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Abstract

A secure function evaluation protocol allows two parties to jointly compute a func-

tion f(x; y) of their inputs in a manner not leaking more information than necessary. A

major result in this �eld is: \any function f that can be computed using polynomial re-

sources can be computed securely using polynomial resources" (where `resources' refers

to communication and computation). This result follows by a general transformation

from any circuit for f to a secure protocol that evaluates f . Although the resources

used by protocols resulting from this transformation are polynomial in the circuit size,

they are much higher (in general) than those required for an insecure computation of

f .

For the design of e�cient secure protocols we suggest two new methodologies, that

di�er with respect to their underlying computational models. In one methodology we

utilize the communication complexity tree (or branching program) representation of

f . We start with an e�cient (insecure) protocol for f and transform it into a secure

protocol. In other words, \any function f that can be computed using communication

complexity c can be can be computed securely using communication complexity that

is polynomial in c and a security parameter". The second methodology uses the circuit

computing f , enhanced with look-up tables as its underlying computational model. It

is possible to simulate any RAM machine in this model with polylogarithmic blowup.

Hence it is possible to start with a computation of f on a RAM machine and transform

it into a secure protocol.

We show many applications of these new methodologies resulting in protocols e�-

cient either in communication or in computation. In particular, we exemplify a protocol

for the \millionaires problem", where two participants want to compare their values

but reveal no other information. Our protocol is more e�cient than previously known

ones in either communication or computation.

�

A preliminary version of this paper appeared under the title Communication Preserving Protocols for

Secure Function Evaluation in Proceedings of the 33rd ACM Symposium on Theory of Computing, 2001.
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1 Introduction

Two parties, Alice with input x and Bob with input y, wish to evaluate a function z = f(x; y)

on their joint inputs in a manner that does not allow the other party to gain more information

than necessary about their inputs, i.e. more than can be deduced from z. A protocol that

allows Alice and Bob to achieve this is known as secure function evaluation of f . This

problem generalizes many cryptographic tasks and has been extensively investigated in the

last twenty years

1

. One of the most important results of the area is that \anything that

can computed e�ciently can be securely evaluated in an e�cient manner". More precisely,

if the circuit complexity of f(x; y) is s, then there is a secure function evaluation protocol

operating in time polynomial in s and a security parameter, provided certain cryptographic

primitives exist.

The main goal of this work is to provide the communication complexity counterpart of

this result. Informally, if f(x; y) has communication complexity c, then there is a secure

function evaluation protocol for f with communication complexity which is polynomial in c

and a security parameter, provided certain cryptographic primitives exist.

Being polynomial in the communication complexity (as compared to the circuit complex-

ity) of a function leads to more e�cient protocols for functions over large data held by the

parties. For many such functions, the communication complexity is signi�cantly lower than

the size of the best known circuit. In particular, the communication complexity may be

sublinear in the input size. As an example consider computing the median: Alice and Bob

each hold subsets x; y of f1; : : : ; ng and they wish to compute the median of x[ y as a multi

set. For the median function there exists a protocol with logarithmic (in n) communication

complexity, hence the potential for a very e�cient secure function evaluation protocol.

1.1 Related work

Secure function evaluation has been a very active research area and it has been investigated

in a variety of models regarding the participating parties behavior, power and number. For

any polynomially computable function f(x

1

; x

2

; : : : ; x

p

) it is possible in principle to construct

a protocol that allows a group of p parties, where party i has as its private input x

i

, to jointly

evaluate f(x

1

; x

2

; : : : ; x

p

) [23]. Following the protocol, the parties learn f(x

1

; x

2

; : : : ; x

p

) but

no party i can learn about the other inputs fx

j

g

j 6=i

more than can be computed from her

own input x

i

and the outcome f(x

1

; x

2

; : : : x

p

). The drawback, however, is that many such

protocols are rather complex and require signi�cant interaction between the parties { they

do not necessarily correspond to the minimum communication complexity protocol for f .

Many of the works in the �eld followed the `garbled circuit' construction introduced

by Yao [49, 50] and [23] and thus concentrated on the representation of f by a Boolean

(combinatorial) circuit. The drawback of this representation is that operations such as

accessing a single element from a table result in a relatively large penalty in the circuit size.

More speci�cally, if one follows the `garbled circuit' construction, as discussed in [43], then

1

One of the �rst problems considered is Yao's \millionaires problem" [49], where two participants want

to check which one has a larger value but leak no other information. Note that the name of the problem has

since then been updated to the \billionaires problem" . . .
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the resulting complexity is that of invoking one OT

2

1

for each input bit

2

plus a constant

number of pseudo-random function evaluations per each gate

3

.

Sublinear communication secure function evaluation protocols Our work is moti-

vated in part by the attention algorithms for massive datasets have received recently. For

many of these problems there are algorithms resulting in communication complexity which

is much smaller than the data size, but with no privacy guarantees. Recent results demon-

strated that it is possible to create private protocols for some of these tasks, without resorting

to the garbled circuit transformation, resulting in protocols with much lower communica-

tion complexity, see [16, 17] and [38]. As a consequence of our work, many more of these

algorithms can be evaluated securely with low communication overhead.

Impact of the representation of f on the complexity of secure function evalu-

ation Researches in the �eld of secure function evaluation have realized for quite some

time that choosing the underlying model is signi�cant when designing a secure function

evaluation protocol for a function f . In particular, the speci�c representation chosen for f

can have a great impact on the complexity of its secure function evaluation protocol. Some

representations of f , other than Boolean circuits were used in previous works. To name a

few examples, Kilian [28] as well as [23, 5] used permutation branching programs, appealing

to Barrington's Theorem. In the multiparty computation with an honest majority setting,

Ben-Or et el. [9], followed by many of the works in the area, used a representation of f by

an algebraic circuit. Feige et al. [14] and [26] used a representation of f as a product of

matrices over a large enough �eld. Beaver et al. [8] used the representation of f as a low

degree polynomial. A recent work by Ishai and Kushilevitz [27] introduced a representa-

tion of functions via randomizing polynomials and used it to construct round-e�cient secure

multiparty protocols.

Communication complexity and privacy The question of whether it is possible to pre-

serve the communication complexity when constructing protocols for secure function evalu-

ation has been previously considered in the information theoretic setting by Kushilevitz

4

. In

the two party case only very special functions have an information theoretic private protocol

(see characterization in [32] and Kilian [29]). For functions that have private protocols in the

information theoretic setting, Kushilevitz [32] showed that their secure version protocol may

be much more expensive than their insecure version. There are functions for which any secure

evaluation protocol results in exponential communication (whereas linear communication is

su�cient for evaluating any function non-privately).

In the computational setting, assuming that oblivious transfer is possible, it turns out

that things are quite di�erent: �rst, as is known from the garbled circuit results [49, 50],

it is possible to compute any function privately. What this work shows is, essentially, that

2

OT

2

1

is 1-out-of-2 oblivious transfer (see Section 2.2.1) and is a basic building of these protocols.

3

The protocol described in [20] results in invoking one OT for each gate as well as each input bit.

4

Kushilevitz addresses the problem of private two-party computation of a function. A more general

problem of the secure computation of a function in a multiparty setting with faulty processors was addressed

by Franklin and Yung [40].
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the disparity in the communication complexity does not exist: it is possible to compute any

function privately while preserving the communication.

Circuit complexity vs. Turing Machines and RAM machines When considering

circuits vs. Turing Machines, it is known that there is no signi�cant advantage to the latter.

For a Turing Machine M running in time T (n) there exists a series of circuits fC

n

g

n2IN

of

size jC

n

j = T (n) � polylog(T (n)) computing f

M

. This result follows from the fact that any

computation on a Turing Machine T may be simulated by an oblivious Turing Machine {

where the head position, as a function of time, is independent of the input. The oblivious

simulation results in a polylogarithmic blow-up [45]. (See further discussion in Section 5.1.1.)

The situation regarding circuits vs. RAM machines is not known. Since a RAM machine

M running in time T (n) using space S(n) may be simulated by a Turing Machine in time

O(T (n) � S(n)) (see [48] for more details), we have that it is possible to have a series of

circuits of size roughly O(T (n) �S(n)) computing f

M

. It is not known whether it is possible

to improve this bound, hence there is a potential gap { a computation on a RAM machine

may be much more e�cient than any circuit family.

The relationship between circuit complexity and time complexity on a RAM machine

has relevance to secure function evaluation protocols { the complexity of many protocols (in

particular, those resulting from the garbled circuit transformation) is proportional to the

size of the best known circuit for a function. These protocols are rather ine�cient when

compared with the insecure evaluation of the same function (naturally, on a RAM machine).

In part, this is due to lack of an e�cient transformation from RAM machines to circuits.

In Section 5 we consider the computational model of circuits with look-up tables (LUT)

and show how to evaluate it securely and e�ciently. We show that for circuits with LUT the

gap between the circuit size and a computation on a RAM machine is closed: for a RAM

machine M running in time T (n) using space S(n) there exists a series of circuits with

LUT fC

n

g

n2IN

of size jC

n

j = T (n) � polylog(S(n)) computing f

M

, where the LUTs are of size

O(S(n)). These circuits lead, potentially, to much more e�cient secure function evaluation

protocols.

1.2 Methodologies for designing sublinear communication secure

protocols

We give two new methodologies for designing secure protocols for a function f . In both

methodologies, the parties decompose the computation of f so that (i) every party �rst com-

putes some function of her own input, and (ii) the parties utilize the computed values in an

e�cient protocol. In other words, suppose f(x; y) can be expressed as h(g

A

(x); g

B

(y)) where

g

A

and g

B

are (e�ciently computable) arbitrary functions. If h can be computed securely

using sublinear communication, then we get a sublinear secure function evaluation protocol

for f . The di�erence between the two methodologies is in the underlying computational

model.

Communication complexity tree The computational model underlying the �rst method-

ology is the communication complexity tree (or branching program) computing f . In this

3



model, the functions g

A

; g

B

correspond to the choices made by the parties during the proto-

col (as discussed in Section 4, these choices are fully de�ned by the individual inputs of the

parties). The function h corresponds to evaluating the communication complexity tree (or

branching program) with respect to the parties' choices.

For many useful and interesting functions the communication complexity of f is signi�-

cantly smaller than its input size. Examples for such functions include the median function

(mentioned above), the millionaires problem and Karchmer-Wigderson games.

We propose to utilize the representation of f by its communication complexity tree (or

branching program) and show that it can lead to tremendous savings in the communication

complexity as well as the computational complexity of secure function evaluation. For a

function f with input size that is relatively large when compared with its communication

complexity it is possible to break the cost barrier of an OT invocation per input introduced

by the `garbled circuit' construction.

The general methodology we suggest is to start with a communication e�cient (inse-

cure) protocol for the problem and transform it to obtain an e�cient secure evaluation; the

e�ciency can be either in communication or in computation.

As a direct application of this transformation we get an e�cient protocol for the secure

computation of the median of two subsets x; y 2 f1; : : : ; ng. The communication complex-

ity of this function is O(logn), and the communication of the resulting secure protocol is

polylogarithmic in n times a security parameter.

Circuits with look-up tables The second methodology we suggest uses as its underlying

computational model the circuit for computing f , enhanced with look-up tables. The input

wires to a table de�ne an index and the output equals the value stored in the indexed position.

This model is equivalent to a write-oblivious RAM (random access memory) machine, where

the RAM machine may perform any read operation, but write operations are limited to

be oblivious, in the sense that their time and location does not depend on the input. (In

other words indirection is allowed with read operations but not with write operations. See

discussion in Section 5.)

For a function f whose computation requires a relatively small number of accesses to

tables, the size of a circuit with tables for f may be much smaller than that of a Boolean

circuit, hence the resulting communication costs of the secure function evaluation protocol

may be sublinear in the input size.

Moreover, we show how to simulate RAM (and in particular non-oblivious RAM ma-

chines) via circuits with look-up tables with a moderate cost. This allows the design of a

(insecure) protocol for computing f on a RAM machine, using a high-level programming

language, and then compiling it into a secure protocol.

Again, if f(x; y) can be expressed as h(g

A

(x); g

B

(y)) where g

A

and g

B

are (e�ciently com-

putable) arbitrary functions, and h can be computed in sublinear time on a RAM machine,

we get a sublinear communication secure function evaluation protocol for f .

Combining constructions All our constructions (as well as the garbled circuit transfor-

mation) follow the same convention for representing the inputs and outputs: these values
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are shared between the parties according to a simple secret sharing scheme

5

. A consequence

is that in many cases all these constructions may be combined in a single protocol. Hence,

we get the following protocol engineering paradigm:

1. Divide a computation into sub-tasks.

2. For each sub-task choose the right computational model (for its insecure computation)

that leads to an e�cient representation.

3. Transform each sub-task to get its secure function evaluation protocol.

4. Combine these protocols to get a protocol for the computation.

1.3 Summary of results

We introduce the private Indirect Indexing as well as the Generalized Indirect Indexing

primitives and show (i) secure evaluation protocols for them (Section 3) (ii) How they can

be used to obtain communication preserving protocol for secure evaluation of any function

f(x; y) (Section 4) and (iii) How they may be combined with the secure evaluation of circuits

(Section 5). We give various examples of problems for which our transformations yields more

e�cient protocols. In particular we address the millionaires problem { our work provides

more e�cient protocols for the problem than previously known, both from a communication

point of view as well as computation (only a polylogarithmic number of OTs).

Most of the paper deals with the semi-honest model of participants. In Section 6 we

discuss a communication e�cient method of transforming a protocol in the semi-honest

model into one that works in the malicious model.

2 Preliminaries

In this work we express complexity in terms of the input length and the cryptographic

security parameter

6

. Let n denote the input length and k the security parameter. We

consider protocols as communication e�cient if their communication complexity is no higher

than a polylog(n) � poly(k) factor times the communication of the best insecure protocol for

the same functionality. The security parameter should be selected so that the computational

work done by the parties is insu�cient for breaking the cryptographic primitives in use. In

particular any choice of k must satisfy k = !(logn).

We rely mostly on Goldreich [20, 21] for de�nitions and notation. In the design and proof

of our protocol we make extensive use of composition theorems for secure protocols. This

has been an active research area (see [11, 20]). An important tool in our design are e�cient

protocols for Oblivious Transfer (OT) and Private Information Retrieval (PIR). We brie
y

overview OT and PIR as well as some other cryptographic tools we use.

5

We use a sharing scheme for bits where a bit is represented by the exclusive or of its shares. Other secret

sharing schemes may also be used with minor changes.

6

This is in contrast to a common practice of identifying the security parameter and the input length.

5



Notation We use A

c

� B to denote computational indistinguishability of ensembles A =

fA

n

g

n2IN

and B = fB

n

g

n2IN

by circuits, so that every family of poly(n)-size circuits has only

a negligible (in n) advantage in distinguishing A and B. We use neg(n) to denote functions

decreasing faster than any inverse polynomial.

The notation a� b is used for the bit-wise exclusive-or of a; b.

2.1 The Semi-Honest Model

In most of this work we address the case were the parties participating in the protocol

are semi-honest i.e. they follow the protocol as prescribed but may record all messages

and subsequently deduce information not derivable solely from the protocol output. Let

f : f0; 1g

�

� f0; 1g

�

! f0; 1g

�

� f0; 1g

�

be a (randomized) function. Let P be a two-party

protocol for computing (f

1

(x; y); f

2

(x; y)) = f(x; y). Denote by view

P

i

(x; y) the view of the

ith party during the execution of P on (x; y) (including her private coins and all received

messages) and by out

P

i

(x; y) her outcome (which is implicit in view

P

i

(x; y)).

De�nition 2.1 (Privacy with respect to semi-honest parties) Protocol P privately

computes

f(x; y) = (f

1

(x; y); f

2

(x; y))

if there exist probabilistic poly-time simulators S

1

; S

2

such that:

fS

1

(x; f

1

(x; y)); f

2

(x; y)g

c

� f(view

P

1

(x; y);out

P

2

(x; y))g

fS

2

(x; f

2

(x; y)); f

1

(x; y)g

c

� f(view

P

2

(x; y);out

P

1

(x; y))g

Composition in the semi-honest model In our constructions we compose protocols

that are private with respect to semi-honest parties, and make use of composition theorems

for secure protocols. In this section we de�ne the notion of private reduction and cite a cor-

responding composition theorem that enables us to phrase out constructions as composition

of protocols. We refer the reader to [20, 11] for further details.

De�nition 2.2 (Privately reducing g to f) An oracle-aided protocol using oracle func-

tionality f privately computes g if there exist simulators S

1

; S

2

as in De�nition 2.1. The

corresponding views are de�ned in the natural manner to include oracle answers.

An oracle-aided protocol privately reduces g to f if it privately computes g when using

oracle functionality f .

Theorem 2.1 (Composition in semi-honest model, two parties) Suppose g is pri-

vately reducible to f and there exists a protocol for privately computing f . Then, the protocol

de�ned by replacing each oracle-call to f by a protocol that privately computes f is a protocol

for privately computing g.
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Forcing semi-honest behavior The semi-honest model is of a benign adversary, that

acts as prescribed in the protocol. On the other hand, a malicious adversary may deviate

arbitrarily from its prescribed protocol. It is known how to transform protocols secure in

the semi-honest model into protocols secure in the malicious model [23] (see also [20]). The

transformation is via a compiler that `forces' the parties to act semi-honestly.

A possible design paradigm for secure protocols is thus �rst to construct a protocol for

the semi-honest model and then compile it. Alas, when e�ciency is a concern, the compiler

is not good enough { in particular it is not communication preserving. In Section 6 we

describe an adjustment of the transformation from protocols for the semi-honest model into

protocols for the malicious model so as to make it communication preserving.

2.2 Cryptographic primitives

We de�ne and discuss the primitives that are used in our constructions. For precise de�nitions

and constructions we refer the reader to [21].

Pseudo-random generators A pseudo-random generator is a (deterministic) procedure

that transforms a short random seed to a long string that is indistinguishable from a random

one. We use pseudo-random generators to generate (pseudo) random bits for a protocol, with

the cost of communicating only k bits.

De�nition 2.3 A pseudo-random generator is a polynomially computable function G : f0; 1g

k

!

f0; 1g

poly(n)

so that G(U

k

)

c

� U

poly(n)

, where U denotes the ensemble of uniform distribu-

tions.

We denote the computational work for computing G(�) by W

PRG

(k).

Pseudo-random functions A pseudo-random function is a function that is indistin-

guishable from a random function by an adaptive adversary. A function F

K

: f0; 1g

n

!

f0; 1g

poly(n)

is speci�ed by a short key K of length k bits. For every probabilistic poly-time

Turing machine M , jPr(M

F

k

(1

n

) = 1)� Pr(M

H

(1

n

) = 1)j � neg(n), where H

n

is a random

function mapping n bits to poly(n) bits. The probability is over the selection of k, H and

the random coins of M .

We denote the computational work for computing F

k

(x) by W

PRF

(k).

2.2.1 Oblivious Transfer and Private Information Retrieval

Oblivious Transfer (or OT) is a speci�c case of secure function evaluation, �rst suggested

by Rabin, where one party (the sender) has some input and the other party (the chooser)

learns some aspect of the information without `hinting' which aspect of the information was

transferred.

De�nition 2.4 (1-out-of-w oblivious transfer) Let x[0]; x[1]; : : : ; x[w�1] be elements

chosen from f0; 1g

X

. Let j 2 f0; : : : ; w � 1g be an index to one of these elements.
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An oblivious transfer protocol is a protocol that privately computes the function

OT

w

1

((x[0]; x[1]; : : : ; x[w � 1]); j) = (?; x[j])

The party holding the index j is referred to as the chooser and the party holding the

elements x[0]; x[1]; : : : ; x[w � 1] is the sender.

Oblivious transfer serves as a basic block in our constructions. There are several known

constructions of oblivious transfer protocols that are e�cient either in communication or

in computation (see discussion below). To abstract out the dependency on the speci�c

oblivious transfer protocol in use we express the e�ciency of our protocols in terms of its

work and communication denoted W

OT

(w; k;X) and C

OT

(w; k;X) respectively, where k

is the security parameter. We usually ignore the dependency of W

OT

and C

OT

on X since

X = O(max(k; logw)). Note that since W

OT

(w; k;X) = 
(w) it follows that the security

parameter should be chosen so that k = !(logw), i.e. that breaking the oblivious transfer

should take much more work than w.

Complexity of OT and PIR A lot of work was devoted recently to the communication

complexity of OT, under the heading of Private Information Retrieval { PIR [6]. The results

on single PIR by Kushilevitz and Ostrovsky [35] and Cachin et al. [12] solve \half the

problem" by protecting the chooser from the sender (i.e. at the end of the protocol the

sender cannot distinguish which value the chooser has learned), but the chooser may learn

more than a single value. The construction by Kushilevitz and Ostrovsky is under the

quadratic residuosity assumption. This was the �rst sublinear communication protocol for

PIR with a single database. The scheme by Cachin et al. is under the �-hiding assumption

and is more e�cient in terms of communication. The communication complexity of their

construction is k � polylog(n).

7

In order to protect the sender as well, Naor and Pinkas [41] proposed a method that turns

any computational PIR into an OT

w

1

protocol, by applying logw times (concurrently) an OT

2

1

protocol, without increasing the communication complexity otherwise. Furthermore, they

described recently an OT

w

1

protocol based on the Decisional Di�e-Hellman (DDH) assump-

tion [42]. In their protocol the chooser performs a constant number of exponentiations and

the sender performs O(w) exponentiations, while the communication complexity is increased

by a single element in addition to a PIR scheme

8

. (They also provided work/communication

tradeo�s for the problem, which may be relevant in some cases.)

We summarize that under the appropriate assumptions

9

there is an 1-out-of-w oblivious

transfer protocol whose communication complexity is proportional to the security parameter

plus the size of an element. If one is interested in a low computational protocol, then the

overhead can be as little as one exponentiation plus w private-key operations, using the �rst

scheme in [42].

7

Recently, Kiayias and Yung [37] presented a new polylogarithmic communication PIR scheme.

8

A similar construction was suggested by Aiello, Ishai and Reingold [1].

9

�-hiding for the PIR scheme [12], and DDH for [42].
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Counting oblivious transfers The cost of many secure function evaluation protocols

is dominated by the cost of the oblivious transfer invocations. Intuitively, the number of

oblivious transfer invocations is a good measure for the e�ciency of a protocol.

Beaver [4] showed that it is possible to implement poly(k) oblivious transfers from an

initial \seed" of just k oblivious transfers, assuming only the existence of one-way functions

(where k is a security parameter). This construction is not e�cient since it relies on the

secure function evaluation of a pseudo-random generator.

Beaver's result implies that in the computational setting (i) in general, specifying the

number of oblivious transfer invocation in a protocol is not a su�cient measure for its

complexity, and (ii) one cannot hope to obtain a high lower bound (say above logarithmic)

on the number of oblivious transfers invocations needed to securely evaluate a functionality.

Nevertheless, in the protocols discussed in this work, the number of oblivious transfer

invocations is a dominating factor in complexity.

2.3 Garbled circuit secure function evaluation

Many of the works in the �eld of secure function evaluation followed the `garbled circuit'

construction introduced by Yao [49, 50] and [23]. The idea of the construction is to emulate

the (Boolean) circuit for computing f gate by gate (once all the `garbled' inputs to a gate

are known its `garbled' output may be computed).

The cost of the protocol (e.g. as described in [20]) is of invoking one OT for each wire of

the circuit. In a more e�cient variant, described e.g. in [43], the cost is that of invoking one

OT

2

1

for each input bit plus a constant number of pseudo-random function evaluations per

each gate. I.e. the computational work is n �W

OT

(2; k)+s �W

PRF

(k) and the communication

is n�C

OT

(2; k)+O(sk). In Appendix A we apply the garbled circuit construction to a protocol

for computing f (this protocol may leak information but the transformed protocol should

not). We give a variant of the garbled circuit transformation that results with computational

work c �W

OT

(2; k) + s �W

PRF

(k) and communication c � C

OT

(2; k) + O(sk) where c is the

communication complexity of the related (insecure) protocol.

3 Indirect Indexing

In the following we describe a primitive called private indirect indexing that will serve as a

basic building block in all our constructions. The indirect indexing primitive is similar to

the oblivious transfer primitive in the sense that in both primitives an indexed array entry is

retrieved. The di�erence is that in the oblivious transfer primitive one party knows the input

index j and learns the indexed element y[j] (and the other party learns nothing) whereas in

the indirect indexing primitive the input index j and the output y[j] are shared between the

parties so that (i) the input index is a combination of the parties input shares, and (ii) the

protocol results in the parties holding random shares of the indexed element.

Notation We use a simple sharing scheme for the inputs and outputs of the indirect

indexing primitive. If Alice and Bob hold as shares of � the strings �; ~� respectively, then

9



the shared value is � = � � ~�. It follows that ~� = �� � hence we abuse notation and write

the shares as �; �� � (equivalently �� ~�; ~�).

Let �y be an array of w values and j be an index of an element y[j] of �y. The inputs for

Alice and Bob are shares � � j; � of the index j. The outputs of Alice and Bob are random

shares �

0

; �

0

� y[j] of y[j]. More formally:

De�nition 3.1 (Private indirect indexing) Let �y = y[0]; y[1]; : : : ; y[w � 1] be a list of

w values where y[i] 2 f0; 1g

Y

and w is an integral power of 2. Let j 2 f0; : : : ; w � 1g be an

index to an element of �y.

A private indirect indexing protocol (from Alice to Bob) is a protocol P

Ind

AB

that privately

computes the function

Ind

AB

(� � j; (�; �y)) = ((�

0

� y[j]); �

0

)

where � 2 f0; 1g

logw

and �

0

2

R

f0; 1g

Y

.

Similarly, the protocol P

Ind

BA

is de�ned to privately compute the function

Ind

BA

((�; �x); � � j)) = (�

0

; �

0

� x[j])

where � 2 f0; 1g

logw

and �

0

2

R

f0; 1g

X

.

Note 3.1 The initial string � 2 f0; 1g

logw

may be chosen arbitrarily. Further, � does not

have to be chosen explicitly. In particular, � may be chosen so that � = 0

logw

(in such a

case Alice knows the input index j), or so that � � j = 0

logw

(in which case Bob knows the

input index j).

On the other hand the string �

0

, in the outcome of the protocol, must be selected uniformly

at random from f0; 1g

Y

i.e. neither Alice nor Bob learn new information about Y [j].

Note 3.2 An equivalent de�nition is Ind

AB

(� � j; (�; �y)) = (~�; (~� � y[j])) where ~� 2

R

f0; 1g

Y

.

We now describe a private indirect indexing protocol. The idea underlying our construc-

tion is to use an OT

w

1

protocol where Alice acts as the chooser and Bob the sender. Since

Alice does not know which index she should choose, Bob permutes the locations of his inputs

according to �. He also encrypts his inputs using a random string �

0

. This allows Alice to

select the right position, without �guring out the \real" value she has received. In more

detail:

Construction 3.1 (Private indirect indexing protocol (from Alice to Bob))

Let P

Ind

AB

(� � j; (�; y[0]; y[1]; : : : ; y[w � 1])) be the following protocol:

Input: Alice's input is a permuted index J = ��j. Bob has as input �y = y[0]; y[1]; : : : ; y[w�

1] and � 2 f0; 1g

logw

.

Step 1: Bob chooses �

0

2

R

f0; 1g

Y

and sets Y[� � i] = �

0

� y[i] for 0 � i < w.

Step 2: Alice and Bob use an OT

w

1

protocol on inputs J; (Y[0];Y[1]; : : : ;Y[w � 1]) so that

Alice learns J

0

= Y[J ].

Output: Alice locally outputs J

0

. Bob locally outputs �

0

.

10



The protocol P

Ind

BA

((�; x[0]; x[1]; : : : ; x[w � 1]); � � j) is constructed symmetrically.

Claim 3.1 P

Ind

AB

privately computes the function Ind

AB

with communication costs C

OT

(w; k; Y ),

computation costs O(W

OT

(w; k; Y )) and round complexity of the oblivious transfer protocol.

Proof First we show that the protocol outputs the correct output. Bob locally outputs �

0

for a randomly selected �

0

. Alice locally outputs J

0

= Y[J ] = �

0

� y[j].

As for privacy with respect to semi-honest participants, we show that protocol P

Ind

AB

privately reduces Ind

AB

to OT

w

1

. By Theorem 2.1 this proves the claim. Let Alice's output

be �

0

� y[j] and Bob's output be �

0

as in the protocol. We now construct simulators S

1

; S

2

in accordance with De�nition 2.1. The input to simulator S

1

consists of �� j and a random

number ~� 2

R

f0; 1g

Y

(corresponding to �

0

� y[j]). The simulator outputs ~�. Similarly, the

input to simulator S

2

consists of �; y[0]; y[1]; : : : ; y[w � 1] and a random �

0

. The simulator

outputs �

0

. 2

A simple usage example We can now sequentially compose P

Ind

AB

and P

Ind

BA

to get

higher levels of indirect indexing. We begin with an example { the function Ind that performs

two levels of indirect indexing.

Let �x = x[0]; x[1]; : : : ; x[w

x

� 1] and �y = y[0]; y[1]; : : : ; y[w

y

� 1] where w

x

; w

y

are integral

powers of 2. De�ne

Ind((j; �x); �y) = (x[y[j]];?)

where j is an index to the y list (i.e. 0 � j < w

y

), each y[i] is an index to the x list (i.e.

0 � y[i] < w

x

) and x[i] 2 f0; 1g

X

.

The protocol for Ind �rst invokes the protocol for computing Ind

AB

(on inputs j; �y) after

which Alice and Bob share y[j] and then invokes the protocol for Ind

BA

(on inputs �x and

these shares) so that they share x[y[j]]. In the last step, Bob sends Alice his share of the

output so that Alice may locally output x[y[j]].

Construction 3.2 Let P

Ind

((j; �x); �y) be the following protocol:

Inputs: Alice has input �x = x[0]; x[1]; : : : ; x[w

x

� 1] and an index j. Bob's input is a list of

indices �y = y[0]; y[1]; : : : ; y[w

y

� 1].

Step 1: Alice and Bob jointly compute (~�; ~� � j

0

) = P

Ind

AB

(j; (0

logw

y

; �y)).

Step 2: Alice and Bob jointly compute (~�

0

� j

00

; ~�

0

) = P

Ind

BA

((~�; �x); ~� � j

0

).

step 3: Bob sends ~�

0

to Alice that locally outputs j

00

.

Claim 3.2 P

Ind

privately computes the function Ind.

Proof It is easy to see that j

00

= x[y[j]], hence the outcome of the protocol is (x[y[j]];?)

as required.

11



We show that protocol P

Ind

privately reduces Ind to Ind

AB

and Ind

BA

. By Theorem 2.1

this proves the claim. Construct simulators S

1

; S

2

in accordance with De�nition 2.1 as

follows:

The input to simulator S

1

contains �x the index j and the outcome x[y[j]]. S

1

selects

~� 2

R

f0; : : : ; w

x

g and ~�

0

2

R

f0; 1g

X

and outputs (i) ~� (this corresponds to the response

Alice gets from the P

Ind

AB

oracle in Step 1) and (ii) ~�

0

� x[y[j]] (this corresponds to the

response Alice gets from the P

Ind

BA

oracle in Step 2).

The input to simulator S

2

is �y. S

2

selects ~� 2

R

f0; : : : ; w

x

g and ~�

0

2

R

f0; 1g

X

and

outputs (i) ~� (this corresponds to the response Bob gets from the P

Ind

AB

oracle in Step 1)

and (ii) ~�

0

(this corresponds to the response Bob gets from the P

Ind

AB

oracle in Step 2). 2

Note 3.3 Running protocol P

Ind

without Step 3 results in both parties holding shares of

x[y[j]]. To change the protocol so that Bob learns the output, Step 3 should be modi�ed so

that Alice sends her share to Bob.

3.1 Generalized Indirect Indexing

We now generalize our usage of P

Ind

AB

and P

Ind

BA

to have c levels of indirect indexing,

where the indices alternate between the parties (this is a secure analog to pointer jump-

ing). The inputs to the generalized indirect indexing function GInd are indices ordered in

c lists

10

: �y

1

; �x

2

; �y

3

; �x

4

; : : : ; �y

c�1

; �x

c

. Let x̂ = �x

2

; �x

4

: : : ; �x

c

denote the lists held by Alice and

ŷ = �y

1

; �y

3

; : : : ; �y

c�1

denote the lists held by Bob. For odd 1 � ` � c�1 the list �y

`

contains w

`

elements y

`

[0]; y

`

[1]; : : : ; y

`

[w

`

� 1] where 0 � y

`

[i] < w

`+1

. Similarly, for even 2 � ` � c the

list �x

`

contains w

`

elements x

`

[0]; x

`

[1]; : : : ; x

l

[w

`

� 1] where 0 � x

`

[i] < w

`+1

for ` 6= c (i.e.

entries of �y

`

may serve as indices to �x

`+1

and, similarly, entries of �x

`

may serve as indices to

�y

`+1

), and x

c

[i] 2 f0; 1g

X

c

.

The initial index 0 � j

0

< w

1

is shared between Alice and bob so that Alice holds �

0

� j

0

and Bob holds �

0

. The outcome of GInd is x

c

[y

c�1

[� � � [x

2

[y

1

[j

0

]]] � � �]] shared by both parties.

See Figure 1.

A

A

A

A �

�

�

�

� A

A

A

A �

� B

B

B

B

B �

�

�

�

Z

Z

Z: : :

�y

1

�x

2

�y

3

�x

4

�y

5

�x

6

�y

c�1

j

0

j

2

j

1

j

3

j

4

j

6

j

c�2

j

c

�x

c

j

c�1

j

5

Figure 1: Demonstration of GInd. Alice holds x̂ = �x

2

; �x

4

: : : ; �x

c

and Bob holds ŷ =

�y

1

; �y

3

; : : : ; �y

c�1

. The outcome is x

c

[y

c�1

[� � � [x

2

[y

1

[j

0

]]] � � �]] shared between Alice and Bob.

The intermediate indices j

1

; : : : ; j

c

are not revealed to any of the parties.

10

Without loss of generality we assume c to be even.
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De�nition 3.2 (Private general indirect indexing) For 1 � ` � c let

j

`

=

(

y

`

[j

`�1

] if ` � c is odd

x

`

[j

`�1

] if ` � c is even

Then

GInd((� � j

0

; x̂); (�; ŷ)) = (�

0

� j

`

; �

0

)

where �

0

2

R

f0; 1g

X

c

.

A private general indirect indexing protocol is a protocol that privately computes the

function GInd.

The construction of P

GInd

is similar to that of P

Ind

(Construction 3.2). It uses P

Ind

AB

and P

Ind

BA

alternately. In more detail:

Construction 3.3 Let P

GInd

((� � j

0

; x̂); (�; ŷ)) be the following protocol:

Inputs: Alice's input is x̂ = �x

2

; �x

4

: : : ; �x

c

and a masked index � � j

0

. Bob's input is ŷ =

�y

1

; �y

3

; : : : ; �y

c�1

and the string �. Let �

0

= �.

Step 1 � ` � c� 1 odd: Alice and Bob jointly compute

(�

`

; �

`

� j

`

) = P

IndAB

(�

`�1

� j

`�1

; (�

`�1

; �y

`

)):

Step 2 � ` � c even: Alice and Bob jointly compute

(�

`

� j

`

; �

`

) = P

Ind

BA

((�

`�1

; �x

`

); �

`�1

(j

`�1

)):

The proof of correctness and privacy is similar to that of claims 3.1 and 3.2. Using the

notation of Section 2.2.1 we get:

Theorem 3.3 Protocol P

GInd

privately computes function GInd with work O(

P

c

`=1

W

OT

(w

`

; k))

and communication O(

P

c

`=1

C

OT

(w

`

; k)).

4 Communication Preserving Protocols

As a consequence of Theorem 3.3 we give two transformation from (insecure) protocols

into communication preserving secure function evaluation protocols. These transformations

formulate our �rst design methodology for secure function evaluation protocols, and we

demonstrate how to apply them to several examples.
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Overview of the section We begin by considering protocols in the communication com-

plexity model (for a more detailed account of the model see [34]). Applying Theorem 3.3 to

such protocols (represented by communication complexity trees) we get our main theorem { a

communication preserving transformation into secure function evaluation protocols. A naive

application of our transformation to protocols may result in protocols with super-polynomial

work. Hence, we give a variant of our main theorem using a possibly more succinct repre-

sentation, by oblivious branching programs, that allows for less work. Our transformations

are formulated with deterministic protocols. We discuss how to use randomized protocols

with these transformation, using fairly standard tools from communication complexity and

cryptography. Application examples are given throughout the section.

4.1 Communication Complexity Protocols

Intuitively, communication complexity protocols are protocols between two parties who wish

to evaluate a function of their joint input. They engage in a protocol, where they alternately

send single bit messages

11

. The protocol results in the computation of the function by

one of the parties (or both). The main issue in the communication complexity model is

e�ciency, in terms of the amount of communication needed to jointly compute the function.

We emphasize that security is not an issue in this model, and will be introduced by our

transformations.

Assume two players, Alice and Bob, wish to evaluate f(x; y) where Alice's input is x and

Bob's input is y. Without loss of generality we assume that Alice sends the �rst message

of the protocol. Note that her input x determines her message. Furthermore, her input

determines her next message for any sequence of messages she may get from Bob. Similarly,

Bob's input y determines his next message for any message sequence he may get from Alice.

Hence, upon seeing their respective inputs Alice and Bob may choose their next message for

any possible message sequence. Note that this may be done before the protocol is actually

run. We note that in the protocols we deal with, the number of messages sent by Alice and

Bob depends only on the input length n (and not on the actual value of x; y).

The layout of the protocol is of a full binary tree, where every internal node v is labeled by

a function (a

v

(�) or b

v

(�)), and every leaf v is labeled by a value z

v

. Every node v corresponds

to a possible message sequence in the natural manner, according to the path from the root

to v (i.e. choosing a left edge corresponds to sending the message \0", choosing a right edge

corresponds to sending the message \1"). Following our convention that Alice sends the �rst

message, she controls the tree edges from even to odd depth nodes, and Bob controls the

other edges. Upon seeing her input, Alice decides for each internal node v of even depth

whether to choose a right or left edge. This choice is re
ected in the de�nition below by the

functions a

v

applied to Alice's input x. Similarly, Bob decides for each internal node v of

odd depth whether to choose a right or a left edge. This is re
ected in the de�nition by the

functions b

v

applied to Bob's input y. Each leaf v is assigned a value z

v

, and the outcome

of the protocol is the value of the leaf that is reached by the alternate choices of Alice and

Bob. More formally:

11

The case where the parties send longer messages is analogous assuming the protocol is oblivious in the

sense that for every round the number of bits that are sent does not depend on the input (x; y).
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De�nition 4.1 (Communication complexity model) A protocol P

CC

, in the commu-

nication complexity model, over domain X � Y with range Z is a full binary tree of even

height where (i) Each internal node v of even depth is labeled with a function a

v

: X ! f0; 1g,

(ii) Each internal node v of odd depth is labeled with function b

v

: Y ! f0; 1g, and (iii) Each

leaf v is labeled with an element z

v

2 Z.

The value of the protocol P

CC

on input (x; y) is the label z

v

of the leaf reached by starting

at the root, and walking on the tree, according to the functions a

v

; b

v

. The protocol computes

f : X � Y ! Z if its value on input (x; y) equals f(x; y). The cost c of P

CC

is the height of

the tree.

Note that the labels a

v

(�); b

v

(�) and z

v

are known a-priori to both parties. The outcome

of a

v

(x) and b

v

(y) is computable by Alice and Bob respectively upon seeing their input.

To actually run the protocol, Alice constructs (perhaps implicitly) from P

CC

the labeled

sub-tree induced by her input, by hard-wiring the choices a

v

(x) for edges from even to odd

depth nodes. Similarly, Bob hard-wires the choices b

v

(y) for edges from odd to even depth

nodes.

4.1.1 Example: A protocol for the Hamming distance

We consider a concrete example { a protocol for computing the Hamming distance of two

n-bit strings x; y (i.e. the number of locations i such that x

i

6= y

i

). The protocol proceeds

as follows. Alice sends her input x to Bob bit by bit starting with x

0

. For each bit x

i

of x

Bob receives he checks whether y

i

agrees with x

i

. Bob replies with a 0-message if y

i

= x

i

and with a 1-message if y

i

6= x

i

. At the end of the protocol, Alice and Bob may compute

the Hamming distance of x; y by counting the number of 1-messages sent by Bob. The cost

of the protocol is of c = 2n single bit messages.

The protocol tree We give a more formal description of the protocol tree. We label

every node v of the tree in the natural manner { with a binary number corresponding to

the sequence of left (0) and right (1) edges on the path from the root to v (intuitively, this

corresponds to a sequence of single bit messages �

0

; �

1

; : : : leading to v). The root is labeled

�. We now de�ne the functions a

v

(�); b

v

(�) and the values z

v

. The functions a

v

determine

Alice's messages, hence, for every internal node of even depth v = �

0

; : : : ; �

2i�1

we set

a

v

(x) = x

i

:

This setting of a

v

corresponds to Alice sending the bit x

i

. Similarly, the functions b

v

deter-

mine Bob's messages. Here the situation is slightly more complicated since Bob's messages

depend on the last message sent by Alice and on his input. Hence, for every internal node

of odd depth v = �

0

; : : : ; �

2i

we set

b

v

(y) =

(

0 if y

i

= �

2i

1 otherwise

This setting of b

v

corresponds to Bob sending a 0-message if y

i

= x

i

and a 1-message

otherwise. Finally we de�ne the leaf values z

v

to count the number of 1-messages sent by

15



Bob and let

z

v

=

n�1

X

i=0

�

2i+1

for every leaf v = �

0

; : : : ; �

2n�1

. Figure 2 (i) displays the protocol layout for two-bit inputs.

The nodes are numbered from left to right, corresponding to the labels above.

Note 4.1 We emphasize that the protocol tree, as described above, is `�xed' in the sense that

it does not depend on the actual inputs of the parties. In particular, we may assume that the

protocol tree is agreed upon and known to both parties prior to running the protocol.
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Figure 2: Protocol for computing the Hamming distance of x; y.
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Running the protocol We separate the running of the protocol into two stages

12

prepro-

cessing and communication, as follows:

In the preprocessing stage, Alice and Bob make their decisions for the entire protocol

by computing a

v

(x) and b

v

(y) respectively. We emphasize that no communication is needed

for this computation, since each party computes functions of its input alone. The outcome

of the computation is that each party holds an induced subtree of the protocol tree, where

Alice removes from her tree the edges not chosen by the functions a

v

(x), and Bob removes

those not chosen by b

v

(y). Figures 2 (ii) and (iii) show Alice's subtree for the input x = 01

and Bob's subtree for the input y = 11.

Note 4.2 In the following we do not give an explicit account of the computational work

needed for computing a

v

(x) and b

v

(y). It can be checked, however, that this work is feasible

for all our examples.

In the communication stage, Alice and Bob follow a path from the root to a leaf in their

subtrees. The �rst edge is determined by Alice's subtree { it is the (only) edge exiting the root

in her subtree. Alice sends a 0-message if this edge is a left edge and a 1-message otherwise.

The path continues by alternately following the edges in Bob's and Alice's subtree, until a

leaf is reached. The outcome of the protocol is the leaf value.

As an example, consider the actual run of the Hamming distance protocol on inputs 01

and 11. Alice's �rst message is a

"

(01) = 0, this corresponds to sending her �rst bit. Bob's

reply is b

0

(11) = 1, i.e. a disagreement. Alice then sends a

10

(01) = 1 (her second bit) and

Bob replies b

110

(11) = 0 (agreement) and the outcome is z

0110

= 1. Note how this actual run

is re
ected in the subtrees held by Alice and Bob: Alice's �rst message corresponds to the

(left) edge exiting the root in (i); Both Alice and Bob know now that node 0 of depth 1 was

reached. Bob's reply corresponds to the (right) edge exiting this node in (ii), reaching node

1 of depth 2. Alice's second message then corresponds to the (right) edge exiting this node

in (i), reaching node 3 of depth 3. Finally Bob's last message corresponds to the (left) edge

exiting this node in (ii), reaching a leaf labeled 1 (the protocol outcome).

4.2 Secure function evaluation based on the communication com-

plexity tree

We now turn to translate the problem of evaluating a protocol P

CC

into an instance of

GInd, hence resulting in a secure evaluation protocol for P

CC

. Let P

CC

be a protocol for

computing f in the communication complexity model, with cost c. For every node v in level

` let n(v) be its position from the left (i.e. for the leftmost node on the `th level n(v) = 0

and for the rightmost n(v) = 2

`

� 1). We now reduce the problem of computing P

CC

to the

problem of general indirect indexing. The idea of the reduction is that one can view any

odd step ` of a protocol in the communication complexity model as if Alice chooses from the

2

`

labels induced by Bob's input, followed by Bob choosing from the 2

`+1

labels induced by

Alice's input. The choices are made based on the transcript of the protocol so far and the

bits Alice and Bob send in step `. The protocol P

CC

reduces to an instance of GInd with

12

This separation into two stages is not required in an actual run of the protocol.
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c levels, where the `th level has an array of size w

`

= 2

`

, whose values are the labels of the

corresponding nodes in the tree.

The parties represent their subtrees by a sequence of lists �y

1

; �x

2

; �y

3

; �x

4

: : : ; �y

c�1

; �x

c

, and

an initial index j.

� Bob's subtree is represented by the lists �y

1

; �y

3

; : : : ; �y

c�1

as follows:

{ For a node v being the ith node of (odd) depth `, let y

`

[i] be the node (of depth

l + 1) that is reached by taking the edge exiting from v in Bob's subgraph.

� Alice's subtree is represented by j; �x

2

; �x

4

; : : : ; �x

c�2

as follows:

{ The initial index j equals the node (of depth 1) reached by the taking the edge

exiting the root in Alice's subtree.

{ For a node v being the ith node of (even) depth `, let x

`

[i] be the node (of depth

l + 1) that is reached by taking the edge exiting from v in Alice's subgraph.

� The leaf values are represented by the list �x

c

as follows:

{ For a node v being the ith leaf let x

c

[i] = z

v

.

It follows that going by the lists, starting with the initial index j we get the outcome of the

protocol

x

c

[y

c�1

[� � � [x

2

[y

1

[j]] � � �]]:

Construction 4.1 (Private computation of P

CC

) Let P

priv

CC

(x; y) be the following

protocol:

Inputs: Alice holds input x 2 X. Bob holds input y 2 Y .

Step 1: Let w

`

= 2

`

.

Alice sets j = a

root

(x). For all nodes v in even level 2 � ` < c she sets x

`

[n(v)] =

2n(v) + a

v

(x). For all leaves v she sets x

c

[n(v)] = z(v).

For all nodes v in odd level 1 � ` � c� 1 Bob sets y

`

[n(v)] = 2n(v) + b

v

(y).

Step 2: Alice and bob run protocol P

GInd

on ((j; x̂); ŷ) where x̂ = �x

2

; �x

4

; : : : ; �x

c

and ŷ =

�y

1

; �y

3

; : : : ; �y

c�1

.

We conclude the following theorem:

Theorem 4.1 Let P

CC

be a protocol in the communication complexity model computing

f : X � Y ! Z with cost c. Then there exists a protocol P

priv

CC

privately computing f with

O(c) rounds, O(c � C

OT

(2

c

; k)) communication and O(W

OT

(2

c

; k)) work.

Note 4.3 Theorem 4.1 holds also for the case where the parties are not limited to sending

a single bit at every round, as long as the number of bits sent at each round does not depend

on the inputs of the parties. Therefore one can also have a round preserving protocol.
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Example Applying the Construction 4.1 to the Hamming distance protocol in Figure 2

we get:

j = 0

�y

1

= [1; 2]

�x

2

= [1; 3; 5; 7]

�y

3

= [1; 2; 5; 6; 9; 10; 13; 14]

�x

4

= [0; 1; 0; 1; 1; 2; 1; 2; 0; 1; 0; 1; 1; 2; 1; 2]:

Going through the lists we get:

x

4

[y

3

[x

2

[y

1

[j]]]] = x

4

[y

3

[x

2

[y

1

[0]]]] = x

4

[y

3

[x

2

[1]]] = x

4

[y

3

[3]] = x

4

[6] = 1:

4.2.1 Simple applications

Computing the median Assume Alice and Bob hold subsets x; y of f1; : : : ; ng. They

would like to compute the median of the multi-set x [ y. There exists a protocol for the

median problem with communication complexity O(logn) (due to M. Karchmer, see [34] Ex.

1.7). Hence Theorem 4.1 yields a communication preserving protocol for the median, with

polynomial work.

We give a short description of the protocol. For simplicity, we assume that x and y have

the same size m, which is a power of 2. The protocol runs in O(logn) steps. Alice and Bob

maintain subsets of x; y so that their size is cut by half at every step as follows. Let x

i

; y

i

be the subsets of x; y in the ith step. Denote the medians of x

i

; y

i

by m

a

; m

b

. To reduce the

size of their subsets, Alice and Bob compare m

a

; m

b

. If m

a

= m

b

then the median is found.

Otherwise, Alice and Bob reduce the sizes of their sets by half. If m

a

< m

b

Alice removes

the smallest elements of her set and Bob removes the greatest elements of his set. Similarly,

if m

a

> m

b

, Alice removes the greatest elements of her set and Bob removes the smallest

elements of his set.

The crux of the protocol is an e�cient comparison of m

a

; m

b

so that the total commu-

nication cost is O(logn). The medians m

a

; m

b

are compared single bit at a time starting

from the high order bits, stopping on a bit j where m

a

[j]; m

b

[j] disagree. We will show that

the high order bits should not be exchanged in the following steps of the protocols, resulting

with a protocol with logarithmic communication complexity. Consider for example the case

m

a

< m

b

. After removing the half smallest element in her set, all the remaining elements in

Alice's set have the same high order bits as m

a

, hence Alice does not have to re-send them

in the following steps. A similar argument holds for the remaining elements in Bob's subset.

Comparing (deterministic) strategies Let G be some combinatorial game that takes

d steps and assume that Alice and Bob each have a (deterministic) strategy for G, explicitly

described as a binary game tree of depth d and total size n = 2

d

. They wish to determine

whose strategy is winning, without revealing to the other party any other information. To

decide whose strategy is winning they may play the game for d steps (and d bits of com-

munication). However, this reveals more than they want. A protocol based on a circuit for

comparing the strategies results in costs of invoking an OT

2

1

protocol 
(n) times. On the

other hand, a protocol in the communication complexity model for comparing the strategies
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has cost proportional to the depth d of the tree and hence the communication costs if such

a protocol is O(d � C

OT

(n; k)) and the work is O(d �W

OT

(n; k)).

4.3 Oblivious Branching Program Protocols

One problem with the explicit description of a function by its communication complexity

tree is that the amount of work done by the two parties is proportional to 2

c

, which can be

large, once the communication c is super-logarithmic. We therefore consider a representation

of a protocol that may allow for less work, by restricting the amount of information needed

to be stored to execute the protocol. The communication tree of De�nition 4.1 gives for each

participant a tree, induced by its input. Suppose that instead of a tree each participant has

a DAG, or an oblivious branching program, i.e. all equivalent nodes of a given level (in the

sense that there is no input of the other party that is consistent with the current state and

that will make the two nodes decide a di�erent value for the function) are merged into one

node. The important parameter is the width w, the maximum number of nodes at a level,

of the resulting program

13

.

It is possible to de�ne the branching program model as if each party holds a branching

program (represented by a labeled layered directed graph) determined by his input. Instead,

we give a de�nition which is a bit more convenient to convert into a secure protocol. In our

de�nition the parties maintain a single branching program, where Alice controls the edges

from even depth to odd depth, and Bob controls the edges from odd depth to even depth

(this is similar to our de�nition of the communication complexity tree).

14

Note that any

protocol P

CC

of communication complexity c and width 2

c

as de�ned above can be put in

the form of De�nition 4.2 below with similar width and cost.

De�nition 4.2 (Oblivious branching program model) A protocol P

BP

, in the (obliv-

ious) branching program model, over domain X�Y with range Z is a layered directed graph

G = (V = (L

0

; L

1

; L

2

; : : : ; L

c

); E) of even depth c where (i) jL

0

j = 1, (ii) Each internal node

v in layer of even depth ` < c is labeled with a function a

v

: X ! L

`+1

, (iii) Each internal

node v in layer of odd depth ` < c is labeled with a function b

v

: Y ! L

`+1

, and (iii) Each

node in L

c

is labeled with an element z 2 Z.

The value of the protocol P

BP

on input (x; y) is the leaf reached by starting at the single

element of L

0

and walking on the graph according to the functions a

v

; b

v

. The protocol

computes f : X � Y ! Z if its value on input (x; y) equals f(x; y). The cost of P

BP

is c,

its width is max jL

`

j.

We now use use our generalized indirect indexing protocol to privately compute P

BP

.

The construction is similar to that of P

priv

CC

. In the following the function n(�) enumerates

states so that fn(v)jv 2 L

`

g = f0; : : : ; jL

`

j � 1g.

13

Beame et al [10] proposed a di�erent notion of communicating branching programs - they charged the

participants for access to their own input as well, whereas in our case this is \for free."

14

The resulting width in our de�nition may be in the worst case the square of the width in the model

where each party holds a branching program. However, parties often \share" states, hence the width is much

lower.
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Construction 4.2 (Private computation of P

BP

) Let P

priv

BP

(x; y) be the following

protocol:

Inputs: Alice holds input x 2 X. Bob holds input y 2 Y .

Step 1: Let w

`

= jL

`

j.

Alice sets j = a

root

(x) where root is the single element in L

0

. For all nodes v in even

level ` < c she sets x

`

[n(v)] = n[a

v

(x)]. For all leaves v she sets x

c

[n(v)] = z(v).

For all nodes v in odd level ` Bob sets y

`

[n(v)] = n[b

v

(y)].

Step 2: Alice and bob run protocol P

GInd

.

Theorem 4.2 Let P

BP

be a protocol in the branching program model computing f : X�Y !

Z with cost c and width w. Then there exists a protocol P

PRIV

BP

privately computing f with

O(c) rounds, O(c � C

OT

(w; k)) communication and O(c �W

OT

(w; k)) work.

Comparing Strings We give a fairly detailed construction of a string comparison branch-

ing program protocol. On input two w-bit strings x; y, let f = 1 if x = y and f = 0 otherwise.

Figure 3 (i) depicts a branching program computing f corresponding to the protocol where

Alice and Bob exchange their strings, one bit at a time. The branching program checks

whether Alice and Bob disagree some bit. Once a disagreement is found (i.e. x

`

6= y

`

), the

program moves into a `trap' state that leads, eventually, to the leaf labeled 0. Otherwise the

leaf labeled 1 is reached. For inputs x = 1101 and y = 1010, Figure 3 (ii) and (iii) shows the

corresponding branching programs held by Alice and Bob.
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Figure 3: Branching program protocol for string comparison

21



Note 4.4 In a typical usage, the strings x; y are hashed prior to applying the branching

program of Figure 3, where the hash function is selected in the clear (see discussion in

Section 4.4.1 and usage in Section 4.5.1).

Acceptance by an automaton Alice holds an deterministic �nite automaton A = (Q; �)

where Q = fq

0

; q

1

; : : : ; q

n

g and � : Q � f0; 1g ! Q. Bob holds a string � 2 f0; 1g

c

. They

wish to decide whether � is accepted by A (i.e. whether � reaches q

n

starting from q

0

).

De�ne a branching program based on A with cost O(c) and width O(n) (this branching

program is degenerate in the sense that it is completely de�ned by Alice). The program

considers a single bit of � at a time and stores the state reached by the pre�x of �. Let

L

0

= fq

0

g and L

i

= Q for 0 < i � c. Label node q

n

in L

c

as 1 and all other nodes as 0. For

each node q 2 L

i

, the function a

q

is de�ned to be a

q

(�) = �(q; �). It is easy to see that the

branching program decides whether A accepts �.

4.4 The Randomized Case

The use of randomized protocols allows, in many interesting cases, to reduce the communica-

tion complexity of protocols to be below linear in the input size. We present two approaches

that allow the use of such protocols with theorems 4.1 and 4.2. The approaches di�er in

their treatment of random coins. In one, the random bits are revealed to both parties, and

in the other they are kept secret from the parties.

In the revealed random bits approach (Lemma 4.3) we start with a protocol with a very

small probability of error and `derandomize' it by selecting random coins (independent of

the input) and `hard-wiring' them into the protocol. Theorem 4.1 (or Theorem 4.2) is then

applied to the `derandomized' protocol. In secret random bits approach we start with a

protocol with low randomness.

15

The protocol is changed to a new protocol where each

party initially holds a share of the random string (according to some secret sharing scheme).

The protocol �rst retrieves the random string and then executes the original protocol with

respect to this string. Theorem 4.1 or Theorem 4.2 may be applied to this protocol to obtain

a private one. A drawback of this approach is that in general it results with super polynomial

work protocols.

Our examples in Section 4.5 exemplify a design paradigm that combines both approaches.

We compute a function in `parts', so that (i) each part has an e�cient private implementation

(ii) at the end of each part the parties share only a small amount of secret random bits (needed

e.g. to conceal intermediate results), and (iii) the overall computation, given the outputs of

all parts is private and e�cient.

We begin by a brief introduction of randomized protocols. We refer the reader to [34] for

a detailed account of randomized protocols.

A private-coin randomized protocol is a protocol as in De�nitions 4.1 or De�nition 4.2

in which Alice has access to a random string r

A

and Bob has access to a random string r

B

.

The two strings are chosen independently uniformly at random. In the tree (or branching

program) de�ning the protocol Alice's nodes are labeled by functions a

v

of x and r

A

; Bob's

15

Lemma 4.4 serves as a standard tool to reduce the randomness of every protocol to be roughly logarithmic

in n and in the error probability.
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nodes are labeled by functions b

v

of y and r

B

. A public-coin randomized protocol is de�ned

similarly where both Alice and Bob has access to the same random string r. We now de�ne

what it means for a protocol to compute a function.

De�nition 4.3 Let P;P

0

be private-coin and public-coin randomized protocols respectively.

P computes a function f with error " if Pr

r

A

;r

B

[P((x; r

A

); (y; r

B

)) = f(x; y)] � 1�" for every

(x; y). Similarly, P

0

computes a function f with error " if Pr

r

[P

0

((x; r); (y; r)) = f(x; y)] �

1� " for every (x; y).

4.4.1 Revealed random bits transformation

We now turn to describe our revealed random bits transformation from randomized protocols

to private protocols. We �rst observe that if the probability of error is negligible, then the

randomized case is not signi�cantly di�erent than the deterministic case. As long as Alice

and Bob choose their random coins independently of the input, the chances of choosing

`bad' coins so that the protocol outcome di�ers from f are negligible. Note that even if

Alice and Bob know the random string with which the protocol runs, they do not gain any

signi�cant information (in a computational sense) from it. It follows that Alice and Bob

may `derandomize' the protocol by choosing a random string and `hard-wiring' it into the

protocol. To save on communication they select a short random seed and expand it using a

pseudo-random generator. The work and communication of the resulting protocol are similar

to those obtained by theorems 4.1 and 4.2.

Lemma 4.3 Let P be a randomized protocol computing (deterministic) function f : X�Y !

Z with cost c and negligible error probability. Let G be a pseudo-random generator as in

De�nition 2.3. Then there exists a protocol P

0

privately computing f with costs as in theorems

4.1 and 4.2 plus the cost of communicating k random bits.

Proof The construction of P

0

is based on the observation that the outcome of P is compu-

tationally close to the outcome of an ideal deterministic procedure that correctly computes

f . It follows that if both Alice and Bob `hard-wire' pseudo-random coins into the protocol,

then with extremely high probability none of them will learn from the outcome of the in-

duced protocol more than it is possible to learn from the outcome of the ideal procedure. It

is possible to apply Theorem 4.1 or Theorem 4.2 on the induced protocol to get a private

protocol.

We privately reduce f to P

priv

CC

(or to P

priv

BP

). By Theorem 2.1 this proves the lemma.

Let G be a pseudo-random generator. Consider the following protocol:

Construction 4.3

Step 1: Alice selects a seed s 2

R

f0; 1g

k

for G and sends s to Bob. The string r = G(s)

de�nes the private and public coins and induce a deterministic protocol P

r

where

a

r

v

(x) = a

v

(x; r) and b

r

v

(y) = b

v

(y; r).

step 2: Alice and Bob apply Theorem 4.1 (or Theorem 4.2) on P

r

.
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Construct a simulator S

1

for Alice in accordance with De�nition 2.1. Note that with

extremely high probability (over the choice of r), the outcome of the protocol is (��f(x; y); �)

as required. Thus we can assume the input of S

1

to be x; � � f(x; y). The simulator S

1

chooses s at random and outputs G(s); ��f(x; y). The simulator S

2

is constructed similarly.

2

4.4.2 Secret random bits transformation

The secret random bits transformation applies to the more general case, e.g. when the com-

puted functionality is a distribution. The drawback of this approach is that it is not guar-

anteed to yield protocols with polynomial work.

We begin with a standard lemma that states that any randomized protocol can be trans-

formed into a public-coin randomized protocol that does not use many random coins. We

refer the reader to [34, Chapter 3.3] for further details.

Lemma 4.4 Let X = Y = f0; 1g

n

and Z = f0; 1g

m

. Any randomized protocol P : X �

Y ! Z may be transformed into a protocol P

0

so that (i) For every x; y the statistical

di�erence between P(x; y) and P

0

(x; y) is at most �, (ii) P;P

0

have the same communication

complexity, and (iii) P

0

uses O(logn+ log

1

�

+m) random bits.

Proof It is su�cient to prove the claim for public-coin protocols. We will randomly trans-

form P into P

0

so that with high probability the three requirements in the claim hold.

Denote by P

r

(x; y) the (deterministic) outcome of protocol P when run with random

coins r. Protocol P

0

is constructed by selecting at random t strings r

1

; r

2

; : : : ; r

t

. On input

(x; y) protocol P

0

selects i 2

R

f1; : : : ; tg and runs P

r

(x; y).

Consider inputs x; y. Let I(r; z) be 1 if P

r

(x; y) = z and 0 otherwise. Let �

z

= E[I(r; z)] =

Pr

r

[P(x; y) = z] be the probability that on input (x; y) protocol P outputs z. Let �

0

z

=

1

t

P

t

i=1

I(r; z) be the probability that on input (x; y) protocol P

0

outputs z. Note that

E[�

0

z

] = �

z

. Setting " =

�

2

m

�

z

we get by Cherno� bounds that the statistical di�erence

between P(x; y) and P

0

(x; y) is more than � with probability at most

Pr

r

1

;r

2

;:::;r

t

[exists z s.t. jt�

0

z

� t�

z

j > "�t] �

X

z

e

�"

2

�

z

t=3

<

X

z

2

��

2

t=(3�4

m

�

z

)

� 2

m

2

��

2

t=(3�2

m

)

The probability that there exist inputs x; y for which the statistical di�erence is more than �

is thus bounded by 2

2n+m

2

�

�

2

t

3�2

m

taking t = O(

2

m

�

2

(n+m)) makes this probability exponentially

small. Note that log t = O(logn+ log

1

�

+m) as required. 2

A straightforward way to use Lemma 4.4 is to take � to be negligible in the security

parameter. It follows then that for every x; y the outcomes of P

0

(x; y) and P(x; y) are

statistically close (hence - computationally indistinguishable). Thus it su�ces to show how

to privately compute P

0

(x; y). This may be done by Alice and Bob choosing shares of the

private and public coins used in the protocol and then applying Theorem 4.1 to the protocol

that (i) retrieves the random coins from the shares, and (ii) simulates P

0

. This transformation

generally results in super-polynomial computational work.
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4.5 Applications

For many interesting functions, there exists protocols with communication complexity that

is signi�cantly lower than the input size (and hence their circuit complexity). For such

functions, there is a potential of getting protocols that are much more e�cient than those

resulting from the garbled circuit transformation. We now show how to apply the oblivious

branching program representation to obtain good protocols for several such functions such

as the Millionaires problem and position-wise inequality. We also consider e�cient protocols

for Karchmer-Wigderson games.

4.5.1 The Millionaires problem { who is larger?

Alice has input x 2 f0; 1g

n

and Bob y 2 f0; 1g

n

and they wish to decide whose input is

larger. A circuit for deciding whether x or y is larger has 2n inputs and thus a protocol

simulating it will perform �(n) invocations of the OT

2

1

protocol. On the other hand it is

known that the randomized communication complexity of this function is O(logn+ log 1=")

where " is the probability of error. We describe a simple randomized protocol for the problem

that results in an oblivious branching program with O(log(n) � log(

1

"

)) cost and linear (in n)

width (it is possible to reduce it and obtain cost O(logn+ log

1

"

) as well).

Let x

i

(respectively, y

i

) denote the ith bit of x (resp. y) and let ~x

i

= x

1

; x

2

; : : : ; x

i�1

denote the ith pre�x of x (and resp. ~y

i

). The idea underlying all known communication

e�cient protocols for the problem is to perform a binary search for the position i for which

x

i

and y

i

di�er but ~x

i�1

= ~y

i�1

.

To be able to execute the protocol Alice and Bob have to check whether ~x

i

= ~y

i

or not.

This is done by applying a hash function h

i

to ~x

i

and ~y

i

and then applying the branching

program of Figure 3 on the result. The hash function h

i

: f0; 1g

i

7! f0; 1g

a

is chosen so

that for any two ~x

i

6= ~y

i

the probability that h

i

(~x

i

) = h

i

(~y

i

) is smaller than

"

log n

and hence

a = O(log

1

"

) (we assume that " <

1

n

and in fact negligible in n). We would like to de�ne n

such functions for all domains of size 2 through 2

n

based on relatively few bits. This can be

done in several ways, in particular, by sharing O(log

1

"

) random bits that induce

"

log n

-biased

vectors, sampled via a random walk on an expander.

Given the choice of fh

i

g

n

i=1

the communication protocol performs a binary search for

the longest common pre�x and then compares the next bit. The equality test for pre�xes of

length i is done by Alice and Bob computing h

i

(~x

i

) and h

i

(~y

i

) respectively and then applying

the branching program of Figure 3. The total error probability is ", since there are logn

steps. We now show the branching program complexity of implementing such a protocol.

Once Alice and Bob have agreed on h

1

; h

2

; : : : h

n

they can de�ne a branching program

of width linear in n to perform the binary search. Intuitively, all that the program needs

to store is the current node in the binary search tree (this implies the index i for which

pre�x equality should be decided) and the status of the string equality branching program

(i.e. whether we have determined equality so far or not regarding pre�x i). Therefore

the total number of OT

O(n)

1

performed is a logn which is O(logn � log

1

"

). A more careful

implementation based on noisy binary search [15] can yield O(logn+ log

1

"

) many OT

O(n)

1

.

Note that these results mean that whether one is interested in a communication e�cient
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protocol or a whether in a computational e�cient protocol this is a good approach. The

di�erence would be in the type of OT used.

Karchmer-Wigderson games Let f : f0; 1g

n

! f0; 1g be a Boolean function. In a

Karchmer-Wigderson Alice's input satis�es x 2 f

�1

(1) and Bob's input satis�es y 2 f

�1

(0).

The goal of the Karchmer-Wigderson game G

f

corresponding to f is to �nd and index i so

that x

i

6= y

i

. A related problem is the universal relation where Alice and Bob are required

to �nd an index i so that x

i

6= y

i

, given that x 6= y. Note that the above protocol for the

Millionaires problem actually �nds the �rst index index i where x; y di�er. Thus, its output

may be modi�ed to output i. Hence it serves as a communication e�cient private protocol

for the universal relation

16

. Clearly, a private protocol for the universal relation serves as a

private protocol for any Karchmer-Wigderson game.

4.5.2 Position-wise inequality

Alice and Bob each have as inputs a list of n elements x

1

; : : : ; x

n

and y

1

; : : : ; y

n

respectively,

each element is in f0; 1g

n

. They want to determine whether there exists an index i such that

x

i

= y

i

or not. This problem was suggested by Furer [18] as demonstrating a function with

low Las Vegas communication complexity, compared with the deterministic one. Applying

a private protocol for this task based on a circuit computing the relation results in commu-

nication and work corresponding to 
(n

2

) invocations of the OT

2

1

protocol (due to the size

of the inputs).

We present a branching program protocol for the problem with cost O(n) and width

poly(n). Let r

1

; r

2

; : : : ; r

m

be m > n random strings, each of length n. Let X

i;j

= hx

i

; r

j

i

be the inner product of x

i

and r

j

and Y

i;j

= hy

i

; r

j

i. Each layer of the branching program

contains mn states denoted (i; j) for 1 � i � n and 1 � j � m.

Initial State: State (1; 1) in layer L

0

.

Transitions: In state (i; j) of layer L

`

:

If X

i;j

= Y

i;j

move to state (i;min(j + 1; m)) of layer L

`+1

, otherwise move to state

(min(i+ 1; n);min(j + 1; m)) of layer L

`+1

.

Value: In layer L

m

state (i;m) has value 1, all other states have value 0.

It is easy to see that with m = O(n) layers the probability that the branching program

errs is negligible in n, hence we can apply Lemma 4.3 to get a private protocol.

5 Sublinear algorithms: Dealing with tables

The generalized indirect indexing primitive (recall De�nition 3.2 and Construction 3.3 of

P

GInd

) underlies all our constructions so far, and hence these constructions make extensive

16

An exact de�nition of private protocols for relations is out of the scope of this work.
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use of tables. However, the usage was so far limited to reading from tables without writing.

Furthermore, in the read pattern of P

GInd

is very speci�c { every table is accessed only once.

The limited usage of tables is re
ected in P

PRIV

CC

(Construction 4.1) and P

PRIV

BP

(Con-

struction 4.2) that use P

GInd

as a subroutine. In a typical usage of these protocols the parties

create tables (as induced by their individual inputs) and then apply P

PRIV

CC

or P

PRIV

BP

. How-

ever, once these tables are created, their values remain static.

Overview of the section In this section we consider the computational model of circuits

with look-up tables (LUT), that allows a more elaborate usage of tables. We show that this

model is strong enough to capture write-oblivious computations on a RAM machine. That

is, computations that are allowed to perform any read operation, but whose write operations

are restricted in the sense that their location and timing are not a�ected by the actual

input. Further, we show that any computation on a RAM machine may be translated into

a computation on a write-oblivious RAM machine with a modest blow-up, and hence, may

be emulated by a circuit with LUT.

We start with a discussion of circuits with LUT and oblivious computation, stating

informally some of the goals and results of this section. We then go into a more detailed

account of our results. We begin by de�ning the LUT primitive and show how to evaluate it

privately (using indirect indexing). The protocol for private LUT serves as a building block

in a protocol for privately evaluating circuits with LUT { a variant of the garbled circuit

transformation. We give several applications of circuits with LUT, resulting in e�cient

secure function evaluation. In particular, we show how to simulate any RAM machines in

our model.

Note 5.1 We deal only with deterministic computation. Randomness may be handled sim-

ilarly to Section 4.4.

5.1 Circuits with LUT and write-oblivious RAM computation

We discuss our computational model - circuit with look-up tables { that allows an elaborate

usage of tables. In this model, the gates of a circuit are look-up tables (LUT). The LUT

input wires de�ne the table entries and an index and the LUT output wires are set according

to the value stored in the indexed position. We de�ne a look-up table (LUT) primitive and

show how to evaluate it privately (using indirect indexing). The protocol for private LUT

serves as a building block in a protocol for privately evaluating circuits with LUT { a variant

of the garbled circuit transformation.

Circuits with LUT amount to performing computations with tables as follows:

Read operations: The table values, as well as the index specifying the location of the read

item are either preset or the result of an intermediate computation. In particular, it is

possible to perform any kind of indirect read.

Write operations: The value written to the table may be the result of an intermediate

operation but the location should be pre-determined. (In other words, no indirect

writes are allowed.)
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It follows that any computation on a RAM machine where write operations are oblivious {

in the sense that the time and location of the write operations should not depend on the

input and randomness { may be emulated by circuits with LUT.

5.1.1 Simulation by oblivious computation

An oblivious machine accesses memory locations in sequence that does not depend on the

input. For example, an oblivious Turing Machine is a Turing machine for which the sequence

of head positions (as a function of time) does not depend on the input. An oblivious RAM

machine is a RAM machine is de�ned analogously. As discussed above, any computation on a

RAM machine where write operations are oblivious may be emulated by circuits with LUT.

Hence, we consider a computational model of a write-oblivious RAM machine, that may

perform any read operation, but only oblivious write operations, in the sense that their time

and location does not depend on the input. Below (Section 5.3) we show how to simulate

any RAM machine computation an a write-oblivious RAM machine with a polylogarithmic

blowup.

Simulation by oblivious Turing Machines The transformation of arbitrary machines

into oblivious machines (computing the same function) was previously considered in the

literature in di�erent contexts. For Turing machines, Pippenger and Fischer [45] show that

any computation on a (non-oblivious) one-tape Turing Machine may be simulated by a two-

tape oblivious Turing Machine with a moderate cost. For any one-tape Turing Machine M

computing f

M

in time O(T (n)) there exists an oblivious two-tape Turing Machine computing

f

M

in time O(T (n) logT (n)).

An important consequence of the result by Pippenger and Fischer [45] is that computation

on a Turing Machine is not more e�cient than circuits. For any Turing MachineM comput-

ing f

M

in time T (n) there exists a series of circuits fC

n

g

n2IN

of size jC

n

j = O(T (n) logT (n))

so that C

n

computes f

M

on inputs of length n. On the other hand, the oblivious simu-

lation by probabilistic RAM does not seem to imply such a consequence on the relation

between RAM machines and circuits. In particular, it is not known whether for any RAM

machine M computing f

M

in time T (n) and space S(n) there exists a series of circuits of

size o(T (n) � S(n)).

Simulation by oblivious RAM The access pattern of an oblivious machine does not

depend on its input, hence it hides all information about the input (except its size). Goldre-

ich and Ostrovsky [19, 24] utilized this property of oblivious machines to protect software

from leaking its memory access sequence. However, to allow for e�cient simulation of a

RAM machine by oblivious RAM machine, they extend the de�nition of obliviousness to

the probabilistic RAM machines (we emphasize that this extension of obliviousness di�ers

from our extension of obliviousness). On such a machine, the probability distribution of the

sequence of memory accesses should be independent of the machine input. They show that

any RAM machine computing f in time T (n) with s(n) memory locations can be simulated

by an oblivious probabilistic RAM machine in time O(T (n)(logT (n))

3

) with O(s(log s)

2

)

memory locations.
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5.1.2 Closing the gap between circuits and RAM machines

The results of Pippenger and Ficher [45] imply that when considering circuits vs. Turing Ma-

chines, there is no signi�cant advantage to the latter, since there exists a series of circuits of

size comparable to the running time of the Turing Machine. A natural question is whether a

similar result applies also for circuits vs. RAM machines. Currently, it is not known whether

for every RAM machine there exists a series of circuits of size o(T (n) � S(n)) computing the

same function (where T (n); S(n) denote the time and space used by the machine). Hence

there is a potential gap { a computation on a RAM machine may be much more e�cient

than any circuit family.

We show that for circuits with LUT this gap is closed. Using the observation that for

any write-oblivious RAM machine M running in time T (n) there exists a family of circuits

with LUT of size T (n) computing f

M

, all we need to show is an e�cient simulation of

any RAM machine via a write-oblivious RAM machine. We show such a simulation with a

polylogarithmic blow-up. Hence, for a RAM machine M running in time T (n) using space

S(n) there exists a series of circuits with LUT of size T (n) � polylog(S(n)) computing f

M

.

Leading, potentially, to much more e�cient secure function evaluation protocols.

Note that, unlike the transformation by Pippenger and Fischer [45], our simulation does

not seem to imply the existence of small circuits (without LUT) for f

M

, since read operations

are still non-oblivious.

5.2 Circuits with look-up tables

The look-up table (LUT) primitive retrieves an indexed table entry privately. On input, the

table values as well and the index of the retrieved element are shared between the parties.

On output, the retrieved entry is shared between the parties. Nothing is assumed about

the way the LUT input values are computed and shared, but, the output shares must be

random.

De�nition 5.1 private (LUT ) Let

�

R

A

= R

A

[0]; : : : ; R

A

[w�1] and

�

R

B

= R

B

[0]; : : : ; R

B

[w�

1]. where R

A

[i]; R

B

[i] 2 f0; 1g

m

. The function LUT is de�ned as follows:

LUT ((j

A

;

�

R

A

); (J

B

;

�

R

B

)) = (�; � �R

A

[j

A

� j

B

]� R

B

[j

A

� j

B

])

where � 2

R

f0; 1g

m

. The LUT width is w.

In the construction of P

LUT

we use the indirect indexing primitive (Section 3). Let j

be an index shared by the parties. The protocol for privately computing LUT uses P

Ind

AB

so that the parties holds shares of R

A

[j] and P

Ind

BA

so that they holds shares of R

B

[j].

Then every party combines the shares he got. The cost of the resulting protocol is two OT

w

1

invocations.

Construction 5.1 (Private protocol for LUT ) Let P

priv

LUT

((j

A

;

�

R

A

); (J

B

;

�

R

B

)) be the

following protocol:
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Inputs: Alice and Bob share the index and the LUT values i.e. j = j

A

� j

B

and R[i] =

R

A

[i]�R

B

[i] for 0 � i � w � 1.

Step 1.1: Alice and Bob run protocol P

Ind

AB

(j

A

; (j

B

; R

0

B

)) denote the outcome as (s

1

A

; s

1

B

).

Step 1.2: Alice and Bob run protocol P

Ind

BA

((j

A

; R

0

A

); j

B

) denote the outcome as (s

2

A

; s

2

B

).

Step 2: Alice and Bob locally output s

1

A

� s

2

A

and s

1

B

� s

2

B

respectively.

Note 5.2 Steps 1.1 and 1.2 of P

priv

LUT

may be run in parallel, so that the round complexity

of P

priv

LUT

equals that of P

Ind

AB

.

Our de�nition of the outputs and inputs of the LUT primitive complies with the garbled

circuit transformation in which the value of every wire is shared by the parties (see [20, 43]).

Hence, it is possible to use the LUT primitive with the garbled circuit transformation as

follows. The values on the LUT input wires de�ne the table entry and an index; the LUT

output wires are set the value stored in the indexed position.

Since it is possible to simulate any Boolean gate using LUT, every circuit may be simu-

lated this way

17

. Moreover, a LUT may describe a complex gate with multiple inputs and

outputs, with the cost of a single application of P

LUT

, hence the number of LUTs needed to

construct a circuit for a function f may be much smaller than the number of gates in the

Boolean circuit for f , and the resulting computation and communication costs may be much

lower. In particular, the communication of the resulting protocol may be sub-linear in the

input size.

Using Construction 5.1 we get:

Claim 5.1 Let C be a circuit with s look-up tables of widths w

1

; : : : ; w

s

.

There exists a protocol privately computing C with computational work O(

P

s

`=1

W

OT

(w

`

))

and communication O(

P

s

`=1

C

OT

(w

`

)).

5.2.1 Applications

We mention two types of applications: (i) functions that are computable by probing small

portions of large data held by the parties, and (ii) function that are readily expressed using

tables.

Property testing A great source of applications for circuits with LUT is property testing,

where a (typically large) object is locally queried in order to check whether some global

property holds [7, 47, 22]. I.e. the number of queries to the object is very small with respect

to the object size (at the extreme - independent of the object size). The object is assumed

either to have the property or to be far from any object having the property. Property testing

algorithms are known to exists for a variety of properties including algebraic properties (e.g.

17

However, the garbled circuit construction described in [43] usually results in a more e�cient protocol.
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being a polynomial of low degree) [7, 47] and graph properties (e.g. bipartiteness and k-

colorability) [22].

Applying the garbled circuit to property testing algorithms results in a highly ine�cient

protocol, since the circuit size is at least the object size. It is, in principle, possible to directly

apply Theorem 4.1 to get a communication e�cient protocol, but the computational work

done by the parties may get high (due to the large size of communication complexity trees

involved).

On the other hand, expressing property testing algorithms as circuits with LUT results

in very e�cient protocols. The circuit consists of three types of components: (i) components

which determine the next location to be probed in the object

18

(ii) components that probes

the object (iii) a component that determines the answer. The component that probes the

object is a circuit with LUT. The inputs for components of type (i) and (iii) are small (of

order polylogarithmic in the input size, and polynomial in some `security' parameter), and

thus the circuits computing them are small. For these components, one may use for example

the garbles circuit construction.

Computing on encrypted data Halevi and Mironov [25, 39] noted that some popular

private-key encryption functions (e.g. Data Encryption Standard { DES and Advanced En-

cryption Standard { AES) are de�ned with look-up tables, hence they are readily expressible

via circuits with LUT { suggesting a potentially e�cient protocol.

Halevi suggested the problem of encrypting a message with a key shared by Alice and

Bob. Alice holds k

A

and Bob holds k

B

and the outcome of the protocol is AES

k

A

�k

B

(m). A

potential usage is for applications that use AES

k

(m

0

) (with a �xed m

0

) as a substitution for

a `random' function of k. Another usage is where both the message m and the encryption

key k are shared between the parties, who wish to compute AES

k

(m).

Mironov suggested the problem of deciding, given an encryption, whether it is an en-

cryption of a speci�c message without revealing the message, or the encryption key. In this

setting, Alice holds an encryption key k and Bob holds an encryption of a message m (un-

known to him) DES

k

(m) and a `candidate' message m

0

. At the end of the protocol Bob and

Alice learn whether m = m

0

or not.

5.2.2 Sorting

We show how to construct a circuit with LUT that sorts an array of values. Our circuit

implements a merge-sort algorithm. In Section 5.3 we use this sorter in our simulation of

a general computation (on a RAM machine) by a computation that uses LUT (the more

e�cient simulation uses only the merger described below).

We describe the construction of the merger. The sorter is constructed in a standard way,

applying the merger recursively. The input of the merger consists of two sorted arrays, each

with n elements a[0]; : : : ; a[n�1] and b[0]; : : : ; b[n�1]. The output is an array c[0]; : : : ; c[2n�1]

containing the merged lists.

The merger is depicted in Figure 4. It uses as a building block a circuit C for the task

of updating the jth element of c. The inputs to C are the indices i

a

; i

b

corresponding to the

18

Sometimes this component reduces to choosing a random sample.
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next element from arrays a; b to be put into c. The outputs are c[j] and updated indices

i

a

; i

b

. C retrieves a[i

a

]; b[i

b

]. If i

a

= n or b[i

b

] � a[i

a

] the output is b[i

b

]; i

a

; i

b

+1, otherwise it

is a[i

a

]; i

a

+ 1; i

b

.

c[0]

c[1]

c[2]

c[2n� 1]

i

b

i

a

i

b

i

b

i

a

i

b

i

a

i

b

i

a

i

a

C

C

C

C

.

.

.

Figure 4: A merger

Note 5.3 An alternative to our sorter is a sorting network. I.e. a comparison network

for which the output sequence is monotonically increasing for every input sequence. For

instance one may use the AKS sorting network that achieves optimal size (O(n logn)) and

depth (O(logn)) [2].

On the other hand, a merging network (i.e. a comparison network that merge two sorted

inputs into one sorted output) is not as e�cient as our merger, since any merging network

requires 
(n logn) comparators.

5.3 Simulating RAM by write-oblivious RAM

The RAM (random access memory) machine model is of a `realistic' machine that can per-

form operations involving registers and main memory, where the memory may be indexed

directly or indirectly both for read and write operations (we will defer from a speci�c de�-

nition of a RAM machine). A write-oblivious RAM machine is a RAM machine where the

time and location of write operations depend solely on the input size (but not on the speci�c

input or randomness).

Every computation on a write-oblivious RAM machine may be simulated by circuits with

LUT in a step-by-step manner. A typical step (i) retrieves the current operation (indexed by

some register) (ii) read from memory to registers (iii) manipulate registers (usually requires

a small circuit), and (iv) write to memory. Each wire in the circuit with LUT simulating the

computation corresponds to the a bit of memory or a register. For every write operation,

the corresponding wire(s) are `replaced' with the wires that carry the `fresh' values.

A basic simulation with O(s) blowup A straight forward simulation of RAM machines

by write-oblivious RAM machines is to simulate every write operation by re-writing every
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memory location in a �xed (hence oblivious) order. To write value � into address �, Every

memory location is read and then written with its `current' value, unless when its address

is �, where it is written with value �. The cost hence is of O(s) operations for every write

operation that is simulated.

Using logs To save on the large overhead introduced by the basic simulation, we incorpo-

rate a scheme that does not apply it often. We postpone updates to the memory, and save

them in a log. When many changes are accumulated we update the memory at once. Below,

we describe such a scheme, that reduces the simulation blowup to O(s

1=2

). Our �nal scheme

maintains a hierarchy of logs, such that updates propagate through the logs. With this

hierarchical construction we reduce the amortized cost of read and write operations to be

polylogarithmic in s, resting in a polylogarithmic blowup. Our constructions are similar in

nature to that of Goldreich and Ostrovsky [19, 24] and Ostrovsky and Shoup [44]. A similar

luck of e�ciency problem was addressed by Rosenblum and Ousterhout [46] in the context

of �le systems. They suggest log-structured �le systems that optimize write operations to

the �le system by sequentially logging modi�cations to existing data rather than overwriting

data in place.

5.3.1 A simulation with O(s

1=2

) blowup

To simplify the presentation, we begin with an simulation that results in amortized cost of

O(s

1=2

) LUT accesses for every read/write operation. The main idea is to hold a log L of

s

1=2

elements that contains the most recent updates to the RAM memory. The entries of

L are address-value pairs (�; �) that re
ect recent memory modi�cations. For every write

operation a new entry is added to L corresponding to the written value and its address. Once

the log is `full', its contents is sorted and then merged with that of the RAM. To merge the

sorted table with the RAM we use a variant of the merger of Figure 4 that picks for every

address � only its most recent pair.

Read operations To read an entry from address �, the log L is checked for the most

recent address-value pair with address �. If such a pair is found - the outcome of the read

operation is set to be its value. Otherwise, the outcome is the LUT value at address �.

Write operations To write � into address �, a new entry (�; �) is appended to the log L.

Once the log L contains s

1=2

entries (the log is `full'), it is is sorted, merged with the RAM

and reset to contain no elements.

The cost of a read operation is of O(s

1=2

) accesses into L and a single access to the

LUT. The cost of a write operation is of a single access into L (when L is not full) and

O(s

1=2

log(s

1=2

)) +O(s) = O(s) LUT accesses once L is full. The resulting amortized cost is

of O(s

1=2

) LUT accesses.

5.3.2 Achieving polylogarithmic blowup

We now generalize the above construction to achieve lower amortized costs. Instead of having

a single log, we will maintain logs L

0

; L

1

; : : : ; L

k

of sizes n

0

; : : : ; n

k

where n

i

= s=(log s)

i

and
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k = O(log s= log log s) (so that n

k

= 1). On a write operation, a new address-value pair is

entered into L

k

. This pair gradually propagates through the logs using the rule that whenever

the log L

i

is `full' its contents is merged with that of log L

i�1

. The address-value entries of

every log are kept sorted according to the address. For simplicity, we assume that log L

0

is

initialized to contain the s pairs (0; 0); (1; 0); : : : ; (s � 1; 0). All other logs are initialized to

be empty.

Read operations To read an entry from address � it is searched in L

k

; L

k�1

; : : : ; L

0

(since

the tables are sorted, a binary search is possible). The outcome of the read operation is set

to the value of the �rst matching address-value pair.

Write operations To write value � into address �, a new entry (�; �) is appended to log

L

k

. Let i = k. The following process is repeated as long as i > 0 and the number of elements

in L

i

equals n

i

:

- Merge log L

i

with L

i�1

. Reset log L

i

to empty.

- Decrement i.

The cost of a read operation is of O(

P

k

i=0

logn

i

) = O(log

2

s= log log s) LUT accesses.

The resulting amortized cost of a write operation is of O(

P

k

i=0

n

i

=n

i+1

) = O(log

2

s= log log s)

LUT accesses.

Using the transformation from RAM machine to obtain e�cient secure function

evaluation protocols The transformation yield e�cient protocols for functions that ac-

cess (and possibly modify) only a small portion of their memory. This is similar to what we

described regarding property checking, but more general.

Functions f that may be expressed as the composition of local computations (by the

parties over their inputs) with a global computation also yield e�cient protocols. Suppose

the computed function f(x; y) can be expressed as the composition h(g

A

(x); g

B

(y)) where

g

A

and g

B

are e�ciently computable functions

19

and h is sublinear in the write-oblivious

RAM machine model. We get a secure function evaluation protocol for f with sublinear

communication.

6 Handling Malicious Parties

So far we have assumed that the parties are semi-honest. It is known that there is a gen-

eral compiler { which is not communication preserving { from a protocol for semi-honest

participants to malicious ones [23] (we refer to the description in [20]). This transformation

forces the parties to act semi-honestly. In this section we brie
y outline a transformation {

from the semi-honest case to the malicious one { that is communication preserving in the

sense that the communication is increased by a factor polynomially related to the security

parameter.

19

It is possible that g

A

(x); g

B

depend on common randomness, as described in Section 4.4.1.
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Recall that the compiler has three components: input-commitment, coin-generation and

single step emulation. Our transformation follows the same lines. Each party commits to its

input and random bits. Once this is done then all that remains is for each party to show that

it is following the protocol as speci�ed for the semi-honest case. This means that following

each step in the original protocol the sender in this step has to prove the consistency of the

message with the input and random bits he is committed to.

However, the main di�erence with the transformation of [20] is that since the number

of transferred bits should be at most polylog in the input size (and hence much smaller)

the commitment to the input and randomness must be computational. Thus, there exist

many possible valid opening following the commit step. It might even be the extreme

case that for any message the sender gives there exists a proof of consistency with the

original commitment. The security of the scheme should thus rest on the hardness of �nding

more than one valid opening for the commitment. To make the proof meaningful, the

sender provides a zero-knowledge proof of knowledge that it knows an opening of the initial

commitment that is consistent with the current message it has sent. Assuming the sender

may know at most one such opening (or it has broken the commitment scheme) there is only

one possible message in the compiled protocol for which he can provide such a proof. Since

a proof of knowledge allows the simulator to extract the witness from the prover, it follows

that if it is possible to extract two di�erent assignments to the initial commitment then the

commitment scheme is not binding.

6.1 Input commitment

The cryptographic primitive we need is a communication e�cient commitment to a large

string. Such a commitment scheme is used in Kilian's construction of zero-knowledge argu-

ments [30]. It is based on any perfectly binding commitment scheme (applied to each bit

of the committed string) combined with a hash tree of a collision intractable hash function.

The communication complexity of the resulting input commitment scheme is thus poly(k).

6.2 Random coins generation

The (pseudo) random coins used by each party are the result of applying a pseudo-random

generator G to a seed of length k. Thus it is possible to use the random coins generation

protocol as described in [20].

6.3 Zero knowledge arguments of knowledge of NP witnesses

The primitive we are after is a system of zero knowledge arguments of knowledge of NP

witnesses that operates with communication complexity polylog(n) � poly(k). This problem

has not been explicitly treated in the past. We observe however that the construction of zero

knowledge arguments for NP by Kilian [30] (see also [31]), combined with the PCP system

of Arora et al. [3] gives the desired properties.

Kilian's construction is based on the PCP Theorem [3] and uses a commitment scheme

that allows to open the commitment for single bits. The prover is required to commit to
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a proof tape � so that every bit � of � is represented by the two bits �

0

; �

00

(called `blob')

randomly chosen so that � = �

0

� �

00

. The veri�er simulates a PCP veri�er and asks the

prover to prove (in zero knowledge) the value of a predicate concerning O(1) of the blobs.

In this proof the veri�er asks to open, at random, exactly one bit of these O(1) blobs. It

follows that if the prover succeeds in convincing the veri�er with high probability then it is

possible to extract a proof tape �̂ that is accepted by the PCP veri�er with high probability.

Proposition 6.1 The zero knowledge argument system of Kilian is a zero knowledge argu-

ment of knowledge for a PCP proof �̂ that is accepted by the PCP veri�er with probability at

least 1� �.

Given a PCP proof �̂ that is accepted with probability 1� � Our next step is to convert

it into a proof ~� that is accepted with probability 1. For this end, we consider the speci�c

PCP system by Arora et al. [3]. The conversion from �̂ to ~� exploits the fact that all proofs

that are accepted with high probability are close (in Hamming distance) to valid code-words

of a linear error correcting code, so that they may be uniquely decoded to a valid codeword.

Proposition 6.2 ([33] Theorem 4) For the PCP system of Arora et al., there exists an

e�cient procedure so that given a PCP proof �̂ that is accepted by the PCP veri�er with

probability 1� � outputs a PCP proof ~� that is accepted by the PCP veri�er with probability

1.

Since an assignment for the original SAT formula is explicit in the PCP proof in the

construction of Arora et al., we get as a consequence of propositions 6.1, 6.2 a communication

preserving zero knowledge argument system of knowledge of NP witnesses.

7 Discussion and Open Problems

Communication and computation We have seen how to obtain secure protocols with

reasonable computational requirements provided the parties are computable by polynomial

width branching programs. One interesting issue this work raises is whether it is possible

to start with a (general) communication complexity protocol and preserve simultaneously

computation and communication

20

.

One consequence of a transformation preserving both computation and communication

is the non-existence of incompressible functions. Informally, a function f is incompressible if

to communicate f(x) with communication complexity signi�cantly smaller than jf(x)j one

has send x. I.e. there is no way to send f(x) e�ciently without revealing x. We refer the

reader to [13] for de�nition and applications of incompressible functions.

To understand the power of our technique we should investigate the class CCW (c; w)

- functions computable by a branching program protocols of width w and communication

cost c. For functions f 2 CCW (o(n); poly(n)) Theorem 4.2 yields secure protocols with

sub-linear OT invocations and polynomial work. Here the results of Beame et al. [10] may

be relevant, but their notion of size is stronger than we need.

20

In Appendix A we give a variant of the garbled circuit transformation with reduced work.
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The multi-party setting The method of translating protocols in the communication

complexity model and branching program protocols into private protocols using indirect

indexing extends for a class of protocols with more than two parties. These protocols are

oblivious in the sense that the communication pattern (i.e. which party sends a message at

which stage) does not depends on the input.

E�cient transformation for malicious parties The compiler described in [20] as well

as the adjustment we describe in Section 6 is ine�cient in terms of computational work.

The overhead incurred in applying Cook's Theorem (to translate an NP statement to SAT)

and then the PCP Theorem is prohibitive in many applications. An approach that might

prove useful is to have a transformation for protocols in the semi-honest model with speci�c

properties, e.g. for protocols in which the parties do not learn anything (even if malicious)

until the very last step.
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A A variant on the garbled circuit transformation

In the following we give a variant on the garbled circuit construction that allows for less

computational work. Speci�cally, we show how to apply the garbled circuit construction

to an (insecure) protocol for computing f so as to reduce the use of the oblivious transfer

primitive. The number of oblivious transfers invocations in our construction equals the
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communication complexity of the original protocol computing f . The communication is

proportional to the sizes of the circuits involved in the computation.

Consider an (possibly insecure) protocol for a functionality f . The protocol is de�ned

by two circuits { one circuit computes Alice's next message given her input, her randomness

and the messages she received so far, the other circuit computes Bob's next message. For

simplicity, we assume that Alice and Bob alternately send single bit messages (Alice sends

the �rst message), resulting in the computation of f by Alice. We denote by c the number

of messages sent in the protocol (without loss of generality, we assume c to be even).

Note that once Alice sees her input and chooses her randomness she may `hard-wire'

them into her circuit, resulting in a circuit C

Alice

. The only inputs of C

Alice

are the messages

received from Bob. Similarly, Bob may hard-wire his input and randomness into his circuit,

resulting in C

Bob

.

Protocol representation In the following we slightly abuse the term circuit and allow for

circuits with multiple input (and outputs), so that the inputs are not given at once. Given

a subset of the inputs, the circuit computes the outputs of the sub-circuit depending solely

on these inputs.

Speci�cally, we denote the inputs of Alice's circuit C

Alice

bym

1

; m

3

; : : : ; m

c�1

(correspond-

ing to the messages she receives from Bob) and its outputs by m

0

; m

2

; : : : ; m

c�2

and z (corre-

sponding to the messages she sends and the outcome of the computation). The output m

`

is

computed after inputs m

1

; m

3

; : : : ; m

`�1

are speci�ed; z is computed after all the inputs are

speci�ed. Similarly, the inputs to Bob's circuit C

Bob

are denoted bym

0

; m

2

; : : : ; m

c�2

, and the

outputs by m

1

; m

3

; : : : ; m

c�1

. Output m

`

is computed by C

Bob

after inputs m

0

; m

2

; : : : ; m

`�1

are speci�ed.

We now show how to modify the garbled circuit construction, as described in [43], so as

to achieve our protocol. There are two main di�erences between our construction below and

that described in [43]:

1. In [43] one party holds the input and the other holds a circuit. The protocol below is

symmetric in the sense that both parties hold circuits and control the inputs to these

circuits.

2. The protocol in [43] runs in a constant number of rounds. The round complexity of the

protocol below is a function of c, the number of messages sent in the original protocol.

Correspondingly, the inputs to the circuits are not given at once, but are generated

during the run of the protocol.

A.1 A protocol for computing f(x; y)

Alice's input to the protocol is x, Bob's input is y. We assume that Alice and Bob agree

on circuits that, given their inputs and randomness, determine the messages sent in the

protocol. Alice and Bob hard-wire their inputs and randomness in these circuits, resulting

in C

Alice

and C

Bob

. These are the inputs to the garbling procedure below. Without loss of

generality, we assume a disjoint numbering on the wires of C

Alice

and C

Bob

. Our description

follows closely the notation of [43].
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Garbling the circuits: Alice assigns for each wire i of C

Alice

a random bit �

i

2

R

f0; 1g

and two random k-bit values (W

0

i

;W

1

i

) corresponding to 0/1 values of the wire. For a wire

i with value b

i

, its `garbled' value is hW

b

i

i

; c

i

i where c

i

= �

i

� b

i

.

For every Boolean gate g in C

Alice

computing b

k

= g(b

i

; b

j

) Alice prepares a table T

g

with

entries

c

i

; c

j

:< W

g(b

i

;b

j

)

k

; c

k

> �F

W

b

i

i

(c

j

)� F

W

b

j

j

(c

i

)

where F is a pseudo-random function with output length k + 1. The table encrypts the

garbled value of wire k using the output of F keyed by the garbled values of the input wires.

Alice sends T

g

to Bob.

Similarly, Bob garbles his circuit and sends the corresponding tables to Alice.

Executing the protocol: The tables described above allow each party to compute the

garbled output of every gate given its garbled inputs. We now describe how to compute the

garbled inputs to the circuits.

Recall that very round of the protocol correspond to a message sent in the original

protocol. We describe how to construct the input for round `. We consider the case where ` is

even i.e. m

`

is a message sent from Alice to Bob (the odd ` case is treated symmetrically). Let

i be the (output) wire corresponding to m

`�1

in C

Bob

and j be the (input) wire corresponding

to m

`�1

in C

Alice

. Assume that Alice completed the computation of (a garbled version of)

Bob's message m

`�1

(this is the output of round ` � 1). Namely, Alice holds hW

m

`�1

i

; c

i

i

where c

i

= �

i

�m

`�1

and �

i

is known to Bob.

The garbled value hW

m

`�1

i

; c

i

i may not be used in the evaluation of C

Alice

since the

garbling of wire i is not related with that of wire j (furthermore, had Bob learned c

i

he

could compute m

`�1

and thus compromise the privacy of the protocol). Thus, Alice and Bob

run the following procedure for translating this garbled value:

Alice creates a table corresponding to the two possible values of �

i

with entry c

i

being

hW

0

j

; �

j

i and entry 1� c

i

being hW

1

j

; 1� �

j

i. Alice and Bob invoke a OT

2

1

protocol so that

Bob retrieves entry �

i

of the table. Since this entry is hW

m

`�1

j

; m

`�1

� �

j

i it is the garbled

value of wire j and hence Bob may now compute the garbled m

`

.

Let s be the total number of gates in C

Alice

and C

Bob

. We get the following claim:

Claim A.1 There exists a secure function evaluation protocol for f with computational work

c �W

OT

(2; k) + s �W

PRF

(k) and communication c � C

OT

(2; k) +O(sk).

Typically it is the case where W

PRF

is much smaller than W

OT

. Thus, if the commu-

nication complexity of f is much smaller than being linear (c = o(n)), Claim A.1 results

in protocols which are much more e�cient (in terms of computational work) than those

resulting from the garbled circuit transformation described in [43] (and [20]).
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