine with oracle access
to another interactive machine X (representing the party being simulated). An alternative, polyno-
mially related, model is a RAM model where the simulator is a RAM machine with a logarithmic (in
the communication complexity) word length, and with oracle access to the interactive machine X. In
the RAM model, the communication with the oracle X is by using a designated area in the memory.
Writing T in this designated area and making an oracle call, will write the next message X(T) into a
(different) area in the memory. We note that the complexity of appending (or truncating) information
to (or from) the end of T can be done in linear time in the length of the additional part (or subtracted
part) regardless of the length of T . The complexity in the RAM model is the total number of memory
read/writes and oracle calls.

In the first result in this paper (the simulator PolySim) we will not care about polynomial slowdown
in the communication complexity and therefore the simulator will be presented in the simpler Turing
machine model. When we attempt to optimize the computational complexity (in our simulators
QLinSim and LinSim) we will use the RAM model which will allow us to analyze the complexity more
accurately.8

Preprocessing. We say that an algorithm A has running time t with preprocessing t′ if there exists
a preprocessing algorithm PreProcA that runs in time t′ and produces some output z, such that Az

(A with RAM access to z) runs in time t. (Note that |z| ≤ t′.) We will usually omit the superscript z
where it is clear from the context.

8Note that in the Turing machine model, even simulation of the protocol without channel noise at all will incur a
complexity cost of N2, since in each round, the simulator needs to feed the transcript so far into its oracle, which takes
linear time in the transcript length.

9

2.3 Inefficient Interactive Simulators

An essential building block in our construction are the inefficient (exponential-time) simulators from
previous works. Since we aim for a linear time simulation (or almost linear time), we cannot afford
any of our components to run in such prohibitive time. What we do take from these simulators is that
with an appropriate preprocessing and space, we can actually execute the simulator in linear time.
This will be sufficient for our purposes. The following theorem is implicit in previous works.

Theorem 2.1 (implicit in [Sch96, BR11, Bra12]). There exist positive constants ρ, η ∈ (0, 1) and a
deterministic interactive oracle machine ExpSim (the simulator) such that for any protocol π = (A,B)
of communication complexity n = CC(π), the protocol ExpSimπ = (ExpSimA,ExpSimB) computes
Trans(π), has communication complexity CC(ExpSimπ) ≤ CC(π)/ρ, and is robust (with probability 1)
to adversarial error of rate η. The computational complexity of ExpSim(·) is O(n) with preprocessing
O(2n/γ) for some constant γ > 0 (where the preprocessing depends only on n and not on A,B).

Proof. In both [Sch96, BR11], the simulator works in the following way: It first examines everything
that was broadcast over the channel until now (the information that it sent and received). This
information is decoded into a view as to the internal state of both parties. From the decoded view,
the simulator can produce two things: A query to the oracle A/B and a predicate that determines
what is the next symbol to be sent based on the oracle’s answer.

The critical observation is that this entire process only depends on the information that was sent
over the channel until this point in time, and not on the protocol (A,B). The only dependence on the
protocol is when making the oracle call.

This process can be modeled by a decision tree whose input is the information communicated so
far and its outputs are the appropriate oracle query and the predicate. This decision tree does not
depend on the protocol and can be manufactured offline once and for all. Given RAM access to this
decision tree, the simulation process of any n-bit protocol only requires linear time. The preparation
of the decision tree can take exponential time in n.

Since the preprocessing time, as well as the space to represent the result, are exponential we cannot
apply this theorem on large chunks, but rather on blocks which are roughly logarithmic in the total
communication.

3 Poly-Time Simulation with Exponential Failure Decay

In this section, we show how to convert any interactive protocol π = (A,B) into one that is resilient
to constant fraction of adversarial errors, and is efficient in the sense that it computes Trans(π)
with a polynomial overhead in the time complexity. Recall that without loss of generality A,B are
deterministic and don’t take any input.

More specifically we present an efficient simulator PolySim that has oracle access to either A or B,
and simulates these parties in an error resilient manner, so that the new protocol (PolySimA,PolySimB)
computes Trans(π), even in the presence of constant fraction of adversarial errors. We often use X to
indicate one of {A,B}, in which case Y will denote the other party.

Our simulator uses a randomness-efficient string comparison test. Such is provided by using the
families of hash functions of either [NN93, AGHP92] (see in particular [NN93, Section 9]). In what
follows, we denote {0, 1}≤n , ∪i∈[n]{0, 1}i.

Theorem 3.1 ([NN93, AGHP92]). There exists a constant q > 0 and an ensemble of hash families

{Hk}k∈N such that for every k ∈ N and for every h ∈ Hk, h : {0, 1}≤2k → {0, 1}q·k is poly-time

10

computable, it is efficient to sample h← Hk using only q ·k random bits, and for all x 6= y ∈ {0, 1}≤2k

it holds that
Pr

h←Hk
[h(x) = h(y)] ≤ 2−k .

Note that we assume w.l.o.g that the seed length and output size of the hash function are identical
(otherwise, define q according to the maximal of the two).

The simulator PolySim is presented in Section 3.1 and analyzed in Section 3.2.

3.1 Simulator PolySimπ

Let N be an upper bound on the communication complexity of π = (A,B), such that N is a power
of 2. Throughout the simulation, party X maintains a local variable TX that represents its current
view on the partial transcript of π. At the end of the algorithm, the N -prefix of TX will be equal to
Trans(π).

We consider the simulator ExpSim from Theorem 2.1 with parameters ρ, η,9 and the hash family
from Theorem 3.1 with parameter q. We let µ be a parameter that will determine the exponent of the
failure probability. We define a parameter τ which will be useful in the presentation of the algorithm
and in the analysis. Intuitively, τ represents the communication blowup incurred by each “round” of
the simulation (see below).

τ ,
4µq + 3

ρ
. (1)

As outlined in Section 1.2, our simulator PolySimπ = (PolySimA,PolySimB) (Figure 2) works in
O(N/ logN) rounds. Each round contains an execution of a logarithmic-communication subroutine
Chunk (Figure 3), which is “protected” from channel errors using the exponential time simulator
ExpSim. (Of course this protection can sometimes fail when there are too many errors, but we will
show that the process converges nonetheless.) In total, each round communicates τ logN bits. We
elaborate more on the subroutine and the use of ExpSim, below.

The subroutine Chunk communicates the synchronization information, as well as (what it believes
to be) the next chunk of the transcript between the two parties. This subroutine is never “really”
executed, but rather simulated by the exponential time simulator ExpSim (Chunk only communicates
O(logN) bits). The simulator ExpSim returns a “protected transcript” of the execution of Chunk. This
transcript may be that of a legal execution if there were not too many errors, or it can be completely
arbitrary if there were.

Given the protected transcript, the parties can check if their states are in sync. If not, they can
move towards rectifying the situation. If they were in sync, then the protected transcript indeed
contains the next chunk of Trans(π), which can be appended to the local copy of the transcript. Of
course there is always the chance that the protected transcript is wrong, but our analysis shows that
this does not set us back by too much.

Lastly, a parameter c controls the number of rounds of our simulator. The value of c determines the
convergence of PolySim to its asymptotic tolerable error rate. The larger c is, the closer the simulator
gets to tolerating η/4 fraction of errors. We will assume w.l.o.g that cN/ logN is integer.

Since the typical value for c is a large constant (in fact, Theorem 3.2 is meaningless unless c > 5),
the local transcripts that the parties maintain are longer than N . The output of the simulator will be

9In fact we can use any simulator that has 2O(N) computational overhead (and is resilient to a constant fraction of
adversarial error and has a constant blowup in communication).

11

Simulator PolySimX

• Input: Oracle access to interactive machine X.

• Output: Transcript T ∈ {0, 1}N .

• Operation:

1. Set T := φ.

2. Repeat cN/ logN times:

(a) Sample a new hash function hx ← Hµ log(N) (recall Theorem 3.1). Set σx := hx(T).

(b) Let X ′ be shorthand notation for the subroutine Chunk with the current variable
values (T, hx, σx). Formally: X ′ , ChunkXT,hx,σx .

(c) Use the simulator ExpSimX′ to simulate X ′. The output of ExpSim is a simulated
transcript of the form: (i, h̃x, σ̃x)‖(j, hy, σy)‖L, where |L| = logN .

(d) If (i 6= |T | / logN) or (h̃x 6= hx) or (σ̃x 6= σx), then finish this iteration.
Otherwise we proceed with one of the following cases:

• If (i > j) then set T := T≤(i−1) logN .

• If (i < j) then finish this iteration.

• If ((i = j) and (hy(T) 6= σy)) then set T := T≤(i−1) logN .

• If ((i = j) and (hy(T) = σy)) then set T := T‖L.

3. Output T≤N .

Figure 2: Our simulator.

the N -bit prefix of this long local transcript. Therefore, if the adversary corrupts the last round of
the execution, it will not affect the output, which is the N -bit prefix of the local transcripts.

The simulator is presented in Figure 2. The subroutine Chunk is presented in Figure 3.

3.2 Analysis

The following theorem summarizes the properties of our simulator.

Theorem 3.2. For any protocol π = (A,B) of communication complexity CC(π) = N , the protocol
PolySimπ = (PolySimA,PolySimB) computes Trans(π), has communication complexity CC(PolySimπ) =
O(µc) · N = O(N), and is robust with probability

(
1− 2−(µ−o(1))N

)
to adversarial channels of error

rate (1− 5/c) · (η/4). The computational complexity of PolySim is at most poly(N).

The theorem follows by combining Lemmas 3.3, 3.4, and Corollary 3.6 of Lemma 3.5, below.
In what follows, recall that the constant q is from Theorem 3.1, the constants ρ and η are from
Theorem 2.1, and the constant τ is defined in Eq. (1).

Lemma 3.3. It holds that
CC(PolySimπ) ≤ cτN = O(CC(π)) .

12

Subroutine ChunkXT,hx,σx

i. Let i := |T | / logN , represented as a bit string of length logN .

ii. Send (i, hx, σx) over the channel and receive (j, hy, σy). (This is of course done bit by bit.)

iii. Execute X(T) for logN communication steps.

Figure 3: Subroutine to be fed into ExpSim.

Proof. The protocol PolySimπ is composed of c ·N/ logN rounds, each containing a simulation of X ′

which communicates 2(2µq+1) logN+logN
ρ = τ logN bits. The communication complexity is therefore:

CC(PolySimπ) = (cN/ logN) · (τ logN) = cτN = O(N) .

Lemma 3.4. The computational complexity of PolySimπ is at most poly(CC(π)).

Proof. The simulator PolySim runs in c ·N/ logN = O(N/ logN) rounds. In each round, the simulator
ExpSim is called on a machine X ′ that communicates 2(2µq+ 1) logN + logN = (4µq+ 3) logN bits.
The computational complexity of ExpSim on such machines is poly(N). In addition, each party makes
two evaluations of hash functions, which contribute additional poly(N) computational steps. All of
the other operations are simple manipulations on the transcript.

We can make the analysis above more specific: Letting th denote the time complexity of the function
family Hµ log(N); and letting t denote the time complexity of ExpSim when executed on protocols of
communication complexity (4µq + 3) logN , we get that the computational complexity of PolySimπ

is at most O((N/ logN) · (th + t + logN)) (in some reasonable computational model). Using known
instantiations, we can get th = Θ(N) (note that the hash function must read all of its input). We are
not aware of a precise analysis as to the running time of ExpSim, so we can only say that t = poly(N)
for an unspecified polynomial.

The following lemma proves the success probability of our simulation over adversarial noisy chan-
nels. This is the heart of our analysis which is used to derive Corollary 3.6 below.

Lemma 3.5. When running PolySimπ over a channel that makes at most

E = (c− 5) · ητ
4
·N

adversarial errors, PolySimπ outputs Trans(π) with probability at least 1− 2−(µ−o(1))N .

Proof. Let π = (A,B) and consider an execution of PolySimπ = (PolySimA,PolySimB). For X ∈
{A,B}, we denote the values computed by PolySimX during the protocol with subscript X (e.g., TA
or iB). We denote iX , |TX | / logN (note that this is always an integer).

We define the following (random) variables:

• Good transcript prefix (in chunks) g: This is the longest common prefix of TA, TB, rounded to
whole chunks. Namely, if g′ is the longest common prefix in bits, then g = bg′/ logNc.

• Gap values αA, αB: We define αX , iX − g (naturally, αX is always non-negative).

• Error count e: This is the number of errors the adversary injected into the channel so far.

13

• Potential: We define a potential function

ϕ , (g − αA − αB) · logN +
4

ητ
· e ,

where τ is as defined in Eq. (1).

We show that when the algorithm terminates, it holds, with probability 1− 2−(1−o(1))N , that

ϕ ≥ (c− 4)N .

This implies that

g logN ≥ ϕ− 4

ητ
· E ≥ (c− 4)N − (c− 5)N = N ,

which in turn means that the two parties agree on the prefixes TA,≤N = TB,≤N = Trans(π).
We remark that the coefficient 4 in the definition of the potential function is “responsible” for the

loss in the error rate of our simulator (η/4 compared to η). In the course of presenting our analysis,
we will explain what warrants this factor.

Our proof follows by showing that the potential function ϕ must grow by roughly logN with every
round of the protocol. Let ϕ` denote the change in ϕ in iteration ` (where ` = 1, . . . , cN/ logN). We
use case analysis to lower-bound ϕ`:

We will use the following notation. For all ` we denote by F` the event where iA = iB, TA 6= TB and
yet either hA(TA) = hA(TB) or hB(TA) = hB(TB). Note that by Theorem 3.1, Pr[F`|F1, . . . , F`−1] ≤
2 ·N−µ, since hA, hB are sampled independently of the history.

• Case 1: The number of errors in the iteration is at most ητ logN . In this case we are guaranteed
that Q simulates A′, B′ correctly (where A′ is the machine X ′ defined by PolySimA in Step 2b,
and B′ is the same for PolySimB). Therefore the output of Q (for both parties) is the real
transcript of the protocol (A′, B′).

Again we have a few cases.

– If iA 6= iB, then both parties will get i 6= j. In such case, it must be that for some X,
αX > αY ≥ 0. The larger αX necessarily belongs to the party with the larger iX , and this
party will chop a chunk off its transcript. We conclude that ϕ` ≥ logN .

– If iA = iB and TA = TB, then this means that both partial transcripts agree. In this
case, L is indeed the next chunk of the execution and both parties will append it to their
transcripts. We conclude that ϕ` ≥ logN .

– If iA = iB and TA 6= TB, then the outcome depends on the event F` defined above. If F`
does not happen, then both αA, αB decrease by 1 and ϕ` ≥ 2 logN . If F` does happen,
then one or two of the parties might append a faulty L, causing αA, αB to increase by 1,
namely ϕ` ≥ −2 logN . We conclude that ϕ` ≥ 2 logN(1− 2 · 1F`).

• Case 2: The number of errors in the iteration is greater than ητ logN . In this case, all bets
are off and the expression (g − αA − αB) can decrease by at most 3 (the worst case is when g
decreases by 1 and iX increases by 1, causing αX to increase by 2, note that αY = 0 in this
case). We conclude that

ϕ` ≥ −3 logN +
4

ητ
· (ητ) logN ≥ logN .

14

The above equation explains the need for a factor 4 in the definition of the potential function,
which is responsible for the loss in error rate. (One could think that any factor larger than 3
should be sufficient, but we found it problematic for other parts of the analysis.)

We conclude that either ϕ` ≥ logN or ϕ` ≥ 2 logN(1 − 2 · 1F`). Let K be the set of rounds for
which the latter holds, and let k = |K|. Then

ϕ =

cN/ logN∑
`=1

ϕ`

≥ (cN/ logN − k) logN +
∑
`∈K

2 logN(1− 2 · 1F`)

= cN + k logN − 4 logN
∑
`∈K

1F`

≥ cN + k logN − 4 logN

cN/ logN∑
`=1

1F` .

To bound the latter expression, we recall that Pr[F`|F1, . . . , F`−1] ≤ 2 ·N−µ, and therefore

Pr
[cN/ logN∑

`=1

1F` ≥ N/ logN︸ ︷︷ ︸
Denote this event by F

]
≤ 2cN/ logN · (2 ·N−µ)N/ logN = 2−(µ−o(1))N . (2)

If the above bad event does not happen (i.e., if
∑

` 1F` < N/ logN), then

ϕ ≥ cN + k logN − 4N ≥ (c− 4)N ,

and the lemma follows.

Finally, the error rate for which robustness holds follows immediately.

Corollary 3.6. PolySimπ is robust with probability
(
1− 2−(µ−o(1))N

)
to adversarial channels of rate(

1− 5/c
)
· η

4
.

Proof. Combining Lemma 3.3 and Lemma 3.5, it follows that with probability 1 − 2−(µ−o(1))N , the
protocol PolySimπ is robust to noise rate

E

CC(PolySimπ)
=

(c− 5)ητN

4 · cτN
= (1− 5/c) · η

4
.

3.3 A Deterministic Non-Uniform Solution

We now show that using a proper error analysis, we can change the order of quantifiers in Theorem 3.2
and show that with high probability over the random tape of the simulator, it will be successful
against any adversary (with only minimal loss in the failure probability). The implication is that a
deterministic non-uniform solution follows by fixing such a good random tape as an advice string. A
formal statement and proof follows.

15

Theorem 3.7. Consider the simulator PolySim as stated in Theorem 3.2. With probability (1 −
2−(µ−O(c))) over the random tape of PolySim, the simulator succeeds in simulating any protocol of
communication complexity N against any adversarial channel (of error rate (1 − 5/c) · (η/4), as in
Theorem 3.2).

Since we can grow µ independently of c, we can choose the parameters so that “bad” random tapes
are exponentially improbable.

Corollary 3.8. There exists a deterministic (and thus failure free) simulator in a non-uniform model
that achieves the same performance as PolySim.

Proof of Theorem 3.7. The theorem will follow by a union bound over all possible internal states of the
communicating parties throughout the protocol. Consider an execution of PolySim and let T denote
the sequence of pairs of internal states (TA, TB) as recorded in each round of the simulation (a total
of cN/ logN pairs).

A simple counting argument shows that there are at most 2O(c)N possible values for T . To see this,
notice that in each round of the protocol, the internal state can either decrease by one chunk, remain
unchanged, or increase by one chunk (an added chunk contains logN bits, so it can take 2logN possible
values). Therefore the internal transcript of each party can change in one of 1 + 1 + 2logN = (N + 2)
many ways, and the transcript of both parties can change in one of at most (N + 2)2 many ways
in each round. Therefore, if we count over all cN/ log(N) rounds, we get that there are at most
(N + 2)2cN/ log(N) = 2O(c)N possible values for T . We will use this bound in our argument below.

We now recall the proof of Lemma 3.5, and notice that failure can occur only if the event F from
Eq. (2) occurs. Furthermore, F is fully determined by the value for T and the random tape of the
simulator (i.e. the random tape of both simulating parties), which we denote here by r. We can
therefore think of F as a deterministic event F (T , r), which counts the number of collisions that the
hash functions specified by r induce on the sequence T , and event F (T , r) occurs only if this number
is at least N/ log(N) (as specified in Eq. (2)).

Consider a value of r for which for every possible T it holds that 1F (T , r) = 0 (if such exists).
Then in particular, such values of r make the simulator succeed regardless of the adversarial behavior,
since whatever the adversary does, it cannot steer the simulated protocol to a state where F occurs.
We will show next that such values of r are abundant.

Let us start by fixing a value for T and sampling a value for r uniformly at random.10 In such
case, the bound from Eq. (2) still holds, and we get that

Pr
r∈RU

[F (T , r)] ≤ 2−(µ−o(1))N .

It thus follows by the union bound that

Pr
r∈RU

[∃T s.t. F (T , r)] ≤ 2O(c)N · 2−(µ−o(1))N = 2−(µ−O(c))N .

Our conclusion is that for all but 2−(µ−O(c))N fraction of the values of r, it indeed holds that for every
possible T indeed 1F (T , r) = 0, as desired.

10Note that we do not claim that the actual distribution of r conditioned on T in any execution of the protocol is
uniform. The distribution here is just an analytical tool for understanding the behavior of F (T , r).

16

4 Almost Linear Time Simulator with Exponential Failure Decay

In this section we improve the computational overhead of the simulator presented in Section 3. Specif-
ically, the oracle-RAM complexity of our new simulator is O(N logN), compared to the trivial lower
bound of Ω(N). Similarly to the simulator presented in Section 3, our new simulator is randomized
and succeeds with probability 2−µN where µ can be any constant. Namely, we can reduce the error
term as much as we wish.

Recall that the computational complexity of our first simulator (presented in Section 3) comes from
two main ingredients: First, the underlying exponential time simulator introduces some unspecified
poly(N) computational complexity in each round of the protocol. Second, and perhaps more impor-
tantly, our first simulator requires the parties to hash (all) their local state T before communicating
each chunk. Since the length of T will quickly grow into Ω(N) bits, the total computational complexity
of hashing throughout the protocol is Ω̃(N2).

We deal with the first problem by using one of the exponential time simulators from [Sch96, BR11].
These simulators have the property that they can be made to run in linear time, given exponential-time
preprocessing (in the RAM model), and this preprocessing does not depend on the specific protocol
being simulated, only on its communication complexity. Therefore, if we choose our chunk size to be
small enough, i.e. some γ logN for a small constant γ, then the preprocessing will run in time O(N)
and each chunk will be simulated in time O(logN), which will bring the total computational overhead
of chunk simulation to the desired O(N).

This solution, however, has an unfortunate implication: The header that contains the synchro-
nization information cannot be made as short as we wish, and if the header is part of the chunk then
its size is too large to allow linear time preprocessing. This is solved by encoding this header using a
standard error correcting code with linear-time encoding and decoding.

Theorem 4.1 ([Spi95, GI05]). There exists a family C = {Ck}k∈N of error correcting codes with
information rate r > 0 and error rate δ > 0, where the encoding and decoding procedures FastEnc :
{0, 1}k → {0, 1}k/r, FastDec : {0, 1}k/r → {0, 1}k run in linear time.

To solve the second problem we need to boost the efficiency of the hashing process. To this end, we
divide the hashing process into three different parts with fairly weak dependence: The hashing process
starts by encoding the input with a good error correcting code, such as the one from Theorem 4.1 (this
part depends only on the input). Then it decides on a set of indices in the codeword (this part depends
only on the description of the hash function and not on the codeword itself). Lastly it accesses the
codeword in exactly those indices picked in the second phase. The output of the hashing process is
the set of values assigned by the code to the set of selected indices.11

Intuitively, this process achieves good hashing properties since two different inputs will produce
two codewords that differ in a constant fraction of locations. In that case, a random set of indices will
have a good chance of hitting an index where the codewords differ (the probability of error decreases
exponentially with the number of samples). To save on randomness, we use a good disperser in the
form of a random walk over an expander, instead of using completely random samples. The expander
random walk will be implemented using the expander from the following theorem.

Theorem 4.2 (implicit in [RVW00]). For every constant ε > 0 there exist a constant d ∈ N and an
algorithm ExpGen = ExpGenε such that ExpGen(N) outputs an N -node d-regular graph whose second
eigenvalue is smaller than εd. Furthermore, ExpGen runs in time O(N).

11The encoding process is similar to previously used methods, e.g. in [NN93].

17

The following theorem summarizes the properties of the set of indices produced by our hash
function. It follows from standard randomness efficiency arguments (see, e.g., survey in [Gol97]).

Theorem 4.3. There exists a constant q > 1 and a function HashMapN,ε(k, rand) that given RAM
access to an N -node d-regular expander with constant spectral gap (as in Theorem 4.2) and given

inputs k,N , ε ∈ (0, 1) and random string rand ∈ {0, 1}q log(N/ε), produces a set of indices I ⊆ [k] of
cardinality O(log(1/ε)) with the following property: Let x, y ∈ {0, 1}k with relative hamming distance
≥ δ (where δ is as in Theorem 4.1), then Prrand

[
x[I] = y[I]

]
≤ ε (where x[I] denotes the vector whose

coordinates are x[i] for all i ∈ I). Furthermore, HashMap runs in time O(log(N/ε)).

The following corollary is therefore immediate.

Corollary 4.4. There exists a constant q > 1 (the same as in Theorem 4.3) and a function LinHashε(x, rand)

that given x ∈ {0, 1}k and random string rand ∈ {0, 1}q log(k/ε), runs in linear time and produces an
O(log(1/ε)) bit output, such that for all x 6= y

Pr
rand

[
LinHashε(x, rand) = LinHashε(y, rand)

]
≤ ε .

4.1 Our Simulator

We next present our simulator whose oracle-RAM complexity is O(N logN). Our simulator is ran-
domized and succeeds with probability 2−µN where µ can be any constant.

Consider a protocol π with communication complexity CC(π) = N . Define the chunk length of our
protocol to be `chunk , bγ logNc, where γ is as defined in Theorem 2.1.

Our simulator QLinSim is described in Figures 4, 5 and 6. Figure 4 is the main procedure; Figure 5
describes the subroutine for hashing and Figure 6 describes “threads”. A thread is essentially an
additional process (or machine) that reads and writes to shared memory, but also has its own private
memory. Since our simulator is sequential, whenever it wants a certain thread to run, it will specify
the number of operations to be performed by the thread. Since the thread has its own internal state,
in the next time it is called it will proceed from the point where it stopped in the end of the previous
call.12

As in our previous simulator PolySim, the simulator here is also parameterized by a constant c,
which governs the trade-off between communication complexity and error resilience. A larger c will
linearly increase the communication complexity, but will (inverse linearly) increase the convergence
of the simulator to its best tolerable error rate. We assume w.l.o.g that cN/`chunk is a power of 2;
and by a parameter ε = 1/poly(N) that enables to control the failure probability of the simulator (for
ε = N−a, the failure probability will be bounded by 2−Ω(1)·aN).

The simulator QLinSim makes use of the inefficient simulator ExpSim (Theorem 2.1), the error
correcting code C (Theorem 4.1) and the hash functions HashMap, LinHash (Theorem 4.3 and Corol-
lary 4.4).

In the course of the simulation, each party maintains a variable T of length at most cN , corre-
sponding to its local view of the reconstructed transcript. We will consider O(logN) divisions of T
into segments, where the tth division will be into segments of length 2t · `chunk. Namely, of the form
T [k · 2t · `chunk + 1 : (k+ 1) · 2t · `chunk]. The tth thread will be in charge of lazily encoding the segments
of the tth division using the code C.

Generally speaking, QLinSim is similar to our first simulator, presented in Section 3, with a few
important differences:

12Note that since the input is read from shared memory, it is possible that it changes between calls to the thread, and
the thread will need to cope with that.

18

Simulator QLinSimX

• Input: Oracle access to interactive machine X.

• Output: Transcript T ∈ {0, 1}N .

• Operation:

0. Preprocessing for the components of the algorithm.

(a) Run ExpGen(cN/r) to generate an expander graph (where ExpGen is from Theo-
rem 4.2, and the parameter r is from Theorem 4.1).

(b) Run the preprocessing procedure PreProcExpSim for the simulator ExpSim, with n =
`chunk = γ logN (where ExpSim, PreProcExpSim and γ are from Theorem 2.1).

1. Set T := φ, i := 0.

2. Repeat cN/`chunk times:

(a) For all t = 1, . . . , log(cN/`chunk), perform O(`chunk) computation steps of Threadt
(see Figure 6).

(b) Sample rand1,x, rand2,x ← {0, 1}q log(cN/rε).

(c) Define σx := TwoLevelHash(rand1,x, rand2,x), where TwoLevelHash is defined in Fig-
ure 5.

(d) Encode (i, rand1,x, rand2,x, σx) using C to obtain ωx := FastEnc(i, rand1,x, rand2,x, σx),
where C and FastEnc are from Theorem 4.1 (note that |ωx| = O(logN)).

(e) Send ωx over the channel and receive a word ωy of the same length.a Decode ωy to
obtain (j, rand1,y, rand2,y, σy).

(f) Let σ̃y := TwoLevelHash(rand1,y, rand2,y).

(g) Use the simulator ExpSim to simulate X for `chunk more rounds. The output of
ExpSim is a simulated transcript L ∈ {0, 1}`chunk .

(h) Proceed according to the following cases:

• If (i > j) then remove the last chunk from T and set i := i− 1.

• If (i < j) then finish this iteration.

• If ((i = j) and (σ̃y 6= σy)) then remove the last chunk from T and set i := i− 1.

• If ((i = j) and (σ̃y = σy)) then append the new chunk L onto T and set i := i+1.

3. Output the first N bits of T .

aTo be more explicit: The party whose turn it is to speak sends their ω first, and then the second party sends
their value. If we consider a channel where messages are concurrent then both parties can send at the same time.

Figure 4: An N logN time simulator.

1. Before starting the simulation, our simulator needs to execute the preprocessing phase for its
components.

2. Our hashing process is more involved than that of our first simulator, since we separate the
input encoding phase from the codeword sampling phase. In addition, we apply a two level hash

19

Subroutine TwoLevelHash(rand1, rand2)

1. Use a greedy algorithm to “cover” T with segments:

(a) We say that a segment of the form [k · 2t · `chunk + 1 : (k + 1) · 2t · `chunk] is ready if
i ≥ (k + 2) · 2t (recall that i = |T | /`chunk).

(b) Set z := 0. Then repeatedly choose the longest segment that starts at z + 1 and is
ready, and set z to be the endpoint of the chosen segment.

Let s denote the number of segments and let w1, . . . , ws denote the set of codewords that
encode the selected segments (we will prove that these codewords are fully computed at
this point).

2. For all t = 0, . . . , log(cN/`chunk) let It := HashMap(cN/r),ε(2
t · `chunk/r, rand1), where

HashMap is from Theorem 4.3.

3. Consider the vector ~w , (w1[It1], . . . , ws[Its]), where each It is used for codewords of length
2t · `chunk/r. Let σx := LinHashε(~w, rand2) be a hash of the aforementioned vector, where
LinHash is from Corollary 4.4. (rand2 may be longer than required, in which case only use
an appropriate prefix thereof.)

4. Return σx.

Figure 5: Subroutine for hashing.

procedure.

3. We encode the “header” to the chunk using a separate error correcting code, and not as a part
of the chunk. This is done in order to allow for the preprocessing to run in linear time rather
than polynomial. See further discussion after Theorem 4.5 below.

4.2 Analysis

The following theorem summarizes the properties of QLinSim:

Theorem 4.5. For any protocol π = (A,B) of communication complexity N = CC(π), the protocol
QLinSimπ

ε=N−a = (QLinSimA,QLinSimB) computes Trans(π), has communication complexity CC(QLinSimπ) =
O(N), and is robust with probability

(
1− 2−Ω(1)·aN) to adversarial channels of constant (Ω(1)) error

rate. The computational complexity of QLinSim in the RAM model is at most O(N logN).

Remark (Error Rate). We state robustness of this simulator against an unspecified constant error
rate. This is in contrast to our first simulator, which we were able to analyze for a specific constant
(1/32).

The reason for this discrepancy is that we are compelled to encode the “headers” (the information
the parties exchange to check the consistency of their local states) separately from the “payload”
(the actual simulation of the next chunk). This is because we only allow linear time preprocessing
for ExpSim, which corresponds to only being able to run it on short logarithmic chunks, too short to

20

Thread Threadt

1. Consider a division of T into segments of length 2t · `chunk, namely the kth segment is
T [k · 2t · `chunk + 1 : (k + 1) · 2t · `chunk].

2. Encode each segment, in order, using the code C. If the segment is not yet fully defined
(namely T doesn’t contain all the bits of that segment), then wait for it to be defined. If
T rolls back, changing one of the segments, restart encoding that segment (once it is fully
defined again).

Figure 6: Thread for encoding segments of length 2t · `chunk.

include the headers. We therefore use a separate error correcting code for the headers. Recall that our
first simulator combined the headers and the payload into one sequence, and used ExpSim to exchange
this entire sequence, which leads to an improved error rate.

The achievable error rate of our protocol is thus damaged, since the adversary can choose to corrupt
either the header or the payload, and both options will “ruin” the current round for the communicating
parties. The exact robustness parameter, therefore, is an intricate combination of the constants of the
various components of our scheme, which we did not find very informative.

We do note, however, that given polynomial preprocessing time, we are able to run the prepro-
cessing of ExpSim such that it will allow to bundle the header and payload as in our first simulator.
(The preprocessing is protocol independent and can be performed once and for all.) In such case, we
can match the error rate of 1/32.

Deterministic Non-Uniform Solution. As is the case with PolySim from Section 3, the simulator
QLinSim can be made deterministic in a non-uniform model of computation. The proof is identical to
the proof for PolySim in Section 3.3 and we do not repeat it here.

Theorem 4.5 is proven by combining Lemmas 4.8, 4.9 and 4.11 below.
We start by analyzing the segment selection process in the subroutine TwoLevelHash. The next

lemma shows that when a segment is “ready” according to the definition in the algorithm, then its
encoding is complete.

Lemma 4.6. If i ≥ (k + 2) · 2t (i.e. |T | ≥ (k + 2) · 2t · `chunk) then the encoding of the segment
[k · 2t · `chunk + 1, (k + 1) · 2t · `chunk] by the tth thread is complete.

Proof. Inductively on k: If i ≥ (k+ 2) · 2t, then it means that at least 2t rounds of the simulator have
elapsed since the value of the transcript in the segment [k · 2t · `chunk + 1, (k + 1) · 2t · `chunk] has been
determined. Furthermore, by induction, the encoding of the previous segment already finished by the
time our segment has been determined (the base case, k = 0 is obvious).

This means that at least 2t · O(`chunk) computational steps have been devoted to the encoding of
our segment. Since FastEnc runs in linear time, setting the constants properly will ensure that our
segment finishes encoding on time.

Next, we show that our greedy approach covers T by not-too-many segments.

Lemma 4.7. The greedy algorithm in TwoLevelHash covers T by at most O(logN) segments.

21

Proof. We prove by showing that at most two segments from each division (or thread) are used. We
start by observing that the segments are chosen in decreasing length (= division) order: Consider a
division t segment of the form [k · 2t · `chunk : (k+ 1) · 2t · `chunk] that has been chosen by the algorithm.
Now consider the algorithm’s state at time point (k − 1) · 2t · `chunk. If this time point occurs in the
middle (i.e. not an endpoint) of a chosen segment, then this segment must be of division higher than
t, and must be the one occurring right before the segment in discussion. If the algorithm is not in the
middle of a segment, then it will necessarily choose a segment of division t or higher (since we know
that the next segment from division t is ready). This establishes that indeed at most two segments
from each division are used.

Now, assume towards contradiction that there exists a division t from which the greedy algorithm
uses 3 segments (or more). The first of these segments must start at an ending point of a segment of
a higher division, namely a point in time of the form k · 2t+1 · `chunk. Since the 3rd segment in our
sequence is ready, it means that i ≥ k · 2t+1 + 4 · 2t = (k + 2) · 2t+1.

This is a contradiction since in that case, the greedy strategy would have favored a segment from
the (t+ 1)th division instead of the first 2 segments from the tth division. The result follows.

We can now finally prove the running time of our simulator.

Lemma 4.8. The computational complexity of our simulator is O(N logN).

Proof. Preprocessing takes O(N) time by Theorems 4.2, 2.1. This is followed by O(N/ logN) rounds,
in each of which the following is performed:

1. We run O(logN) computational steps in each of the O(logN) threads. This amounts to
O(log2N) computational steps.

2. Sampling rand1,x, rand2,x is done in O(logN) time.

3. The computational complexity of TwoLevelHash is O(log2N):

(a) The greedy algorithm for finding the segment cover can be executed in logarithmic time
(essentially it takes one pass over the binary representation of i).

(b) Running HashMap for O(logN) times takes O(log2N) steps.

(c) Computing ~w takes again O(log2N) time since there are O(logN) codewords, each accessed
in O(logN) locations.

(d) Running LinHash on ~w takes linear time in |~w| (Corollary 4.4), namely O(log2N).

4. Encoding the “header” into ωx using the linear code C takes O(logN) time.

5. Sending ωx, receiving ωy and decoding it takes O(logN) time (due to linear time decoding).

6. Another execution of TwoLevelHash takes O(log2N) time.

7. Running ExpSim to obtain L takes O(logN) time due to preprocessing (see Theorem 2.1).

8. The final decision and increment/decrement of T takes O(logN) time.

It follows that the total computational complexity per round is O(log2N). We conclude that the
total computational complexity of QLinSim is

O(N) +O(N/ logN) ·O(log2N) = O(N logN) .

22

We proceed by analyzing the communication complexity of our simulator.

Lemma 4.9. For any ε = 1/poly(N), the communication complexity of QLinSim is at most O(N).

Proof. This follows in a straightforward manner since the protocol consists of O(N/ logN) rounds and
in each round the communication is O(logN).

Finally, we wish to prove the correctness of our protocol. We start by analyzing our two-phase
hashing TwoLevelHash.

Lemma 4.10. Let T1 6= T2 be two transcripts of the same length, and let TwoLevelHashTi(·) denote
the execution of TwoLevelHash w.r.t the transcript Ti. Then

Pr
rand1,rand2

[
TwoLevelHashT1(rand1, rand2) = TwoLevelHashT2(rand1, rand2)

]
≤ 2ε .

Proof. If T1 6= T2 then there must also be an inequality in one of the segments into which the transcripts
are broken (recall that breaking into segments is only determined by the length of the transcript, not
its content so both T1, T2 are broken in the same way). It follows that there exists some ` for which
wT1
` and wT2

` have relative hamming distance at least δ. Theorem 4.3 guarantees, therefore, that

Pr
rand1

[~wT1 = ~wT2] ≤ ε .

Now, condition on the case that the values of ~w are different, we can use Corollary 4.4 which
implies that

Pr
rand2

[σT1
x = σT2

x] ≤ ε .

Applying the union bound, the result follows.

Finally, we can prove the correctness of QLinSim.

Lemma 4.11. The simulator QLinSim is robust against a constant fraction of adversarial errors, with
failure probability at most 2−Ω(logN (1/ε)·N).

This means that by choosing an appropriate inverse-polynomial ε, we can get the probability of
error down to 2−µN for any constant µ.

Proof. We follow the steps of the proof of Lemma 3.5 (Section 3). We define the following variables,
which are, up to a name change, identical to those in Lemma 3.5:

• Good transcript prefix (in chunks) good: This is the longest common prefix of the T value of the
parties, rounded to whole chunks. Namely, if good′ is the longest common prefix in bits, then
good = bgood′/`chunkc.

• Gap values badA, badB: We define badx , ix − good, where iA, iB are the local values of i for
the parties (naturally, badx is always non-negative).

• Error count e: This is the number of errors the adversary injected into the channel so far.

• Potential: We define a potential function

ϕ , (good− badA − badB) · `chunk + λ1 · e ,

where λ1 is some constant to be defined later.

23

Our analysis will show that with all but 2−Ω(logN (1/ε)N) probability, at the end of the execution it
holds that ϕ ≥ (1 + λ2)N . Letting E denote the total number of errors in the simulation, we get that
if E ≤ λ2

λ1
N , then good · `chunk ≥ N . The latter implies that the N -bit prefix of the local transcripts

of both parties agree (and thus also agree with the transcript of π) and the simulation is a success.
This implies robustness to error rate

(λ2/λ1)N

CC(QLinSimπ)
=

Ω(N)

O(N)
= Ω(1) ,

as required.
Let ϕ` be the change in the potential function in round ` of the protocol, namely

ϕ =

cN/`chunk∑
`=1

ϕ` .

We will show that w.h.p, ϕ` ≥ `chunk by case analysis:

• Consider a case where the adversary makes more than λ3`chunk errors in round `, where λ3 is
chosen so that λ3`chunk = min{(δ/2) · |ωx| , η`chunk/ρ} (note that this implies λ3 = Θ(1)).

In such case, it holds that ϕ` ≥ −O(1) · `chunk + λ1 · λ3 · `chunk, since e grows by λ3`chunk, and
good, bad can only change by a constant at each round. Therefore, choosing λ1 big enough will
imply the required outcome.

• If the adversary makes less than λ3`chunk errors, then it means that both the decoding of ωy by
both parties and the simulation of L were successful. In this case, either one of the bad’s shrinks,
or if both are 0 then good increases. Therefore ϕ` ≥ `chunk as required.

The above, however, is only true so long as TwoLevelHash did not produce a collision between
different transcripts. In such case, we might get ϕ` = −λ4`chunk, where λ4 is some constant (even
in such problematic case, good, bad cannot change by more than a constant).

As in the proof of Lemma 3.5 for PolySim we will use the independence of the hash seeds to
bound the probability that above happens “too often”. In particular, the bound from Eq. (2)
applies in the exact same way, replacing “log(N)” with our chunk length `chunk. It follows that
the probability of a false equality happening in more than N/`chunk rounds is at most:

2cN/`chunk · (4ε)N/`chunk .

Namely, the probability of failure, for an inversely polynomial ε is at most

2
−Ω(log(1/ε))·N

`chunk
+O
(

N
logN

)
= 2−Ω(logN (1/ε))·N .

The above implies that after cN/`chunk rounds, we get

ϕ ≥
(

cN

`chunk
− N

`chunk

)
· `chunk −

N

`chunk
· λ4`chunk ,

that is
ϕ ≥ (c−O(1)) ·N .

Selecting c to be a large enough constant will guarantee that ϕ ≥ 2N which implies correctness.

24

5 Linear-Time Simulator with Polynomial Failure Decay

In this section we present a different approach to interactive coding that allows us to reduce the
computational complexity to linear in the transcript length. However we will be forced to settle for
only inverse polynomial success probability. For an overview of our methods, see Section 1.2.

As in our previous algorithm (see Section 4), we consider a protocol π with communication com-
plexity CC(π) = N . The chunk length will be `chunk , bγ logNc, where γ is as defined in Theorem 2.1.

Our simulator LinSim is defined in Figure 7. Similarly our previous simulators, LinSim is param-
eterized by a constant c whose value governs the trade-off between communication complexity and
tolerable error rate, where we assume w.l.o.g that cN/`chunk is an integer (not necessarily a power of
2 as before); and by a parameter ε = 1/poly(N) that enables to control the failure probability of the
simulator (the error probability will be roughly εN).

We make use of the inefficient simulator ExpSim (Theorem 2.1), the error correcting code C (The-
orem 4.1) and the hash function LinHash (Corollary 4.4).

The parties will maintain the variable T of length at most cN that corresponds to its local view
of the reconstructed transcript. However this value will only be used as input to the oracle machine
A/B. The actual processing will be performed over the “hashed history” variable HH. Our simulator
uses a stack as its main data structure.

5.1 Analysis

The following theorem summarizes the properties of LinSim.

Theorem 5.1. For any protocol π = (A,B) of communication complexity N = CC(π), the proto-
col LinSimπ

ε = (LinSimA, LinSimB) computes Trans(π), has communication complexity CC(LinSimπ) =
O(N), and is robust with probability (1−O(εN)) to adversarial channels of constant (Ω(1)) error rate.
The computational complexity of LinSim in the RAM model is at most O(N).

Similarly to our second simulator (Theorem 4.5), we only state our result for an unspecified error
bound. However we can match the error rate of our first simulator (1/32) if polynomial preprocessing
is allowed. See the discussion following Theorem 4.5 for details.

Theorem 5.1 is proven by combining Lemmas 5.2, 5.3 and 5.8 below.
We start with the computational and communication complexities of LinSim, which are proven in

a straightforward manner.

Lemma 5.2. Let ε = 1/poly(N). Then the running time of LinSim is at most O(N).

Proof. This follows directly from definition: The preprocessing of LinSim takes O(N) steps. In the
main loop, we have O(N/ logN) rounds and each requires O(logN) computation since LinHash runs
in linear time and so does ExpSim given the preprocessing.

Lemma 5.3. Let ε = 1/poly(N). Then the communication complexity of LinSim is at most O(N).

Proof. We have O(N/ logN) communication rounds. Each round requires O(logN) communication
for sending and receiving the headers (ωx, ωy), and additional O(logN) bits for the execution of
ExpSim.

We are left with proving robustness to a constant error fraction, which is a little more complicated.
We start by formalizing our intuition from the overview above, that the adversary cannot cause the
parties to agree on a false state by adding errors on the channel. Ultimately we want to show that

25

Simulator LinSimX

• Input: Oracle access to interactive machine X.

• Output: Transcript T ∈ {0, 1}N .

• Operation:

0. Preprocessing: Run the preprocessing procedure PreProcExpSim for the simulator ExpSim,
with n = `chunk = γ · logN (where ExpSim, PreProcExpSim and γ are from Theorem 2.1).

1. Set T := φ.

2. Initialize a stack.

3. Set HHx, HHy := 0O(log(1/ε)), L := 0`chunk , randx, randy := 0q log(O(log(N/ε))/ε), i = 0.

4. Repeat cN/`chunk times:

(a) Sample rand′x ← {0, 1}
q log(O(log(N/ε))/ε).

(b) Set HH ′x := LinHashε((HHx, HHy, L, randx, randy, i), rand
′
x).

(c) Encode ωx := FastEnc(HH ′x, rand
′
x, i).

(d) Send ωx over the channel and receive ωy.

(e) Decode ωy into FastDec(ωy) = (HH ′y, rand
′
y, j).

(f) Compute σy := LinHashε((HHy, HHx, L, randy, randx, j), rand
′
y). (Note the order

change from the previous call to LinHash – this is since we are now recomputing a
value of the other party.)

(g) Use the simulator ExpSim to simulate X for `chunk more rounds. The output of
ExpSim is a simulated transcript L′ ∈ {0, 1}`chunk .

(h) Proceed according to the following cases:

• If (i > j) then remove the last chunk from T . Pop stack and set values
(HHx, HHy, L, randx, randy, i) according to the popped entry (if the stack is
empty, then set to initial values as in Step 3).

• If (i < j) then finish this iteration.

• If ((i = j) and (HH ′y 6= σy)) then remove the last chunk from T . Pop stack and
set values (HHx, HHy, L, randx, randy, i) according to the popped entry (if the
stack is empty, then set to initial values as in Step 3).

• If ((i = j) and (HH ′y = σy)) then append the new chunk L′ onto T , set i := i+1,
push (HHx, HHy, L, randx, randy, i) into the stack, set HHx := HH ′, HHy :=
HH ′y, L := L′, randx := rand′x, randy := rand′y.

5. Output the first N bits of T .

Figure 7: Interactive Simulator with Linear Computational Complexity.

26

disagreement can only be caused by “spontaneous” collisions in the hash functions, whose probability
is bounded. We start by defining these collisions. We will use superscript A/B to indicate the local
value of a variable inside A/B (respectively).

Definition 5.4. Consider an execution of (LinSimA, LinSimB) with an adversary that makes arbitrarily
many errors. We say that there is a collision in round i of the protocol if either A or B samples a
rand value that has been sampled before (by either of them); or if (HHA

x , HH
A
y , L

A, randAx , rand
A
y , i

A) 6=
(HHB

y , HH
B
x , L

B, randBy , rand
B
x , i

B) but these values collide upon application of LinHash(·, rand′x) (of
either party).

We show that collisions only happen with probability O(εN).

Lemma 5.5. Consider an execution of (LinSimA, LinSimB) with an adversary that makes arbitrarily
many errors. The probability that a collision occurs during the execution of the protocol is at most
O(εN).

Proof. The probability of the first cause of collision (sampling the same rand twice) is, by the union
bound, at most

O(N/ logN) · 2−q log(O(log(N/ε))/ε) = O(N/polylog(N)) · εq ≤ O(εN) .

The probability for the second cause of collision is by the union bound and the properties of the
hash function (see Corollary 4.4)

O(N/ logN) · ε = O(εN) .

Applying the union bound on the above implies the lemma.

Next, we formalize what it means for the parties to “falsely agree” on a state: this is the case
where the parties have a disagreement somewhere down the stack, but not in their top level variables.

Definition 5.6 (Synchronization). Consider an execution of (LinSimA, LinSimB) with an adversary
that makes arbitrarily many errors. If in the beginning of a round it holds that

(HHA
x , HH

A
y , L

A, randAx , rand
A
y , i

A) = (HHB
y , HH

B
x , L

B, randBy , rand
B
x , i

B) , (3)

then we say that the parties are locally synchronized. Note that this implies that the parties have the
same stack size i.

If Eq. (3) holds for every entry in the parties’ stacks (and the stacks are of equal depth), then we
say that they are globally synchronized. This implies, in particular, that TA = TB.

We can finally prove that unless collisions occur, local synchronization implies global synchroniza-
tion. That is, the parties cannot be made to falsely agree unless a collision occurred.

Lemma 5.7. Consider an execution of (LinSimA, LinSimB) with an adversary that makes arbitrarily
many errors. If the parties are locally synchronized and there are no collisions, then they are also
globally synchronized.

Proof. Consider two parties that are locally synchronized. This means in particular that their stacks
are of equal depth (since the value i corresponds to the depth of the stack).

Recall that HHx is the hash value of the top entry in the stack using randx, and likewise for HHy

and randy. Since both parties agree on the HH and rand values, then they must also agree on the top

27

entry in the stack. (Note that since the parties agree on randx, randy, it means that these values were
not corrupted by the adversary, since each party knows for sure the value that he drew himself.)

The above argument can be extended inductively down the stack: If the parties agree on the entries
at level i in the stack, then they must also agree on the entries in level i− 1. Global synchronization
follows.

Finally we can prove the robustness of our simulator.

Lemma 5.8. The simulator LinSim is robust against to a constant fraction of adversarial errors, with
failure probability at most O(εN).

Given Lemma 5.7, the proof of this lemma is follows the same lines as Lemma 4.11 and Lemma 3.5
(in fact, it is simpler since the probability of collision is globally bounded). We repeat the proof for
the sake of completeness.

Proof. We consider an execution of the protocol for which there are no collisions. By Lemma 5.5 this
happens with probability 1−O(εN) regardless of the adversary.

We define the following variables:

• Good stack prefix (in chunks) good: This is the longest prefix of the stack on which the parties
agree.

• Gap values badA, badB: We define badx , ix − good, where iA, iB are the local values of i for
the parties (naturally, badx is always non-negative). This is the number

• Error count e: This is the number of errors the adversary injected into the channel so far.

• Potential: We define a potential function

ϕ , (good− badA − badB) · `chunk + λ1 · e ,

where λ1 is some constant to be defined later.

We will show that at the end of the execution, it holds that ϕ ≥ (1 + λ2)N . Letting E denote the
total number of errors in the simulation, we get that if E ≤ λ2

λ1
N , then good · `chunk ≥ N . The latter

implies that the N -bit prefix of the local transcripts of both parties agree, since the local transcripts
are identical to the concatenation of all the values L in the stack. Since these prefixes agree with each
other, then they also agree with Trans(π) which means the simulation succeeded even with error rate

(λ2/λ1)N

CC(LinSimπ)
=

Ω(N)

O(N)
= Ω(1) ,

as required.
Let ϕ` be the change in the potential function in round ` of the protocol, namely

ϕ =

cN/`chunk∑
`=1

ϕ` .

We will show that at every round ϕ` ≥ `chunk by case analysis:

28

• Consider a case where the adversary makes more than λ3`chunk errors in round `, where λ3 is
chosen so that λ3`chunk = min{(δ/2) · |ωx| , η`chunk/ρ} (note that this implies λ3 = Θ(1)).

In such case, it holds that ϕ` ≥ −O(1) · `chunk + λ1 · λ3 · `chunk, since e grows by λ3`chunk, and
good, bad can only change by a constant at each round. Therefore, choosing λ1 big enough will
imply the required outcome.

• If the adversary makes less than λ3`chunk errors, then it means that both the decoding of ωy by
both parties and the simulation of L′ were successful.

If the parties globally agree, then this means that badA = badB = 0 in which case both parties
will push into the stack and good will increase by 1. If the parties globally disagree, then they
also locally disagree by Lemma 5.7. This local disagreement will be detected and either one or
both bad’s will shrink by 1. Therefore ϕ` ≥ `chunk as required.

The above implies that after cN/`chunk rounds, we get

ϕ ≥ cN .

Selecting any c > 1 will guarantee that ϕ ≥ (1 + Ω(1))N which implies correctness.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992.

[AGS13] Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive commu-
nication. CoRR, abs/1312.4182, 2013.

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case
of hashing and signing. In Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes
in Computer Science, pages 216–233. Springer, 1994.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive com-
munication. In Lance Fortnow and Salil P. Vadhan, editors, STOC, pages 159–166. ACM,
2011.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Shafi Goldwasser,
editor, ITCS, pages 161–167. ACM, 2012.

[CPT13] Kai-Min Chung, Rafael Pass, and Sidharth Telang. Knowledge-preserving interactive cod-
ing. In FOCS, pages 449–458. IEEE Computer Society, 2013.

[GH13] Mohsen Ghaffari and Bernhard Haeupler. Optimal error rates for interactive coding ii:
Efficiency and list decoding. CoRR, abs/1312.1763, 2013.

29

[GHS13] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates for interac-
tive coding i: Adaptivity and other settings. CoRR, abs/1312.1764, 2013.

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In Rafail Ostrovsky, editor, FOCS, pages 768–777. IEEE, 2011. Prelimi-
nary versions in [GS11, Moi11].

[GN93] Peter Gemmell and Moni Naor. Codes for interactive authentication. In Douglas R.
Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 355–
367. Springer, 1993.

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on sampling (survey).
Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.

[GS11] Ran Gelles and Amit Sahai. Potent tree codes and their applications: Coding for interactive
communication, revisited. CoRR, abs/1104.0739, 2011.

[GSW14] Ran Gelles, Amit Sahai, and Akshay Wadia. Private interactive communication across an
adversarial channel. In Moni Naor, editor, ITCS, pages 135–144. ACM, 2014.

[Ham50] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 26(2):147–160, 1950.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans.
Inf. Theor., 18(5):652–656, September 1972.

[KR13] Gillat Kol and Ran Raz. Interactive channel capacity. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, STOC, pages 715–724. ACM, 2013.

[Moi11] Ankur Moitra. Efficiently coding for interactive communication. Electronic Colloquium on
Computational Complexity (ECCC), 18:42, 2011.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[NSS08] Moni Naor, Gil Segev, and Adam Smith. Tight bounds for unconditional authentication
protocols in the manual channel and shared key models. IEEE Transactions on Information
Theory, 54(6):2408–2425, 2008.

[PCTS00] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Xiaodong Song. Efficient authentica-
tion and signing of multicast streams over lossy channels. In IEEE Symposium on Security
and Privacy, pages 56–73. IEEE Computer Society, 2000.

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In FOCS, pages 3–13. IEEE
Computer Society, 2000.

[Sch92] Leonard J. Schulman. Communication on noisy channels: A coding theorem for computa-
tion. In FOCS, pages 724–733. IEEE Computer Society, 1992.

30

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal, editors, STOC, pages 747–756. ACM,
1993.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on In-
formation Theory, 42(6):1745–1756, 1996. Journal version of [Sch92, Sch93] (refers mostly
to the latter).

[Sha48] C. E. Shannon. A mathematical theory of communication. The Bell Systems Technical
Journal, 27:379–423, 623–656, 1948.

[Spi95] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. In
Frank Thomson Leighton and Allan Borodin, editors, STOC, pages 388–397. ACM, 1995.
Full version in [Spi96].

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

31

