
WHAT CAN BE COMPUTED LOCALLY?

�

MONI NAOR

y

AND LARRY STOCKMEYER

z

Abstract. The purpose of this paper is a study of computation that can be done locally in a

distributed network, where \locally" means within time (or distance) independent of the size of the

network. Locally Checkable Labeling (LCL) problems are considered, where the legality of a labeling

can be checked locally (e.g., coloring). The results include the following:

� There are non-trivial LCL problems that have local algorithms.

� There is a variant of the dining philosophers problem that can be solved locally.

� Randomizationcannotmake an LCL problem local; i.e., if a problemhas a local randomized

algorithm then it has a local deterministic algorithm.

� It is undecidable, in general, whether a given LCL has a local algorithm.

� However, it is decidable whether a given LCL has an algorithm that operates in a given

time t.

� Any LCL problem that has a local algorithm has one that is order-invariant (the algorithm

depends only on the order of the processor id's).

Key words. distributed computation, local computation, graph labeling problem, resource

allocation, dining philosophers problem, randomized algorithms

AMS subject classi�cations. 68M10, 68Q20, 68Q22, 68R05, 68R10

1. Introduction. A property of distributed computational systems is locality.

Each processor is directly connected to at most some �xed number of others. Despite

the locality of connections, we may want to perform some computation such that the

values computed at di�erent nodes must �t together in some global way. The purpose

of this paper is to attempt to understand what can be computed when algorithms

must satisfy a strong requirement of locality, namely, that the algorithm must run in

constant time independent of the size of the network. A processor running in constant

time t must base its output solely on the information it can collect from processors

located within radius t from it in the network. Apart from the obvious advantage of

constant time (that constant time takes less time than non-constant time), another

advantage is improved fault-tolerance: if the algorithm runs in constant time, a failure

at a processor p can only a�ect processors in some bounded region around p. Another

motivation for locality is in recent work on self-stabilizing distributed algorithms; for

example, Afek, Kutten and Yung [2] introduced the idea of detecting an illegal global

con�guration by checking local conditions.

Our work has three goals: �rst, to lay some groundwork for studying the question

of what can and cannot be computed locally; second, to establish some basic, general

results; and third, to study particular examples.

A network is modeled as an undirected graph where each node represents a pro-

cessor and edges represent direct connections between processors. We consider only

networks of bounded degree. Our main focus is on computational problems of pro-

ducing \labelings" of the network. Since our subject is constant time algorithms, it

�

Preliminary version appeared in Proceedings of the 25th ACM Symposium on Theory of Com-

puting, 1993, pp. 184{193.

y

Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot

76100, Israel. Partly supported by a grant from the Israel Science Foundation administered by the

Israeli Academy of Sciences. Work performed while at the IBM Almaden Research Center. E-mail:

naor@wisdom.weizmann.ac.il.

z

IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120. E-

mail: stock@almaden.ibm.com.

1

2 M. NAOR AND L. STOCKMEYER

makes sense to restrict to labelings such that the validity of a labeling can be checked

locally (i.e., by checking within some �xed radius from the node). We call these locally

checkable labelings (LCL's). Familiar examples of LCL's are vertex coloring, edge col-

oring, and maximal independent set (MIS). In the case of MIS, for example, one local

constraint says that if vertex v is in the MIS then no neighbor of v is in the MIS;

another constraint says that if v is not in the MIS then v has at least one neighbor in

the MIS. In general, the output labeling might depend on some initial input labeling,

and most of our general results hold in this case. If all processors are identical, it is

already known (by familiar symmetry arguments) that the types of labeling problems

that can be solved deterministically are very limited. So we assume that processors

are given unique numerical id's. If an algorithm runs in time t then, for each vertex v,

the processor at v can collect information about the structure of the network, includ-

ing processor id's (and possibly input labels), in the region of radius t around v. Then

the processor must choose its output label based on this information. The algorithm

must be correct, that is, the entire output labeling must be valid, regardless of how

the processors are numbered with unique id's.

Several recent papers have given improved time algorithms for certain LCL's such

as MIS and vertex coloring, for example, Awerbuch, Goldberg, Luby and Plotkin

[3], Goldberg, Plotkin and Shannon [8], Linial [10], and Panconesi and Srinivasan

[15]. However, these papers do not consider constant time; the running time of the

algorithms grows with the size of the network. Indeed the time must grow. In the

�rst paper to establish the limitations of locality in this context, Linial [10] proved

that, even on ring networks, an MIS or a 3-coloring of vertices cannot be found in

constant time.

1

In light of previous work on locality, two questions come to mind:

� Can any nontrivial LCL problem be solved in constant time?

� If the answer to the �rst question is \yes", can we characterize the LCL's

that can be solved in constant time?

One of our results is that the answer to the �rst question is \yes". De�ne a weak

c-coloring of a graph to be a coloring of the vertices with c colors such that each

non-isolated vertex has at least one neighbor colored di�erently. It is easy to see that

a weak 2-coloring exists for every graph. We show the following for every �xed d.

� Consider the class of graphs of maximum degree d where every vertex has

odd degree. There is a c = c(d) and an algorithm that �nds a weak c-coloring

in time 2 for any graph in this class. Here c is exponential in d, but in an

additional time O(log

�

d) the number of colors can be reduced to 2.

This result is the best possible in three senses:

� For d-regular graphs where d is even, for no constant c = c(d) is there a

constant time algorithm that �nds a weak c-coloring.

� The time bound 2 cannot be reduced to 1.

� If we change the de�nition of a coloring so that every vertex v must have at

least two neighbors colored di�erently than v, then even for d-regular graphs

with d odd, a coloring cannot be found in constant time.

Although a weak coloring might seem a strange concept, we have used it as a

basis for a solution to a certain resource allocation problem. A well-known paradigm

for resource allocation problems is Dijkstra's Dining Philosophers Problem, which was

later generalized from a ring to arbitrary graphs (see, e.g., [4, 11]). In the version of

1

Actually, Linial gives a lower bound of
(log

�

n) on oriented rings of size n, which matches an

upper bound of Cole and Vishkin [6] to within a constant factor.

WHAT CAN BE COMPUTED LOCALLY? 3

the problem we consider, there is a given conict graph where each node represents a

processor and each edge represents a resource (a \fork") which is shared by the two

endpoint processors. It is assumed that if two processors share a resource, then they

are also close in the communication network. At any time, a fork can be \owned" by

at most one of the processors that share it. Each processor can be in one of three

states: resting, hungry, or eating. The processors operate asynchronously. A resting

processor can become hungry at any time. In order to eat, a processor must obtain

certain forks; we get di�erent types of problems depending on precisely what \certain"

means. A processor eats for at most a bounded time, after which it returns to the

resting state. A processor p can attempt to \grab" a certain fork, and can release an

owned fork. The grab operation will fail if the fork is currently owned by the other

processor q; if this occurs, p may decide to wait for q to release the fork. We require

a solution that is starvation free, meaning that a hungry processor will eventually be

able to eat. An important measure of the goodness of a solution is the maximum

length of a waiting chain that can develop. As pointed out by Choy and Singh [5], a

di�culty with long waiting chains is that if a processor p fails while holding a fork,

the failure will a�ect every processor behind p in the waiting chain.

In the traditional version of this problem, if a processor shares d forks (has d

incident edges in the conict graph), it can eat only when it has obtained all d forks.

In this case, Lynch [11] gave a solution with waiting chains of length O(c) assuming

that the conict graph is edge colored with c colors. The maximumlength was reduced

to O(log c) by Styer and Peterson [17], again assuming that an edge coloring is given.

Choy and Singh [5] give a solution with waiting chains of length at most 3, assuming

that a certain vertex coloring with d+ 1 colors is given. All of these solutions require

that the conict graph be initially colored in some way. Such colorings (provably)

cannot be found in constant time. It is therefore natural to ask whether there is

any purely local solution to this problem, i.e., a solution with waiting chains bounded

by a constant, and which does not assume any initial coloring of the conict graph.

In fact, it can be shown that there is no local solution to this problem by reducing

the MIS problem to it. However, we show that there is a purely local solution to

a relaxed version of the problem. In this version, a processor can eat when it has

obtained any two forks. This can be viewed as a threshold condition: a processor can

proceed when it has two units of resource. We call this problem the formal-dining

philosophers problem. Imagine that dining is formal and in order to eat a philosopher

must dress formally and in particular wear cu� links. We assume that the resource on

each edge is a cu� link. In order to dress formally (in the western male tradition) and

eat, the philosopher must get any two cu� links. Our solution works in any bounded

degree conict graph of minimum degree 3, i.e., every vertex has at least 3 incident

edges. (If the degree is 2, then we have Dijkstra's original version on a ring, for which

it is impossible to �nd a local solution.) To our knowledge, this is the �rst nontrivial

resource allocation problem that has been solved in a purely local fashion.

Returning to the second question above (Can we characterize the LCL's that can

be solved in constant time?), another result shows that this will be di�cult { it is

undecidable. Fix any d � 3, and let G be the class of d-regular graphs or the class

of graphs of maximum degree d. Even if we restrict attention to LCL's such that

every graph in G has a legal labeling, we show that it is undecidable, given an LCL

L, whether there is a constant-time algorithm that solves L for every graph in G. If

d = 2, however, the problem becomes decidable. The problem is also decidable if we

are given a speci�c time t and would like to know whether there is a t-time algorithm

4 M. NAOR AND L. STOCKMEYER

for the given LCL instance.

We close this Introduction by mentioning two additional \general" results. The

�rst states that there is no loss of generality in restricting attention to algorithms that

do not use the actual values of the processor id's, but only their relative order. This

result is useful in proving some of our other results. The proof is by a Ramsey theory

argument similar to ones in [18, 7, 13]. This is in contrast to the non-constant-time

case, where for instance an order-invariant algorithm for 3-coloring the ring would

take time �(n), but the Cole-Vishkin [6] method (which uses the actual values of the

id's) takes time O(log

�

n).

Another result states that randomization does not help in solving LCL's in con-

stant time. For the class G of d-regular graphs or the graphs of maximum degree d

for any �xed d � 2, if there is a randomized algorithm that runs in time t and that

solves the LCL L with error probability " < 1 on any graph in G, then there is a

deterministic algorithm that runs in time t and solves L on any graph in G.

We now outline the remainder of the paper. Section 2 gives our de�nitions of

LCL's and local algorithms. In Section 3 we show that every local algorithm can be

replaced with an order-invariant one. The subject of Section 4 is undecidability and

decidability of questions about local solvability. In Section 5 we show that randomiza-

tion does not help in solving LCL's locally. The subject of Section 6 is weak coloring.

In Section 7, the local algorithm for weak coloring is used, together with other ideas,

to give a local solution to the formal-dining philosophers problem. In Section 8, we

suggest some open questions raised by our work. For readers interested mainly in the

results for weak coloring and formal-dining philosophers, we should point out that

Sections 6 and 7 are completely independent from Sections 4 and 5. In addition, the

local algorithms for weak coloring and formal-dining philosophers do not depend on

anything from Sections 3, 4, or 5, although the impossibility results for weak coloring

and formal-dining philosophers use the order-invariance result from Section 3.

2. De�nitions. We �rst give some de�nitions and notations concerning graphs.

All graphs in this paper are simple and undirected. For a graph G = (V;E) and

vertices u; v 2 V , let dist

G

(u; v) be the distance (length of a shortest path) in G

from u to v. If u 2 V and e 2 E, and if the endpoints of e are v and w, then

dist

G

(u; e) = minfdist

G

(u; v); dist

G

(u;w)g + 1. For a vertex u and a nonnegative

integer r, let B

G

(u; r) denote the subgraph of G consisting of all vertices v and edges

e such that dist

G

(u; v) � r and dist

G

(u; e) � r. The subscript G is omitted when G

is clear from context. A centered graph is a pair (H; s) where H is a graph and s is a

vertex of H. The radius of (H; s) is the maximum distance from s to any vertex or

edge of H.

We now de�ne the notion of a \locally checkable labeling" (LCL). For simplicity,

we give the de�nition only for vertex labelings. A similar de�nition can be given

for edge labelings (e.g., edge colorings or edge orientations). To make the de�nition

somewhat more general, we allow the vertices of the graph to be initially labeled with

\input labels". Formally, then, an LCL L consists of a positive integer r (called the

radius of L), a �nite set � of input labels, a �nite set � of output labels, and a �nite

set C of locally consistent labelings. Each element of C is a centered graph of radius at

most r where each vertex is labeled with a pair from ���. Given a graph G = (V;E)

and a labeling � : V ! ���, the labeling � is L-legal if, for every u 2 V , there is a

(H; s) 2 C and an isomorphism � mapping B

G

(u; r) to H such that �(u) = s and such

that � respects the labeling, i.e., for every w, the label-pair of w equals the label-pair

of �(w). Although certain types of labelings, such as the usual de�nition of vertex

WHAT CAN BE COMPUTED LOCALLY? 5

coloring, are more naturally expressed in terms of forbidden conditions instead of

allowed conditions, it is easy to see that the de�nition above captures such labelings.

Essentially, the set C gives a \truth table" of all locally consistent labelings. Many of

our speci�c examples of LCL's do not have input. Such LCL's are a special case of

the de�nition above simply by taking j�j = 1.

We consider distributed algorithms which operate on graphs G that are initially

input-labeled and where each vertex is also numbered with a unique positive integer

id . If the algorithm produces an output label for each vertex within t steps, we

can assume that, for each vertex u, the part of the algorithm running at u collects

information about the structure, input labels, and id's of B

G

(u; t), and chooses an

output label for u based on this information (although particular algorithms might

not actually \use" all this information). Suppose that the algorithm is to be run on

graphs of maximumdegree d. For a constant t, a local algorithm with time bound t is a

function A; the input to A is a centered graph (H; s) of radius at most t and degree at

most d whose vertices are labeled with (input, id) pairs; the value of A((H; s)) is some

 2 �. The local algorithm A is applied to an input-labeled and id-numbered graph

G by applying A independently at each vertex of G; that is, for each vertex u, the

output label of u is A(B(u; t)) where B(u; t) is viewed as a centered graph with center

u. For a local algorithm A, an LCL L, and a class G of graphs, we say that A solves

L for G if, for every G 2 G, every input labeling of G, and every numbering of the

vertices of G with unique id's, A produces an L-legal labeling, i.e., the combination

of the output labeling produced by A with the initial input labeling is L-legal.

Since the subject of the paper is locality, we largely restrict attention to (in�nite)

classes of graphs for which membership in the class can be checked locally. Examples

are d-regular graphs and graphs of maximumdegree d, for any constant d. Note that

if membership in G can be checked locally, then G is closed under disjoint union; i.e.,

for every G;G

0

2 G, the graph consisting of the disjoint union of G and G

0

belongs to

G. We consider only classes with some constant upper bound on degree.

Remark. Although it might be more natural to assume that the id's for an n-

vertex graph are drawn from f1; 2; : : : ; ng, there is no harm in requiring algorithms

to handle arbitrary id numberings. For suppose that A incorrectly labels G when

id's are arbitrary. Form a new graph G

0

with n

0

vertices consisting of the disjoint

union of G with a large enough graph so that the vertices of G

0

can be numbered

from f1; 2; : : : ; n

0

g while keeping the numbering of G the same. Then A labels G

0

incorrectly.

3. Order-invariant algorithms. In what follows, it is sometimes useful to re-

strict attention to algorithms that do not use the actual values of the id's, but only

their relative order. Two id numberings � and �

0

of a graph H are order-equivalent if,

for every pair of vertices u and v, �(u) < �(v) i� �

0

(u) < �

0

(v). A local algorithm A

is order-invariant if for every (H; s) in the domain of A, if we obtain H

0

from H by

changing the id numbering � to any other �

0

such that � and �

0

are order-equivalent,

then A((H; s)) = A((H

0

; s)).

Using Ramsey theory, we show that there is no loss of generality in restricting

attention to order-invariant algorithms. This type of application of Ramsey theory

is hardly new: starting with Yao's celebrated paper on searching tables [18], through

Frederickson and Lynch's [7] paper on a problem in distributed computing and Moran,

Snir and Manber's [13] work on decision trees, and many other papers.

For a set S and an integer p � jSj, let [S]

p

denote the set of subsets A � S with

jAj = p. We use the following theorem due to Ramsey [16]. (For information on

6 M. NAOR AND L. STOCKMEYER

Ramsey Theory see [9].)

Theorem 3.1 (Ramsey). For any p;m and c, there is a number R(p;m; c) such

that the following holds. Let S be a set of size at least R(p;m; c). For any coloring

of [S]

p

with at most c colors, there is a T � S with jT j = m such that all of [T]

p

is

colored the same.

We �rst state and prove the order-invariance result in a stronger form which will

be useful later.

Lemma 3.2. Fix an LCL L (with or without input), a class G of graphs, and a

time bound t. Let d be the maximum degree of a graph in G. There is a number R,

depending only on d, t, and L, such that the following holds. For every local algorithm

A with time bound t and every set S of id's with jSj � R, there is an order-invariant

local algorithm A

0

with time bound t such that, for every G 2 G and every input

labeling of G, if A labels G correctly for every id numbering drawn from S then A

0

labels G correctly for every id numbering.

Proof. We show how to convert any A to an order-invariant A

0

such that the

last sentence of the theorem is satis�ed. Let (K

1

; s

1

); : : : ; (K

z

; s

z

) be the set of input-

labeled centered graphs (K; s) such that id numberings of (K; s) appear in the domain

of A. Let p be the maximumnumber of vertices in any K

i

. Note that p and z depend

only on d, t, and L.

Given any set S of id's, de�ne an equivalence relation on [S]

p

as follows. For

X;X

0

2 [S]

p

, let

X = fx

1

; x

2

; : : : ; x

p

g and X

0

= fx

0

1

; x

0

2

; : : : ; x

0

p

g

be the elements of X and X

0

indexed in increasing order. Viewing K

1

; : : : ;K

z

as

graphs on disjoint sets of vertices, let V be the union of all these vertex sets. For

� : V ! f1; 2; : : : ; pg, let K

j

(�) (resp., K

0

j

(�)) be the graph K

j

where each vertex v

is numbered with the id x

�(v)

(resp., x

0

�(v)

). We restrict attention to those �'s such

that, for every K

j

, no two vertices of K

j

are numbered the same. Now X � X

0

i�

A((K

j

(�); s

j

)) = A((K

0

j

(�); s

j

)) for all � and all j. It is easy to see that this is an

equivalence relation. It is also clear that there is an upper bound c on the number of

equivalence classes. This bound depends only on p, z, and L, so it depends only on

d, t, and L. Let r be the radius of L and let m equal p plus the maximum number of

vertices in any centered graph of degree at most d and radius at most r + t. Again,

m depends only on d, t, and L. Let R = R(p;m; c), so R depends only on d, t and L.

Carrying out the above for any S with jSj � R, Theorem 3.1 implies that there

is a set of id's T � S with jT j = m such that all members of [T]

p

are equivalent. Let

U equal T minus the p largest members of T . By choice of m, jU j is as large as the

maximumnumber of vertices in any centered graph of degree at most d and radius at

most r+t. We claim that A is order-invariant when id's are drawn from U . Let (H; s)

be any centered graph in the domain of A with id numbering � mapping its vertices

to U . Let (H

0

; s) be this graph with the id numbering �

0

mapping to U , where �; �

0

are order-equivalent. Let X (resp., X

0

) be a member of [T]

p

containing all the id's of

H (resp., H

0

) such that, for every vertex u, if �(u) = x

i

then �

0

(u) = x

0

i

(where, as

above, the elements of X and X

0

are indexed in increasing order). This is possible

because T contains p \extra" elements not belonging to U , so in the case that H has

fewer than p vertices, we can use the extra elements to pad the sets X and X

0

to be

of size exactly p. Let � and j be such that (H; s) = (K

j

(�); s

j

). By choice of X and

X

0

, (H

0

; s) = (K

0

j

(�); s

j

). So A((H; s)) = A((H

0

; s)) since X � X

0

.

The algorithm A

0

works as follows. On a centered graph (H; s) numbered with

WHAT CAN BE COMPUTED LOCALLY? 7

id's, A

0

�rst changes the id's in an order-equivalent way to id's in U . (Since U is

large enough, this is always possible.) Then A

0

answers the same as A on the newly

numbered H. Note that since A is order-invariant on U , it does not matter exactly

how A

0

does the renumbering, provided that it is order-equivalent. Clearly A

0

is

order-invariant.

It remains to show that A

0

has the required correctness property. Let G 2 G and

�x some input labeling. Suppose that A

0

does not label G correctly. This means that

there is some vertex u of G such that B(u; r) is not labeled correctly. Obtain a new

id-numbered graph by changing the id's to id's in S in such a way that (i) each vertex

of B(u; r+ t) has a new id in U , and (ii) the new id-numbering of B(u; r+ t) is order-

equivalent with the old one. But since A

0

is order-invariant and A is order-invariant

when id's are drawn from U , it follows from the de�nition of A

0

that, for each vertex

v of B(u; r), the output label given to v by A

0

under the original id numbering is

the same as the output label given to v by A under the new id numbering. This

contradicts the assumption that A correctly labels G when id's are drawn from S.

The following is now immediate.

Theorem 3.3. Fix an LCL L and a class G of graphs. If there is a local algorithm

A with time bound t that solves L for G then there is an order-invariant local algorithm

A

0

with time bound t that solves L for G.

4. Undecidability. In this section we consider the problem, for a �xed class G

of graphs, of deciding whether a given LCL L can be solved in constant time for G.

The answer could be \no" for an uninteresting reason, namely, that there is some

G 2 G that has no L-legal labeling. Therefore we restrict attention to L's for which

every G 2 G has an L-legal labeling. We also restrict attention to LCL's without

input; since our main result is an undecidability result, this just makes the result

stronger. De�ne Y (G) (resp., N (G)) to be the set of LCL's L without input such

that every G 2 G has an L-legal labeling and there is (resp., is not) a constant t such

that some local algorithm with time bound t solves L for G. Recall that sets Y and

N are recursively separable if there is a Turing machine that answers \yes" on every

input from Y and answers \no" on every input from N (and we do not care about its

answer otherwise).

Theorem 4.1. Fix any d � 3, and let G be the class of d-regular graphs or

the class of graphs of maximum degree d. Then Y (G) and N (G) are not recursively

separable.

Proof. We show that if Y (G) and N (G) are recursively separable, then it can

be decided for a given Turing machine M whether M halts on blank tape. We �rst

describe the proof for the class of 4-regular graphs. We begin by proving the result for

a di�erent class of graphs, and then work in several steps towards 4-regular graphs.

(1). Consider �rst the class of 2-dimensional grid graphs where one corner of the

graph is marked as \special", say by having an extra edge which connects it to a new

vertex of degree 1. (A 2-dimensional grid graph has vertices f1; : : : ; kg�f1; : : :; lg for

some k and l, and two vertices are connected by an edge if the L

1

-distance between

them is 1.) Imagine that the special corner is the upper left corner. Let M be a

given Turing machine with states Q and tape alphabet T . Modify M if necessary

so that (i) if M does not halt then M visits an in�nite amount of tape, and (ii) the

head never moves left of its initial position. The idea is to have the LCL L force the

labeling to be a computation of M started on blank tape, where the ith row of the

grid contains the con�guration (tape contents, state, and head position) at the ith

step. The head position is given by writing the state symbol just to the left of the

8 M. NAOR AND L. STOCKMEYER

scanned symbol. Since a computation has two senses of direction, left versus right

on the tape and up (past) versus down (future) in the time dimension, the LCL will

also force consistent senses of direction on the grid, at least in the part of the grid

that contains the computation. We imagine the senses of direction as giving direction

to the edges of the grid, from left to right, and from up to down (i.e., from past to

future).

The construction of the labeling problem is not di�cult conceptually, since it is

well-known that the validity of a Turing machine computation can be checked locally.

For de�niteness, we describe one way of carrying out the details. A vertex label has

the form h�; i; ji where � 2 Q [T [fIg, 0 � i � 2, and 0 � j � 1. � is called the

s-label of the vertex (where s stands for \symbol"). Let v and v

0

be adjacent vertices

with labels h�; i; ji and h�

0

; i

0

; j

0

i. If j = j

0

then there is a \horizontal" (left-to-right)

edge from v to v

0

i� i

0

= i+1 mod 3. If j 6= j

0

then there is a \vertical" (up-to-down)

edge from v to v

0

i� i

0

= i+1 mod 3. The s-label I means that the vertex is \inactive",

i.e., it is not in the part of the grid that contains the computation.

The LCL L enforces the following constraints:

1. The s-label of the special corner must be the initial state of M , and the two

senses of direction must be directed away from this corner.

2. The senses of direction propagate correctly. This can be done, for example,

by requiring the senses of direction to be consistent on every 3�3 subgrid. However,

we do not require any sense of direction between two adjacent inactive vertices.

3. Each vertex on the upper boundary of the grid, other than the special corner,

has s-label either I or the blank tape symbol.

4. In the vicinity of a state symbol, the computation must proceed according

to the transition rules of M . However, we allow the state symbol to disappear if the

head attempts to move o� the right boundary or the bottom boundary of the grid.

5. In a neighborhood that does not contain a state symbol, each row must be

identical to the row above it, except that vertices can become inactive. That is, if

there are left-to-right edges from v

1

to v

2

and from v

2

to v

3

, if there is an up-to-down

edge from v

2

to v

4

, and if none of v

1

; v

2

; v

3

are s-labeled by a state symbol, then the

s-label of v

4

must be either the s-label of v

2

or I.

6. There is no up-to-down edge from an inactive vertex to an active vertex (i.e.,

once a tape cell becomes inactive, it cannot become active at a later time).

7. A non-halting state symbol cannot be adjacent to an inactive vertex.

Suppose that M halts in t steps when started on blank tape. Assume for the

moment that the grid is k�l where k; l � t+ 1. Then there is a legal labeling where

the s-labeling of the upper left (t+1)�(t+1) subgrid describes a halting computation

of M on blank tape, and the other vertices are inactive. This labeling can be found

by a local algorithm with time bound 2t + 3. This algorithm works as follows at a

vertex v. If v lies within the (t+2)�(t+2) subgrid having the special corner as one of

its corners, then the position of v in this subgrid is known, and the label of v can be

found since it depends only on this position. Otherwise, v is labeled hI; 0; 0i (recall

that the senses of direction do not have to be maintained within an inactive region).

The argument for a smaller grid is similar (recall that the head can \move o�" the

grid at the right and bottom boundaries, so a legal labeling exists).

Suppose now that M does not halt. An argument similar to the one just given

shows that a legal labeling exists (in particular, all vertices are active). Assume that

a local algorithm A with time bound t �nds a legal labeling for any id-numbering of

any grid. Using Theorem 3.3, convert A to an order-invariant algorithmA

0

with time

WHAT CAN BE COMPUTED LOCALLY? 9

bound t. For a given grid, consider the id-numbering where each row is labeled from

left to right in increasing order, and the id's used for row i are all smaller than those

used for row i+1. Since A

0

is order invariant, A

0

will assign the same label to any two

vertices v and w that are both farther than distance t from any boundary of the grid,

since any two such points look the same to A

0

. Since M uses an in�nite amount of

tape, it is clear that the labeling produced by A

0

is not legal if the grid is su�ciently

large.

(2). We now consider 2-dimensional grid graphs where no corner is \special", so

all four corners look identical locally. A problem with the previous construction is

that now there can be four computations, one starting at each corner. If M does

not halt, or if the grid is too small, the senses of direction of these computations will

conict. The problem is solved by having four \levels". Now a label has the form

h�

1

; �

2

; �

3

; �

4

i where each �

i

is a label as in part (1). The constraints that must

hold at a special corner in part (1) now must hold at each corner, but only on one

level. The arguments that a legal labeling always exists, and that M halts i� a legal

labeling can be found in constant time, are essentially identical to those of part (1).

In the case that M halts and the grid is so small that 2{4 computations overlap, the

constant time algorithm uses the order of the id's at the relevant corners to decide

which computation to put on which level.

(3). The next step is to consider a class of 4-regular graphs. These are grid

graphs with extra edges added around the boundary to make the graph 4-regular.

This can be done in such a way that the boundary vertices and the corner vertices

can be identi�ed locally. Call these graphs 4-regular grids.

(4). Finally we consider the entire class of 4-regular graphs. Call a vertex a

defect if it does not look locally like a 4-regular grid, i.e., for some suitably large (but

constant) c, B(v; c) is not consistent with a 4-regular grid. One problem with the

previous construction is that now there can be many vertices that look locally like

the corner of a 4-regular grid, so many di�erent computations will be started and

might conict with one another, e.g., turn a halting computation into a non-halting

one. This can occur, however, only if the graph has defects. The new idea is to

propagate a chain of \erasing symbols" E from the defect back to the corner, so that

the computation does not have to start.

More precisely, the s-symbols now include also E. For two adjacent vertices

with s-symbol E, we use the component i of a label to give a direction to the edge

connecting them (call these E-edges). We have the following constraints on vertices

with s-label E: a defect can be labeled E; a corner can be labeled E i� it has exactly

one E-edge directed in; any other vertex can be labeled E i� it has exactly one E-edge

directed in and exactly one E-edge directed out. If a corner has s-label E, then its

neighborhood does not have to have senses of direction.

Suppose that M does not halt and that the graph is a su�ciently large 4-regular

grid. It is clear that no corner can be labeled E since the graph has no defects.

The labeling could contain cycles of vertices labeled E, but this will violate other

constraints if it occurs in the active region. It then follows as above that a legal

labeling exists, but cannot be found in constant time.

If the graph is not a 4-regular grid, then it must have a defect. In this case, it

can be seen that the entire graph can be s-labeled with E's and I's. Say that the

defect u kills the corner w if there is a directed path of E-labeled vertices from u to

w. By choosing the constant c above large enough, it can be seen that there is an

E-labeling such that each defect kills at most one corner and E-labeled vertices in

10 M. NAOR AND L. STOCKMEYER

di�erent paths are not adjacent.

Suppose that M halts in t steps. Assume for the moment that no two corners of

the graph are within distance 4t+4 of each other. Consider the following labeling on

one level. Fix some corner w. Say that w is a good corner if B(w; 2(t+ 1)) contains

no defects (i.e., looks like part of a 4-regular grid). If w is good, then the s-labeling

of the appropriate (t + 1)�(t + 1) subgrid describes a computation of M as in part

(1). If B(w; 2(t + 1)) contains a defect u, then we choose in some systematic way a

path labeled E from one such defect u to w. The rest of B(w; 2(t + 1)) is labeled I.

Any vertex not within distance 2(t+1) from some corner is labeled I. Such a labeling

can be found in time O(t). If corners can be close together, it must be checked that

four levels are enough to do the labeling. De�ne a graph where there is a vertex for

every good corner, and an edge connecting two vertices if the computations started

at the corresponding good corners overlap. It can be checked that no component of

this graph has more than four vertices, so the labeling can be done on four levels, and

a local algorithm can determine an assignment of good corners to levels.

For the case d = 3 we use, instead of 2-dimensional grids, degree-3 \honeycomb"

graphs; these look like a tiling of the plane with hexagons. For d � 5, we can use

d� 3 copies of the same grid graph, where corresponding vertices in di�erent copies

are connected as a clique.

Remark. The LCL's constructed in the proof above have an upper bound r

0

on

their radius where r

0

is a constant, i.e., it does not depend on the machine M . It

follows that there is an in�nite time hierarchy of LCL's with some �xed radius r

0

.

That is, for every time t, there is an LCL of radius r

0

that cannot be solved by any

local algorithm with time bound t, but that can be solved by some local algorithm

with some time bound t

0

> t.

In contrast, the following holds for degree 2.

Theorem 4.2. Let G be the class of 2-regular graphs or the class of graphs of

maximum degree 2. Y (G) and N (G) are recursively separable. Moreover, this can be

done in time polynomial in the size of the input L.

Proof. Consider �rst the case of 2-regular graphs. Let L be a given LCL, and

let r be its radius. If (H; s) belongs to the set C of locally consistent labelings, then

either H is a simple path of 2r+1 vertices with s at the center, or H is a ring having

at most 2r vertices. Assuming that every graph in G has an L-legal labeling, we claim

that there is a local algorithm with some constant time bound t that solves L for G

i� C contains a line segment in which all vertices are labeled the same, say �. The

\if" direction is obvious, since any ring having at least 2r + 1 vertices has an L-legal

labeling where all vertices are labeled �. (In this case, a local algorithm with time

bound r checks whether it is working on a cycle of size at least 2r+1. If so, it produces

the label �. If not, it knows the entire graph so it can use the rank of the id of the

vertex to �nd a label for the vertex by looking in a table, where the table contains an

L-legal labeling for each cycle of size less than 2r + 1.) For the \only if" direction,

by Theorem 3.3 there is an order-invariant A

0

with time bound t that solves L for G.

Consider the id numbering of a ring where the order of the id's increase around the

ring, except at one point where the ordering wraps around. If the ring is su�ciently

large, there will be a segment of length 2r + 1 such that A

0

gives the same label to

every vertex of the segment.

The case of maximum degree 2 is a little more complicated. It is still necessary

that C contain a line segment labeled the same, but this is no longer su�cient. Since

the graph could be a line, we must also check that there is an L-legal labeling in

WHAT CAN BE COMPUTED LOCALLY? 11

which all vertices, except possibly vertices within some bounded distance from the

endpoints of the line, are labeled the same. This is easily reduced to a reachability

problem on a certain graph K. Fix a left-to-right orientation of a line. For every

member of C that is a line segment, there are two vertices in K, one for each left-to-

right orientation of the segment. There is an edge directed from v to w i� there is a

labeling of the oriented line in which the center of v is just to the left of the center

of w. For example, if r = 2, if v is the locally consistent labeling B{C{D where the

center is the vertex labeled B and if w is B{C{D{X where the center is labeled C,

then there is an edge from v to w. Any vertex such as v, for which the center is

the leftmost endpoint of the segment, is called a source. A goal vertex is any vertex

corresponding to a line segment containing 2r+1 vertices all labeled the same. Then

there is a local algorithm with some constant time bound t i� there is a directed path

from some source to some goal. Note that if there is such a path then there is one of

length O(jCj), so t = O(maxfjCj; rg) su�ces.

Remark. It can also be shown, for the graph classes G in Theorem 4.2, that it is

decidable for a given LCL L whether every graph in G has an L-legal labeling.

The �nal result of this section is an easy consequence of Theorem 3.3.

Theorem 4.3. Fix any d � 2, and let G be the class of d-regular graphs or graphs

of maximum degree d. It is decidable, given L and t, whether there is a local algorithm

with time bound t that solves L for G.

Proof. By Theorem 3.3 we can restrict attention to order-invariant algorithms

with time bound t. There are only a �nite number of such algorithms, and for each

algorithmA we can test whether it solves L for G as follows. Let r be the radius of L.

Let H be the set of centered graphs (H; s) such that, for some G 2 G and some vertex

v of G, H is isomorphic to B

G

(v; r+t) under an isomorphismmapping s to v. For the

classes G under consideration, there are a �nite number of such graphs for each r and

t, and there is an algorithm that lists them given r; t. For each (H; s) 2 H and each

order-inequivalent id numbering of the vertices of H, we apply A to each vertex in

B

H

(s; r) to obtain a labeling of B

H

(s; r). If this labeling is not consistent according

to L, then A is not correct, since A will fail at some vertex v of some G 2 G where

B

G

(v; r+ t) is isomorphic to H; by \fail" we mean that the labeling of B

G

(v; r) is not

consistent according to L. On the other hand, if A always labels B

H

(s; r) correctly

for every H and every numbering, then A is correct. For if A fails at some vertex v of

some G 2 G, then A fails at v in B

G

(v; r + t) which is isomorphic to some H.

5. Randomized algorithms. We now turn to randomized algorithms and show,

for certain classes of graphs, that randomization does not help in solving LCL's in

constant time. A randomized local algorithm P with time bound t is speci�ed by a

deterministic local algorithm A with time bound t and a function b(n) to positive

integers called the randomization bound. In this case, A expects each vertex to be

labeled with an input label (if the LCL has input labels), an id number, and a ran-

dom number. To run P on a graph G that is id-numbered and input-labeled, �rst

randomly and independently choose for each vertex a random number in the range

[1; b(l)], where l is the largest id in G; then run A on the resulting graph. We assume

no upper bound on the growth rate of b(n). We say that P solves L for G with error

probability " if, for every input-labeled and id-numbered G 2 G, P produces an L-legal

labeling with probability at least 1� ".

Remark. The above de�nition of a randomized local algorithm might seem too

liberal, since it allows the range of randomization at a particular vertex v to depend

on the largest id in the entire graph. It would be more reasonable to have the range of

12 M. NAOR AND L. STOCKMEYER

randomization at v depend only on v's id. But since our result is that randomization

does not help in solving labeling problems locally, there is no harm in using the more

liberal de�nition. On the other hand, this de�nition may seem too restrictive, since

the de�nition of success is global. However, in the deterministic case we wanted the

labeling to be legal everywhere, not just in most vertices. Indeed, if all we require is

that, for each vertex v, the probability that v is legally labeled be at least 1� ", then

randomization does help: consider the problem of 3-coloring in a ring. This problem

has no deterministic local algorithm [10] nor a probabilistic one [14] (with the global

correctness requirement). Suppose that we start with all vertices uncolored and at

every step each vertex that is not permanently colored chooses a random color. If the

vertex chose a color di�erent from the colors of its two neighbors, then this color is

considered permanent. If this algorithm is executed for t steps, then we can say that,

for each vertex v, the probability that v is legally colored is at least 1 � ", where "

decreases exponentially in t.

Theorem 5.1. Fix an LCL L and a class G of graphs closed under disjoint union.

If there is a randomized local algorithm P with time bound t that solves L for G with

error probability " for some " < 1, then there is a deterministic local algorithm A with

time bound t that solves L for G.

Proof. Suppose for contradiction that there is no deterministic local algorithm

with time bound t that solves L for G. In particular, there is no order-invariant

algorithm with this property. There is an upper bound on the number of order-

invariant local algorithms with time bound t (where the upper bound depends only

on L, t, and the degree bound d). This immediately proves the following:

Claim 5.1. There is a number N such that every order-invariant local algorithm

A

0

with time bound t fails on some particular input-labeled and id-numbered graph

G having at most N vertices, where by \fail" we mean that A does not produce an

L-legal output labeling.

Let R be the number given by Lemma 3.2. Let m be the minimum number of

vertices in a graph in G. If R < N + m, then take R = N + m to ensure that

R � N +m. For j � 1, let S

j

= f(j � 1)R + 1; : : : ; jRg. Let I

j

be the set of graphs

G 2 G having at most N vertices that are input-labeled and have id numbering drawn

from S

j

. If � is the input alphabet, an upper bound on the cardinality of I

j

is

k = 2

(

N

2

)

R

N

j�j

N

:

Choose q large enough that (1�

1

k

)

q

< 1� ".

The key to the proof is the following:

Claim 5.2. For every j with 1 � j � q there is a graph G

j

2 I

j

such that, if P

is run on G

j

with randomization bound b(qR), then the probability that P fails on G

j

is at least 1=k.

To prove the claim, suppose it is false, i.e., that for every G 2 I

j

, P fails with

probability strictly less than 1=k. We can view a random choice of P as a sequence

of random numbers �

1

; : : : ; �

R

in the interval [1; qR], where �

i

is the random number

chosen for the vertex with id (j � 1)R + i. Since the error probability is less than

the reciprocal of the number of graphs in I

j

, it follows by a standard argument

(e.g., [1]) that there must be a particular choice �̂

1

; : : : ; �̂

R

such that P is correct

on all of I

j

when this particular random choice is made. We can then obtain a

deterministic algorithm A that works on I

j

. This algorithm �rst chooses the random

number �̂

i�(j�1)R

at the vertex with id i for every i, and then simulates P . By

WHAT CAN BE COMPUTED LOCALLY? 13

Lemma 3.2, there is an order-invariant A

0

that is correct on all of I

j

. But this

contradicts Claim 5.1, and so proves Claim 5.2.

It is now easy to complete the proof of Theorem 5.1. Run P on the graph G

consisting of the disjoint union of the G

j

for 1 � j � q. (If no vertex of this graph has

label qR, then add another component with m vertices and maximum id label qR.

This is possible since qN +m � qR.) Since P fails independently with probability at

least 1=k on each G

j

, it follows from the choice of q that P fails on G with probability

strictly greater than ". This contradiction proves the theorem.

A version of Theorem 5.1 holds also for certain classes of connected graphs, for

example, connected d-regular graphs and connected graphs of maximumdegree d, for

any �xed d � 2. All we need is the ability to connect together the graphs G

1

; : : : ; G

q

into a single graph in the class in such a way that P 's error probability on each piece

does not decrease when the pieces are connected. For example, the following holds.

Theorem 5.2. Fix an LCL L and a d � 2, and let G be the class of connected

d-regular graphs or the class of connected graphs of maximum degree d. If there is

a randomized local algorithm P with time bound t that solves L for G with error

probability " for some " < 1, then there is a deterministic local algorithm A with time

bound 2(t+ r) + 1 that solves L for G, where r is the radius of L.

Proof. The proof is very similar to the previous one, and we only sketch the

di�erences. Claim 5.1 is modi�ed to state that there is an N such that every order-

invariant local algorithmwith time bound t fails on some connected graph with radius

at least t + r + 1 and with at most N vertices. For if not, there would be a local

algorithm with time bound 2(t+r)+1 that solves L for G. This algorithm �rst checks

whether it is working on a graph of radius at most t+r by trying to inspect the entire

graph. If so, it can produce a labeling because it knows the entire graph. If not, it

recourses to an algorithm with time bound t that works on every connected graph of

radius at least t + r + 1. The set I

j

now contains pairs (G; v) where G has at most

N vertices and radius at least t + r + 1 and where v is a vertex of G, so the bound

k increases by a factor of N . The conclusion of Claim 5.2 is now that for every j

there is a (G

j

; v

j

) 2 I

j

such that, with probability at least 1=k, P fails on G

j

at the

particular vertex v

j

, meaning that B(v

j

; r) is not labeled correctly. Since the radius

of G

j

is at least t+r+1, there is some edge e such that removing e does not a�ect the

behavior of P when labeling B(v

j

; r). Let G

0

j

be the graph with this e removed. We

can now connect together G

0

1

; : : : ; G

0

q

to a graph in the class G, using the endpoints

of the removed edges as connection points.

Remark. An alternate conclusion in Theorem 5.2 is that there is a deterministic

local algorithm A with time bound t that solves L for all graphs in G having radius

at least t+ r + 1.

6. Weak coloring. We now describe a locally checkable labeling problem that

can be solved locally in graphs containing only vertices of odd degree. A weak c-

coloring of a graph is an assignment of numbers from f1; : : : ; cg to the vertices of the

graph such that for every non-isolated vertex v there is at least one neighbor w such

that v and w receive di�erent colors. Clearly weak c-coloring of a graph of degree at

most d is an LCL problem of radius 1.

It is not hard to see that every graph has a weak 2-coloring: consider a breadth-

�rst spanning tree of the graph. Assign one color to the even levels and a di�erent

color to the odd levels. However, this particular coloring cannot be computed locally.

As we shall see, if all the vertices of the graph have odd degree, then it is possible to

�nd a weak 2-coloring. As far as we know this is the �rst non-trivial LCL problem

14 M. NAOR AND L. STOCKMEYER

that has been shown to have a local algorithm. However, if the degree is even then it

is impossible to compute such a coloring or any weak c-coloring for a �xed c locally.

6.1. Weakly coloring graphs of odd degree. We describe a way of �nding

a weak coloring in odd-degree graphs. We �rst show a two step method for weak

d(d+ 1)

d+2

-coloring and then show how to reduce the number of colors to two using

additional steps.

Consider �rst the case of a d-regular graph where d is odd and d � 3. For a vertex

v let id (v) be the id number assigned to v. We denote the color of a vertex v by a

vector C

v

= hC

v

[0]; C

v

[1]; : : :; C

v

[d + 1]i where each component is in f1; : : : ; d + 1g.

The following procedure is used at vertex v:

1. Get id(w) for all neighbors w of v. Sort the set of id's of neighbors including

id(v). Let r

v

(w) denote the rank of id(w) among the neighborhood of v

(where the neighborhood of v includes v itself). For de�niteness, say that

the smallest id has rank 1, the second-smallest has rank 2, etc. Let C

v

[0] be

r

v

(v).

2. Get r

w

(v) from each neighbor w, i.e., the rank of id(v) among the neighbor-

hood of w. Set C

v

[r

v

(w)] = r

w

(v).

Claim 6.1. The coloring achieved by this algorithm is a legal weak coloring if d

is odd.

Proof. Consider a vertex v. If not for all neighbors w of v we have r

w

(w) = r

v

(v),

then we are done, since there will be a neighbor w of v such that the color of w di�ers

from the color of v in the �rst component. Otherwise, there are two cases. In the �rst

case, assume that 1 � r

v

(v) �

d+1

2

. This means that there are d + 1 � r

v

(v) �

d+1

2

neighbors w such that id(w) > id(v). For each of them r

w

(v) < r

v

(v), since r

w

(w) =

r

v

(v). Therefore, by the pigeonhole principle there are two neighbors w and x such

that r

w

(v) = r

x

(v) = j. Hence

C

w

[j] = C

w

[r

w

(v)] = r

v

(w) 6= r

v

(x) = C

x

[r

x

(v)] = C

x

[j]:

C

w

[j] 6= C

x

[j] means that v has two neighbors with two di�erent colors, one of which

must be di�erent than C

v

. Similarly in the other case, if

d+1

2

+ 1 � r

v

(v) � d + 1,

then there are r

v

(v) � 1 �

d+1

2

neighbors w such that id(w) < id (v). For each of

them, r

w

(v) > r

v

(v) �

d+1

2

+ 1, and a pigeonhole argument again shows that there

must be two neighbors that are colored with two di�erent colors.

If vertices can have di�erent (odd) degrees, we can simply add another component

to C

v

which contains the degree of v. If v has a neighbor with a di�erent degree, then

it has a neighbor with a di�erent color; otherwise, Claim 6.1 applies.

To go from d(d+1)

d+2

colors to two colors we employ two kinds of color reductions:

one is a Cole-Vishkin [6] style that allows us to cut the number of colors logarithmically

in every round, but seems to have its limit at four. The other method allows us to

reduce the number of colors by one at a time.

The Cole-Vishkin style method is as follows. Suppose that we have a legal weak

coloring with c colors and let c

0

be the smallest integer such that

�

c

0

bc

0

=2c

�

� c. Associate

with every i 2 f1; : : : ; cg a di�erent subset S

i

� f1; : : : ; c

0

g of size bc

0

=2c. (Such an

assignment is a Sperner system, i.e., no subset is contained in another.) We can

reduce the number of colors from c to c

0

in one round. Every vertex v colored i �nds

a neighbor colored j such that j 6= i. There must be an element x 2 S

i

such that

x 62 S

j

. x is v's next color. It is easy to see that this method preserves weak coloring

and reduces the number of colors by almost a logarithmic factor per round. More

WHAT CAN BE COMPUTED LOCALLY? 15

precisely, the number c

0

of colors after a step of the reduction is related to the number

c before the reduction by c

0

= log c + O(log log c) where logarithms are to the base

2. (This is (almost) a bit more e�cient than the original Cole-Vishkin reduction,

where the relation in our case is c

0

= 2dlog ce.) The method is applicable as long as

c > 4. A simple calculation (cf. [8, pg. 437]) shows that a weak 4-coloring is found

after log

�

d+ a rounds, for some constant a. (Another way to see this is to note that

the base of the logarithm a�ects the expression log

�

d + a only in the additive term

a.)

When we are stuck (i.e., c = 4) we can recourse to the following reduction from

a weak coloring with c colors f1; 2; :::; cg (called the original coloring) to one with 2

colors f0; 1g (called the recoloring). The recoloring is done in c rounds. At the ith

round, every vertex with original color i recolors itself according to the following rules.

1. If v has original color i and all neighbors of v have original color � i, then v

recolors itself 0.

2. Otherwise, v must have at least one neighbor with original color smaller than

i, so it has at least one neighbor that has recolored itself at an earlier round. If

all the recolored neighbors of v have color 1, then v recolors itself 0. Otherwise

(v has at least one neighbor recolored 0), then v recolors itself 1.

It is easy to verify that this yields a weak 2-coloring. Every v that recolors itself using

the second rule clearly has a neighbor recolored di�erently. Suppose that v recolors

itself 0 using the �rst rule. Then it must have a neighbor w with original color j > i.

Then w will recolor itself using the second rule during round j, and it will recolor

itself 1 since it has a neighbor (namely, v) recolored 0 at an earlier round (namely, i).

We therefore get:

Theorem 6.1. Let O

d

be the class of graphs of maximum degree d where the

degree of every vertex is odd. There is a constant b such that, for every d, there is a

local algorithm with time bound log

�

d+ b that solves the weak 2-coloring problem for

O

d

.

Remark. In Section 7 we will want to apply the weak coloring algorithm to graphs

that may have vertices of even degree, and we will use the following additional property

of the algorithm. Say that v is properly colored if it has at least one neighbor colored

di�erently. Suppose that the weak 2-coloring algorithm is applied to an arbitrary

(bounded degree) graph G. If v is not properly colored then (1) the degree d of v is

even, (2) its rank r

v

(v) in its neighborhood is d=2 + 1, and (3) every neighbor w of

v has degree d and rank r

w

(w) = d=2 + 1 as well. To see that these properties hold,

consider �rst the coloring produced by the initial two-step algorithm. Properties (1)

and (2) follow since our proof of Claim 6.1 shows that v is properly colored if either

r

v

(v) �

d+1

2

or r

v

(v) �

d+1

2

+ 1. The only other possibility is that d is even and

r

v

(v) = d=2 + 1. Since the color of a vertex u contains its degree and its rank r

u

(u),

(3) is obvious. It is also easy to check that both of the color reduction methods

preserve proper coloring, i.e., if v is properly colored before a reduction, then it is

properly colored after the reduction.

To close this subsection we note that there is no one-step method for �nding a

weak c-coloring.

Theorem 6.2. For any constants c and d � 2, there is no local algorithm with

time bound 1 that solves weak c-coloring for the class of d-regular graphs.

Proof. By Theorem 3.3, if there were such a local algorithm A there would be an

order-invariant one A

0

, also with time bound 1. Consider any d-regular graph that

contains a vertex v such that B(v; 2) (the neighborhood of radius 2 around v) is a tree

16 M. NAOR AND L. STOCKMEYER

of height 2 rooted at v. Number the vertices of B(v; 2) with id's so that r

v

(v) = 2

and r

w

(w) = 2 for every neighbor w of v (it is easy to see that this can be done).

Then A

0

assigns the same color to v and all its neighbors.

6.2. Impossibility of weak coloring graphs of even degree. In this section

we note that it is impossible in general to weakly color all graphs with even degree.

In particular we show that for any c and k it is impossible to weakly c-color any class

of graphs that contains the k-dimensional meshes. The vertex set of a k-dimensional

mesh is f0; 1; : : : ;mg

k

for some m, and two vertices are connected by an edge if the

L

1

-distance between them is 1. A k-dimensional mesh has (some) vertices of even

degree d = 2k.

Theorem 6.3. For any c, k, and t, there is no local algorithm with time bound

t that solves the weak c-coloring problem for the class of k-dimensional meshes.

Proof. Theorem 3.3 says that if there exists a local algorithm for an LCL problem

then there is one that uses only the relative order of the id's. For a vertex v of a

mesh M , let R

M

(v; t) be the graph B

M

(v; t) (the neighborhood of radius t around

v) where each vertex u is labeled with the rank of its id among the id's in B

M

(v; t).

By Theorem 3.3 it is su�cient to come up with a way to assign id's to vertices such

that for any t there will be a k-dimensional mesh M and a vertex v such that, for

all neighbors u of v, R

M

(v; t) and R

M

(u; t) are the same. (I.e., v and its neighbors

see the same relatively ordered t-neighborhood.) However, if M has diameter at least

2(t + 1) then it possible to achieve such an id assignment: consider the coordinates

of a vertex and say that vertex u is larger than v if the lexicographical order of the

coordinates of u is larger than that of v. It is clearly possible to assign id's such that

id(u) > id(v) i� u is larger than v. Hence any vertex that is of distance at least t+ 1

from every boundary of the mesh has the property we are after.

The same result holds for a class of (2k)-regular graphs, the k-dimensional ana-

logue of torus graphs.

A consequence of this result is that if we extend the de�nition of weak coloring so

that each vertex v must have at least 2 neighbors colored di�erently than v (call this

2-weak c-coloring), then for every �xed d and c a coloring cannot be found in constant

time for d-regular graphs even if d is odd. The reasoning is the following. Given any

(2k)-regular graph G, form a (2k + 1)-regular graph G

0

by taking two copies of G

with each pair of corresponding vertices connected by an edge. The id's in one copy

are chosen all to be larger than the id's in the other copy, but so that the two copies

appear identical with respect to the relative order within a copy. A 2-weak c-coloring

of G

0

immediately gives a weak c-coloring in each copy of G. Given a local algorithm

that �nds a 2-weak c-coloring in graphs of odd degree 2k + 1, we therefore obtain a

local algorithm that �nds a weak c-coloring in graphs of even degree 2k.

7. A locally solvable resource allocation problem. We show how to solve

the formal-dining philosophers problem mentioned in the Introduction. What we

assume about the underlying graph is that the minimum degree is three. (If the

minimum degree is two, then we cannot hope to solve it locally, as we argue below.)

We �rst start with a coloring with three colors f0; 1; �g with the following prop-

erty: all vertices colored c 2 f0; 1g have at least one neighbor colored 1 � c. If v is

colored with a � or if any of the neighbors of v is colored with a �, then the degree of

v is even and half the neighbors of v have an id smaller than id (v). This coloring is a

product of the method described in Section 6.1. Suppose that we run the algorithm

described there. Since we do not assume here that every vertex has odd degree, the

algorithm could fail at some vertices v, meaning that all the neighbors of v are colored

WHAT CAN BE COMPUTED LOCALLY? 17

the same as v. Suppose that if the algorithm fails at v, then v recolors itself with a �.

By the remark following Theorem 6.1, the coloring fails at v only when the degree d

of v is even, its rank r

v

(v) among its neighbors is d=2 + 1, every neighbor w of v has

degree d, and r

w

(w) = d=2 + 1 as well.

The algorithm for the formal-dining philosophers problem is a combination of two

algorithms: one for the problem on graphs that are weakly 2-colored and the other for

the case where half the neighbors of a vertex have a smaller id. The vertices colored �

essentially grab two of the adjacent cu� links permanently. More precisely, a vertex u

colored � picks two neighbors v and w such that id (u) > id(v) and id (u) > id(w), and

assigns the cu� links on (u; v) and (u;w) to u permanently. After this we have that

every vertex with color c 2 f0; 1g still has at least two non-assigned edges adjacent to

it and at least one of its neighbors has color 1� c. This is true since if it is a neighbor

of a �, then its degree is even (at least 4) and its rank among its neighbors is half the

degree plus one. Hence at most half of its adjacent edges are grabbed permanently.

Unlike the � colored vertices, the f0; 1g colored vertices must run a dynamic algorithm

in order to get cu� links.

As for the f0; 1g colored vertices, it is convenient for the exposition to �rst assume

that we have a coloring of the graph with the property that every vertex has at least

one neighbor colored 0 and at least one neighbor colored 1.

2

We will later remove this

assumption. As a preliminary step, every vertex colored c 2 f0; 1g selects a particular

neighbor colored c as its \�rst neighbor" and a particular neighbor colored 1�c as its

\second neighbor". When we say that a vertex p \requests" a cu� link, we mean that

it tries to grab the cu� link; if the other vertex q sharing this cu� link currently has

it, then p waits for q to release it. Now the protocol for a vertex colored c 2 f0; 1g is:

1. Request cu� link from the �rst neighbor (colored c).

2. Request cu� link from the second neighbor (colored 1� c).

3. Eat.

4. Release cu� links.

Claim 7.1. The maximum length of a waiting chain in the above protocol is 2.

Proof. If a vertex is waiting at Step 1, then the vertex it is waiting for must be

at least at Step 2. If a vertex v is waiting for its second neighbor w at Step 2, then v

and w are colored di�erently, which means that v is the second neighbor of w. So w

must be at Step 3 or 4.

Suppose now that all we can say is that a vertex colored c 2 f0; 1g has at least one

neighbor colored 1� c, i.e., all its neighbors might be colored 1� c. If at Steps 1 and

2, arbitrary neighbors colored 1� c are approached, then we are not guaranteed to be

deadlock free anymore. The selection of second neighbors should be done in a way that

does not induce long \neighborly" chains. Towards this end, we di�erentiate between

the vertices colored 0 and 1. Each vertex colored 1 chooses a particular neighbor

colored 0 as its second neighbor. These choices are announced to their neighbors. A

vertex u colored 0 waits to hear whether it has been chosen as the second neighbor by

any of its neighbors. If it has, then it tries to match their choices. I.e., if any of u's

neighbors has designated it as a second neighbor, u picks it (or one of them in case

there are several) as u's second neighbor. Otherwise, u chooses an arbitrary neighbor

colored 1 as its second neighbor. Each vertex colored 0 or 1 then chooses an arbitrary

neighbor, other than its second neighbor, to be its �rst neighbor. (Of course, u should

not choose a neighbor w colored � if w has permanently grabbed the cu� link on the

2

Though by the Lovasz Local Lemma such a coloring exists in regular graphs with su�ciently

large degrees, it is impossible to �nd such a coloring locally even in odd-degree graphs.

18 M. NAOR AND L. STOCKMEYER

edge (u;w). On the other hand, if w is colored � and has not grabbed the cu� link

then it never will, so u can choose this w, and u will never have to wait for w.)

Claim 7.2. Given any assignment of �rst and second neighbors consistent with

the above description, the maximum length of a waiting chain is at most 4.

Proof. A con�guration that the preliminary step as described above assures won't

occur is as follows: three vertices w

1

; w

2

and w

3

colored 1; 0 and 1, respectively, such

that w

2

is the �rst neighbor of w

3

, w

2

is the second neighbor of w

1

, and w

3

is the

second neighbor of w

2

. This cannot occur since w

2

was chosen to be a second neighbor

of at least one vertex (namely, w

1

), but w

2

is not the second neighbor of w

3

. Hence

w

2

would not choose w

3

as its second neighbor. Consider now a contradiction to the

claim, i.e., six vertices u

0

; u

1

; u

2

; u

3

; u

4

; u

5

such that each u

i

is waiting for u

i+1

for

0 � i � 4. Let c be the color of u

1

. Since u

1

; u

2

; u

3

and u

4

are waiting at Step 2, it

must be the case that u

2

is colored 1 � c, u

3

is colored c, u

4

is colored 1� c, and u

5

is colored c. Also for 1 � i � 3 we have that u

i

is the �rst neighbor of u

i+1

, and for

1 � i � 4 we have that u

i+1

is the second neighbor of u

i

. Therefore if c = 0 then the

trio fu

2

; u

3

; u

4

g constitutes a forbidden con�guration, and if c = 1 then fu

1

; u

2

; u

3

g

constitutes a forbidden con�guration.

(We remark that a waiting chain of length 4 can occur.)

Since this argument remains valid if some of the u

i

are the same, the argument

shows that a deadlock (a waiting cycle) cannot occur, since a waiting cycle would

produce, in e�ect, a waiting chain of arbitrary length.

Therefore the combined protocol is:

� Run the coloring algorithm of Section 6.1 resulting in a f0; 1; �g coloring.

� All the vertices colored � permanently grab two cu� links as described above.

� All f0; 1g colored vertices �nd �rst and second neighbors as described above.

� When a vertex becomes hungry, then if it is colored � it simply uses its

permanently assigned cu� links. Otherwise it runs the protocol above.

Theorem 7.1. The above protocol solves the formal-dining philosophers problem

locally.

A consequence of bounded-length waiting chains is that the failure locality of

the protocol is constant. As de�ned by Choy and Singh [5], a protocol has failure

locality l if every vertex v remains starvation free even if processors at distance larger

than l from v fail. Another consequence is that the response time of the protocol is

constant. This means that, for every upper bound � on the message delivery time

between adjacent vertices and every upper bound � on the time that a vertex can

remain in the eating state before entering the resting state, there is a � = �(�; �) such

that � is an upper bound on the time that a vertex can remain in the hungry state

before entering the eating state. We now justify our requirement that the conict

graph have minimum degree three, by arguing that if the conict graph is a ring

then the formal-dining philosophers problem (which is the same as the usual dining

philosophers problem in this case) cannot be solved locally, meaning in particular that

the response time is constant. This follows from a more general result about the local

unsolvability of certain dining philosophers problems where the condition under which

a philosopher can eat is a threshold condition on the number of resources owned. For

constants d and m with d � 2 and m � d, de�ne the (d;m)-dining philosophers

problem as follows: the conict graph has minimum degree d; and in order to eat, a

philosopher must own the resources on any m incident edges.

Theorem 7.2. If m � dd=2e + 1, there is no algorithm with constant response

time for the (d;m)-dining philosophers problem.

WHAT CAN BE COMPUTED LOCALLY? 19

Proof. It su�ces to prove this for every even d. Fix some d = 2k. We assume

that the interconnection graph is the same as the conict graph, a k-dimensional torus

(i.e., a k-dimensional mesh with additional wrap-around edges to produce a d-regular

graph). We �rst show that a solution to the (d;m)-dining philosophers problem with

constant response time would give a local solution to the following LCL problem, for

some constant p depending only on d:

1. Each vertex is labeled either 1 or 2;

2. Each k-dimensional p�p�� � ��p submesh M contains some vertex labeled 1

and some vertex labeled 2.

Given an arbitrary id-numbered torus, run the assumed (d;m)-dining philosophers

algorithm starting in the con�guration where all vertices are initially hungry. Let

the vertices operate in lock-step synchrony, i.e., each message delay is one time unit.

When a vertex enters the eating state, let it remain in the eating state for one time

unit, and remain in the resting state thereafter. So � = � = 1. The following rules are

used to determine the label of vertex v. Let s be the step at which v enters the eating

state. If v has not received the message \eating" from one of its neighbors at step

s or earlier, then v chooses the label 1, and sends the message \eating" to all of its

neighbors at step s (in addition to any messages that the (d;m)-dining philosophers

algorithm sends at this step); the \eating" message is received by v's neighbors at the

next step s+ 1. Otherwise (v received an \eating" message at step s or earlier), then

v chooses the label 2 and does not send an \eating" message. The labeling algorithm

runs in constant time �(1; 1). It remains to show that condition 2 above holds for a

large enough p. Assume that p � 3. If there is a p�� � ��p submesh M with all vertices

labeled 2, then there would be some v such that v and all of its neighbors are labeled

2. But this is impossible since, if all the neighbors of v are labeled 2, they do not send

\eating" to v, so v will be labeled 1 at the step when it eats. If there is a p�� � ��p

submesh M with all vertices labeled 1, then all vertices ofM enter the eating state at

the same step s. This gives a contradiction as follows. The number of edges incident

on vertices of M is at most (d=2)p

k

+O(p

k�1

). But in order for each vertex of M to

own at least m of these edges, there must be at least mp

k

of them. Since m � d=2+1

by assumption, we obtain a contradiction by choosing p large enough.

It is now easy to prove that this LCL cannot be solved locally for k-dimensional

torus graphs. The proof is similar to that of Theorem 6.3. As before, it su�ces to

consider order-invariant algorithms. For the id-numbering described in the proof of

Theorem 6.3, every su�ciently large torus will have a p�� � ��p submesh M such that

every vertex of M receives the same label. But this contradicts the de�nition of the

LCL.

In particular, the (d; d)-dining philosophers problem is not solvable with constant

response time for any d � 2.

Alain Mayer and the authors [12] have proved the converse of Theorem 7.2: If

m � dd=2e, then there is a protocol with constant response time for the (d;m)-dining

philosophers problem.

8. Open questions. This is an early attempt to study what can and cannot be

computed locally, and many questions remain open. A general direction for future

work is to obtain more information about what sorts of labeling problems and resource

allocation problems can be solved locally. In particular, the following speci�c questions

are suggested by our work.

1. Consider the problem of assigning an orientation to some edges of the graph

so that every vertex has either no edge directed in or two edges directed in, and

20 M. NAOR AND L. STOCKMEYER

the assignment is maximal with respect to the number of vertices that have two

edges directed in. This problem (the maximal in-degree 2 problem) was suggested by

the formal-dining philosophers problem. In the case that all philosophers are initially

hungry, such an orientation corresponds to an assignment of cu� links that is maximal

with respect to the number of philosophers who are eating. We can show that this

problem cannot be solved in constant time for d-regular graphs where d � 4. Can it

be solved in constant time for some d � 5?

2. We have shown that a weak 2-coloring can be found in time O(log

�

d) in

odd-degree graphs of maximum degree d. Is this the best possible time as a function

of d? Or is there some �xed time t that is su�cient for all d?

3. We have shown that a weak c-coloring cannot be found in constant time for

certain graphs having vertices of even degree (meshes). Does the same hold for trees

where every non-leaf has even degree? We conjecture that the result holds for any

class of even-degree edge-transitive graphs. Is this conjecture true?

Some other questions are addressed in [12]:

1. The locality framework is extended to dynamic graphs, where edges can fail

and later recover, and new nodes and edges can be added to the graph.

2. The amount of initial symmetry-breaking needed to solve certain problems

locally is investigated.

Acknowledgments. We thank Ron Fagin for discussions regarding the relevance

of locality in �rst-order logic, Shay Kutten for pointing out the relevance of locality in

work on self-stabilization, and Se� Naor for suggesting the formal-dining metaphor.

REFERENCES

[1] L. Adleman, Two theorems on random polynomial time, in Proc. 19th IEEE Symposium on

Foundations of Computer Science, 1978, pp. 75{83.

[2] Y. Afek, S. Kutten, and M. Yung, Local detection for global self stabilization, manuscript;

preliminary version in Proc. 4th Workshop on Distributed Algorithms, Lecture Notes in

Computer Science, Vol. 486, Springer-Verlag, New York, 1991, pp. 15{28.

[3] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin, Network decomposition

and locality in distributed computation, in Proc. 30th IEEE Symposium on Foundations of

Computer Science, 1989, pp. 364{369.

[4] K. M. Chandy and J. Misra, The drinking philosophers problem, ACM Trans. Programming

Languages and Systems, 6 (1984), pp. 632{646.

[5] M. Choy and A. K. Singh, E�cient fault tolerant algorithms for resource allocation in dis-

tributed systems, in Proc. 24th ACM Symposium on Theory of Computing, 1992, pp. 593{

602.

[6] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list

ranking, Inform. and Control, 70 (1986), pp. 32{53.

[7] G. N. Frederickson and N. A. Lynch, Electing a leader in a synchronous ring, J. Assoc.

Comput. Mach., 34 (1987), pp. 98{115.

[8] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon, Parallel symmetry-breaking in

sparse graphs, SIAM J. Disc. Math., 1 (1988), pp. 434{446.

[9] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Wiley, New York,

1980.

[10] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193{201.

[11] N. A. Lynch, Upper bounds for static resource allocation in a distributed system, J. Comput.

System Sci., 23 (1981), pp. 254{278.

[12] A. Mayer, M. Naor, and L. Stockmeyer, Local computations on static and dynamic

graphs, in Proc. 3rd Israel Symposium on Theory of Computing and Systems, 1995, pp.

268{278.

[13] S. Moran, M. Snir, and U. Manber, Applications of Ramsey's theorem to decision tree

complexity, J. Assoc. Comput. Mach., 32 (1985), pp. 938{949.

WHAT CAN BE COMPUTED LOCALLY? 21

[14] M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J.

Disc. Math., 4 (1991), pp. 409{412.

[15] A. Panconesi and A. Srinivasan, Improved distributed algorithms for coloring and network

decomposition problems, in Proc. 24th ACM Symposium on Theory of Computing, 1992,

pp. 581{592.

[16] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 2nd Ser., 30 (1930),

pp. 264{286.

[17] E. Styer and G. L. Peterson, Improved algorithms for distributed resource allocation, in

Proc. 7th ACM Symposium on Principles of Distributed Computing, 1988, pp. 105{116.

[18] A. C. Yao, Should tables be sorted?, J. Assoc. Comput. Mach., 28 (1981), pp. 615{628.

