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Abstract

We introduce a distributed hash table (DHT) with loga-
rithmic degree and logarithmic dilation. We show two
lookup algorithms. The first has a message complexity
of log n and is robust under random deletion of nodes.
The second has parallel time oflog n and message com-
plexity of log2 n. It is robust under spam induced by a
random subset of the nodes. We then show a construction
which is fault tolerant against random deletions and has
an optimal degree-dilation tradeoff. The construction has
improved parameters when compared to other DHT’s. Its
main merits are its simplicity, its flexibility and the fresh
ideas introduced in its design. It is very easy to modify
and to add more sophisticated protocols, such as dynamic
caching and erasure correcting codes.

1 Introduction

We propose a very simple and easy to implement
distributed hash table. Our construction offers log-
arithmic linkage, load and dilation. It can operate in
a highly dynamic environment and is robust against
random deletions and random spam generating nodes,
in the sense that with high probabilityall nodes can
locateall data items.

There are two commonly used methods for mod-
elling theoccurrenceof faults. The first is the ran-
dom fault model, in which every node becomes faulty
with some probability and independently from other
nodes. The other is the worst case model in which
an adversary which knows the state of the system
chooses the faulty subset of nodes. There are several
models that describe thebehaviorof faulty nodes.
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One of them is the fail-stop model in which a faulty
node is deleted from the system. Another is a spam
generating model in which a faulty node may pro-
duce arbitrary false versions of the data item requested.
A third model is the Byzantine model in which there
are no restrictions over the behavior of faulty nodes.

In the random fault model, if we want that all
nodes can access all data items, then it is necessary
that the degree be at leastlog n and that every data
item is stored by at leastlog n nodes1. Otherwise
with non-negligible probability there would be nodes
disconnected from the system.

1.1 Related Work

Several peer-to-peer systems are known to be robust
under random deletions ([10], [8], [6]). Stoicaet al
prove that the Chord system [8] is resilient against
random faults in the fail-stop model. It does not seem
likely that Chord can be made spam resistant without
a significant change in its design. Fiat and Saia [7]
proposed a content addressable network that is ro-
bust against deletion and spam in theworst casesce-
nario, when an adversary can choose which nodes
fail. Clearly in this model some small fraction of
the non-failed nodes would be denied from access-
ing some of the data items. While their solution han-
dles a more difficult model then ours, it has several
disadvantages;(I) it is not clear whether the system
can preserve its qualities when nodes join and leave
dynamically. (II) the message complexity is large
(log3 n) and so is the linkage needed (log2 n). Most
importantly their construction is very complicated.
Complex constructions and algorithms increase the
likelihood of errors in implementation and offer eas-
ier opportunities for an adversary to diverge from the
designated protocol. In a later paper Fiatet al [2]

1It is not necessary that the item bereplicated log n times
but rather thatlog n processors beinvolvedin the storage of it.

1



x0 1x/2 (1-x)/2 2x

s(x)0 1

l(s(x))

r(x)

r(s(x))

l(x)

Figure 1: The upper figure shows the edges of
a point inGc. The lower shows a mapping of a
segment into two smaller ones.

solve the first problem yet they do not describe a
spam resistant lookup.

The construction presented here is designed us-
ing design rules which we callcontinuous - discrete.
These design rules are defined and analyzed in [5],
where their power is demonstrated by the sugges-
tion of several distributed dynamic data structures.
Among them is aconstant degreeDHT. The only
previously known constant degree DHT is Viceroy
[4] which is rather involved. The DHT described
in [5] enjoys an optimal tradeoff between the degree
and the dilation. A degree oflog n results with a di-
lation of O( log n

log log n) which is an improvement over
previous constructions.

2 The Overlapping DHT

We describe the construction as a discretization of a
continuous graph denoted byGc. The vertex set of
Gc is denoted byI and defined to be the real interval
[0, 1). The edge set ofGc is defined by the following
functions:

`(a)
def
=

a

2
(1)

r(a)
def
=

a

2
+

1
2

(2)

wherea ∈ I, ` abbreviates ‘left’ andr abbreviates
‘right’. Note that the out-degree of each point is2
while the in-degree is1. Sometimes we may enhance
the notation and writer, `([a, b]) meaning the image
of the interval[a, b] underr, `.

Properties of Gc: We set some useful notations.
For any two pointsa, b ∈ I defined(a, b) to be|a−
b|. Let σ denote a sequence of binary digits, andσt

denote its prefix of lengtht. For every pointa ∈ I
defineσt(a) in the following manner:

σ0(a) = a

(σt.0)(a) = `(σt(a))
(σt.1)(a) = r(σt(a))

In other wordsσt(a) is the point reached by a
walk that starts ata and proceeds according toσt

when0 represents̀ and1 representsr. The follow-
ing claim justifies the name ‘Distance Halving’:

Claim 2.1 (distance halving property).For all a, b ∈
I and for all binary stringsσ it holds that:

d(r(a), r(b)) = d(`(a), `(b)) = 1
2d(a, b) (3)

d(σt(a), σt(b)) = 2−t · d(a, b) (4)

For every pointa ∈ [0, 1) andt there is a string
σt and a pointa′ such thatσt(a′) = a. The stringσt

could be easily calculated froma and in fact it con-
sists of the firstt bits from the binary representation
of a.

Claim 2.2. Let a, b ∈ [0, 1) and letσ be the binary
representation ofa. For all t it holds that

d(a, σt(b)) ≤ 2−t

Proof. Let a′ be such thatσt(a′) = a; i.e. a walk
that starts ata′ and follows the binary representation
of the prefix of lengtht of a, reachesa. We have
d(a, σt(b)) = d(σt(a′), σt(b)). By Claim 2.1 it holds
thatd(σt(a′), σt(b)) = 2−td(a′, b) ≤ 2−t.

The Discrete graphG: We show how to construct
the discrete graphG. Each nodei (1 ≤ i ≤ n)

in the graph is associated with asegments(i)
def
=

[xi, yi]. These segments should have the following
properties:
Property I - The set of points~x = x1, x2, . . . , xn

is evenly distributed alongI. Specifically we
desire that every interval of lengthlog n

n con-
tainsΘ(log n) points from~x. The pointxi is
fixed and would not change as long asi is in
the network.

Property II - The pointyi is chosen such that the
length of each segment isΘ( log n

n ). It is im-
portant to notice that fori 6= j, s(i) ands(j)
may overlap. The pointyi would be updated
as nodes join and leave the system. The pre-
cise manner in whichyi is chosen and updated
would be described in the next section.
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The edge set ofG is defined as follows. A pair of
verticesi, j is an edge inG if s(i) ands(j) are con-
nected inGc or if s(i) ands(j) overlap. The edges
of G are anti-parallel. It is convenient to think ofG
as an undirected graph. A pointa ∈ I is said to be
coveredby i if a ∈ s(i). We observe the following:

1. Each point inI is covered byΘ(log n) nodes
of G. This means that each data item is stored
atΘ(log n) processors.

2. Each node inG has degreeΘ(log n).

Join and Leave: Our goal in designing the Join
and Leave operations is to make sure that properties
I,II remain valid. When nodei wishes to join the
system it does the following:

1. It chooses at randomxi ∈ [0, 1) 2.
2. It calculatesqi which is an estimation oflog n

n .

3. It setsyi = xi + qi mod 1.
4. It updates all the appropriate neighbors accord-

ing to the definition of the construction.
5. The neighbors may decide to update their es-

timation of log n
n and therefore change theiry

value.

When nodei wishes to leave the system (or is de-
tected as down) all its neighbors should update their
routing tables and check whether their estimation of
log n

n should change. If so they should change theiry
value accordingly. The following lemma is straight
forward:

Lemma 2.3. If n points are chosen randomly, uni-
formly and independently from the interval[0, 1] then
with probability1− 1

n each interval of lengthΘ( log n
n )

would containΘ(log n) points.

If each node chooses itsx-value uniformly at ran-
dom from I then property-I holds. Observe that if
each node’s estimation oflog n

n is accurate within a
multiplicative factor then property II holds as well.
The procedure for calculatingqi is very simple. As-
sumexj is the predecessor ofxi alongI. It is proven

2It may be thatxi is chosen by hashing some i.d. ofi. In this
case it is important that the hash function distribute thex values
evenly.

in [4] that with high probability3

log n− log log n− 1 ≤ log
(

1
d(xi, xj)

)
≤ 3 log n

Conclude that nodei can easily estimatelog n within
a multiplicative factor. Call this estimation(log n)i.
A multiplicative estimation oflog n implies apoly-
nomialestimation ofn, therefore an additional idea
should be used. Letqi be such that in the interval
[xi, xi + qi] there areexactly (logn)i different x-
values.

Lemma 2.4. With high probability the numberqi es-
timateslogn

n within a multiplicative factor.

The proof follows directly from lemma 2.3. Each
node in the system updates itsq value and holds an
accurate estimation oflog n

n at all times. Therefore
property II holds at all times.

Mapping the data items to nodes: The mapping
of data items to nodes is done in the same manner as
other constructions of distributed hash tables (such
as Chord [8], Viceroy [4] and CAN [6]). First data
items are mapped into the intervalI using a hash
function. Nodei should hold all data items mapped
to points ins(i). The use of consistent hashing [3] is
suggested in Chord [8]. Note that all nodes holding
the same data item are connected to one another so
they form a clique. If a node storing a data item is
located, then other nodes storing the same data item
are quickly located as well. This means that access-
ing different copies of the same data item in parallel
can be simple and efficient. It suggests storing the
data using an erasure correcting code, (for instance
the digital fountains suggested by Byerset al [1])
and thus avoid the need for replication. The data
stored by any small subset of the nodes would suffice
to reconstruct the date item. Weatherspoon and Ku-
biatowicz [9] suggest that an erasure correcting code
may improve significantly the bandwidth and storage
used by the system.

3 The Lookup Operation

The lookup procedure emulates a walk in the contin-
uous graphGc. Assume that processori wishes to lo-

3The term ‘with high probability’ (w.h.p) means with proba-
bility 1− n−ε
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cate data itemV and letv = h(V ) whereh is a hash
function, i.e. data itemV is stored by every proces-
sor which covers the pointv. Let zi = xi+yi

2 and let
σ be the binary representation ofzi. Claim 2.2 states
thatσt(v) is within the interval[zi − 2−t, zi + 2−t].
Conclude that whent = log n− log log n + O(1) it
holds thatσt(v) ∈ s(i). Let t to be the minimum in-
teger for whichσt(v) ∈ s(i). Call the path between
σt(v) andv thecanonical pathbetweenv ands(i).
This gives rise to a natural lookup algorithm. The
canonical path exists isGc, yet by the definition of
G, if (a, b) is an edge inGc, a is covered byi andb
is covered byj then the edge(i, j) exists inG. This
means that the canonical path can beemulatedby G.

Simple Lookup: Every point inI is covered by
Θ(log n) nodes. This means that when nodei wishes
to pass a message to a node covering pointz ∈ I
it hasΘ(log n) differentneighbors that coverz. In
the Simple Lookup it choosesoneof these nodes at
random and sends the message to it.

Theorem 3.1.Simple Lookup has the following prop-
erties:

1. The length of each lookup path is at mostlog n+
O(1). The message complexity islog n+O(1).

2. If i is chosen at random from the set of nodes
and v is chosen at random fromI, then the
probability a given processor participates in

the lookup isΘ
(

log n
n

)
.

Proof Sketch:The proof of statement(1) is imme-
diate. To show the correctness of statement(2) we
prove the following: Fix a processori. The proba-
bility processori participates in thekth step of the
routing1 ≤ k ≤ log n is Θ( 1

n). Summing up overk
yields the result. This statement is proved by induc-
tion onk.

Theorem 3.2. If each node is faulty independently
with fixed probabilityp, then for sufficiently lowp
(which depends entirely on the parameters chosen
when constructingG), with high probability each sur-
viving node can locate every data-item.

Proof. We prove the following claim:

Claim 3.3. If p is small enough, then w.h.p every
point in I is covered by at least one node.

Figure 2: The message is sent throughall the
nodes covering the canonical path.

Proof. Assume for simplicity thatx1 < x2 < · · · <
xn. Each point in an interval[xi, xi+1] is covered by
thesameset ofΘ(log n) nodes. Call this setSi. We
have

Pr[ All nodes inSi were deleted] = pΘ(log n)

Therefore for sufficiently smallp this probability is
smaller thann−2. Applying the union bound over
all i yields that with probability greater than1 − 1

n
every point inI is covered by at least one node. It is
important to notice that for an arbitrary value ofp it
is possible to adjust theq values, so that each point
in I is covered by sufficiently many nodes, and the
claim follows.

For every edge(a, b) in Gc there exists at least
one edge inG whose nodes covera and b, there-
fore the canonical path could be emulated inG and
the simple lookup succeeds. We stress that after the
deletions the lookup still takeslog n time andlog n
messages. Furthermore the average load induced on
each node does not increase significantly.

Spam Resistant Lookup: Assume that a faulty
node may generate arbitrarily false data items. We
wish to show that every node can find allcorrect
data items w.h.p. Just as in the simple lookup, the
spam resistant lookup betweeni andv emulates the
canonical path betweens(i) and v. The main dif-
ference is that now when nodei wishes to pass a
message to a node covering pointa it will pass the
message toall Θ(log n) nodes coveringa. At each
time step each node receivesΘ(log n) messages, one
from each node covering the previous point of the
path. The node sends on a message only if it were
sent to it by amajorityof nodes in the previous step.

Theorem 3.4.The spam resistant lookup has the fol-
lowing properties:
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1. With high probability all surviving nodes can
obtain all correct data items.

2. The lookup takes (parallel) time oflog n.

3. The lookup requiresO(log2 n) messages in to-
tal.

Proof. Statements(2, 3) follow directly from the def-
initions of the spam resistant lookup. Statement(1)
follows from the following:

Claim 3.5. If each node fails with probabilityp, then
for sufficiently smallp (which depends entirely on
the parameters chosen when constructingG) it holds
that with high probability every point inI is covered
by a majority of non-failed processors.

The proof of claim 3.5 is similar to that of claim
3.3. Now the proof of theorem 3.4 is straight for-
ward. It follows by induction on the length of the
length of the path. Every point of the canonical is
covered by a majority of good nodes, therefore every
node along the path would receive a majority of the
authentic message. It follows that with high proba-
bility all nodes can findall true data items.

The easy proofs of theorems 3.2 and 3.4 demon-
strate the advantage of designing the algorithms in
Gc and then migrating them toG.

4 Reducing the Dilation
We now show how to decrease the lookup length and
the congestion by increasing the degree. For any in-
tegerc ≥ 2 construct a continuous graphGc with
edges defined by the following functions:

fi(y) = y
c + i

c (i = 0, 1, . . . , c− 1)

The equivalent of Claim 2.1 is

d(fi(y), fi(z)) = 1
cd(y, z)

and the equivalent of Claim 2.2 isd(y, σt(z)) ≤ c−t.
Therefore:

Theorem 4.1. A discretization ofGc would result
with a graph of degreeΘ(c log n) and with dilation
logc n.

Two interesting options are settingc = log n or
c = nε (for some constantε), as the first results with
a lookup length of log n

log log n , and the second with a
lookup length ofO(1). It is worth noting that the

same analysis of Theorem 3.1 shows that for each
choice ofc, the probability a processor participates
in a lookup isΘ( logc n

n ).

Optimizing the Degree-Dilation Tradeoff: We
show how to achieve a dilation ofΘ( log n

log log n) while
maintaining a degree ofΘ(log n), thus improving the
lookup and congestion while maintaining the same
degrees as Chord. First setc = log n. The previous
construction yields a graph with the desired dilation
yet with a degree ofΘ(log2 n). The reduction of the
degree is achieved by connecting each processor to
only one other processor for each projection of its
segment. More formally, for each0 ≤ j ≤ log n
the length offj([xi, yi]) is Θ( 1

n), therefore it iscov-
eredby Θ(log n) different processors. processori is
connected toexactly onerandomly chosen processor
whose segment coversfj([xi, yi]). As before there
exists a link between processori and all processors
with segments that overlaps(i). Lookup is done in
the same manner as Simple Lookup; i.e. the route
a message takes emulates the canonical path of the
continuous graph. Clearly the maximum degree of
the construction isΘ(c + log n) = Θ(log n) and
when there are no faults the dilation is onlyΘ( log n

log log n).
It is left to show that this construction remains fault
tolerant under random deletions of processors and
connections.

As before we assume that each processor fails
with some fixed probabilityp. Assume that proces-
sor i tries to move the message from pointa ∈ s(i)
to pointf(a). Processori should do the following

1. If the processor which is connected toi and
coversf(a) is alive theni moves the message
to it.

2. If i fails moving the message tof(a) then it
picks at random a processor coveringa and
moves the message to it.

We need to bound the number of times Step(2) oc-
curs, i.e. the number of hops in which the message
remains in the same spot on the continuous graph.

Lemma 4.2. W.h.p the number of hops a message
stays in pointa in Gc, (before moving tof(a)), is
dominated by a geometric random variable with a
constant success probability.
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Proof Sketch:For sake of simplicity assume that first
each processor fails with probabilityp and then pro-
cessors randomly choose their links. Leti be a pro-
cessor which coversa ∈ s(i). There areΘ(log n)
processors which coversf(s(i)) (and therefore cover
f(a)) out of whichi chooses at random one. W.h.p
out of theΘ(log n) processors which coverf(s(i))
a constant fraction survived. Therefore the proba-
bility i is connected to a live processor that covers
f(a) is at least a constant and is independent from
the choices of other processors. Conclude that the
number of hops a message remains ina is dominated
by a geometric random variable

Theorem 4.3. The expected dilation of a message
after faults isΘ( log n

log log n). The actual dilation is at

mostΘ( log n
log log n) with probability1− n

− 1
ε log log n .

Proof Sketch:The expectation of a geometric ran-
dom variable is constant. Lemma 4.2 and the lin-
earity of expectation implies that even after random
faults the expected dilation of a message isΘ( log n

log log n).
The total number of hops a message remains in

the same spot is at most the sum ofΘ( log n
log log n) in-

dependent geometric variables. Standard use of tail
bounds for hypergeometric distributions yields the
second assertion.

5 Extensions
Dynamic Caching: The simplicity of the construc-
tion implies that it is easy to modify and add pro-
tocols. In [5] we show a simple protocol that per-
forms dynamic caching of a popular data items, thus
relieving hot spots in the system. The protocol can
provably prevent the existence of hot spots in the
network. The protocol was designed for a constant
degree non overlapping DHT. It is rather straightfor-
ward to modify it for the overlapping DHT.

Expander Graphs: It is shown in [5] that similar
techniques could be used to build a graph that is guar-
anteed to be and expander. The idea is to use the
Gabber Galil continuous expander over[0, 1)× [0, 1)
and then compose it into cells using a Voronoi dia-
gram.

6 Future Work
The main challenge ahead is to prove robustness against
a worst case scenario, where an adversary chooses
which nodes fail. We believe that a slight variation
of the construction might be able to route messages
successfully in the worst case model as well.

None of the known constructions (including [2],[7])
can handle the case in which an adversary controls
the nodesprior to their insertion. This means that an
adversary may control the actual construction of the
network, and thus cause faults that otherwise would
have been beyond its capability. It seems likely that
robustness against such an adversary would require
the use of cryptographic means.
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