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Abstract

Suppose that n processors are arranged in a ring and can communicate only with

their immediate neighbors. We show that any probabilistic algorithm for 3 coloring the

ring must take at least

1

2

log

�

n�2 rounds, otherwise the probability that all processors

are colored legally is less than

1

2

. A similar time bound holds for selecting a maximal

independent set. The bound is tight (up to a constant factor) in light of the deterministic

algorithms of Cole and Vishkin [CV] and extends the lower bound for deterministic

algorithms of Linial [L].

1 Introduction

In [L] Linial considered the following problem: n processors are connected in a ring and can

communicate with their immediate neighbors. They wish to decide on an assignment of one

of three colors to each processor, such that no two neighboring processors are assigned the

same color (a legal coloring). The question is what is the radius of the neighborhood around

each processor which must be considered in order to decide on the coloring. The system

is assumed to be completely synchronous, the communication reliable, and there are no

limitations on the internal computation of each processor or on the length of the messages

sent. The processors are identical, except that each one has a unique id in the range f1::ng.

The id's are assigned in some arbitrary manner, not known initially to the processors. The

radius of the neighborhood that a�ects how a processor is colored is exactly the number of

rounds it takes to execute the algorithm.

Linial [L] has shown a lower bound of

1

2

log

�

n�4 rounds on any deterministic algorithm

for coloring the ring with 3 colors. This bound is tight up to a constant factor, since Cole

and Vishkin [CV] and Goldberg, Plotkin and Shannon [GPS] have provided an O(log

�

n)

round algorithm for achieving it.
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In this paper we consider probabilistic algorithms for that task. Each processor is

equipped with a perfect source of randomness, and the processor's actions can depend in

any way on its coin 
ips. The performance of an algorithm is now measured in terms of

the probability of success as a function of the number of rounds. We show that allowing

the processors to 
ip coins does not help: any algorithm that runs in less than

1

2

log

�

n� 2

rounds has a high probability of failure, i.e. there will be at least two adjacent nodes whose

color is the same.

The 3-coloring problem is closely related to the maximal independent set problem: Each

processor should decide if it is in the set or not, no two adjacent processors are allowed to be

in the set and for every processor not in the set, one of its neighbors must be in the set. Any

algorithm for 3-coloring a ring can be translated with 2 additional rounds into one that �nds

a maximal independent set and vice versa. Thus a lower bound on the 3 coloring problem

provides a similar lower bound for the maximal independent set problem. Cole and Vishkin

[CV] provided an algorithm for the maximal independent set, and Goldberg, Plotkin and

Shannon [GPS] have generalized it to colorings of various degree bounded graphs.

In [BNN] the number of bits of communication required in order to achieve 3{coloring is

investigated. (I.e. messages are 1-bit long.) It is shown that in any deterministic algorithm

it must be 
(log n) which is tight by the [CV] algorithm. Interestingly, for randomized

algorithms it is �(

p

log n).

2 The lower bound

Theorem 2.1 Let k = n

1

3

. Any probabilistic algorithm for 3-coloring a ring of n processors

that takes less than t =

1

2

log

�

n� b� 2 rounds, has probability at most (1 �

1

log

(b)

n

)

k

2t

+

2t

k

to produce a legal coloring.

Proof: In any probabilistic algorithm it can be assumed that the processors �rst make their

random choices and from then on act deterministically. Since the processors actions are

determined by the order of the id's and the random numbers selected in the system, an

algorithm that runs in t rounds can be simulated by one where the processors send to each

other their id number and their random selections. After t rounds each processor knows

the random numbers selected by 2t + 1 processors: itself and the 2t processors that are

of distance at most t from it. Based on this information it decides on a color. Let D be

the range from which the processors make their random selection and let R = D � f1::ng.

Any r 2 R corresponds to a selection for the radnom choices of a processor concatenated

with its id. After t rounds the information any processor has corresponds to a vector

(r

1

; r

2

; : : : r

2t+1

) where r

i

2 R. Thus, any t rounds algorithm induces a 3-coloring of the

vectors f(r

1

; r

2

; : : : r

2t+1

)jr

i

2 Rg by associating a vector with the color the algorithm assigns
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a processor with neighborhood information represented by the vector.

We concentrate on a segment of k+2t consecutive processors on the ring. Suppose that

the adversary assigns each processor an id by choosing it independently from f1::ng. With

probability at least 1 �

2t

k

all the id's in the segment are unique. This is true, since the

probability that at least two processors choose the same id is bounded by

�

k+2t

2

�

times the

probability that two speci�c processors chose the same id which is

1

n

and

�

k+2t

2

�

�

1

n

�

2t

k

.

If the id's chosen are not unique, we consider it as if the algorithm \won". The lower

bound of the theorem will follow if we can bound by (1�

1

log

(b)

n

)

k

2t

the probability that the

processors of the segment choose a legal coloring in case each processor i selects at random

r

i

2 f1; : : : ; Rg. This is true since for any two events A and B, Pr[AjB] � Pr[A] + Pr[B].

In our case A is the event that the algorithm succeeds and B is the event that the adversary

assigns unique id's to the segment.

Consider the directed graphG

R;2t+1

: each nodes corresponds to a vector (r

1

; r

2

; : : : r

2t+1

)

such that r

i

2 R; node (r

1

; r

2

; : : : r

2t+1

) is connected to node (s

1

; s

2

; : : : s

2t+1

) i� r

i

= s

i+1

for 2 � i � 2t. The edge in this case is called (r

1

; r

2

; : : : ; r

2t+1

; s

2t+1

) (or equivalently

(r

1

; s

1

; : : : ; s

2t+1

)).

This graph was used in the lower bound proof for deterministic algorithms in [L]. It

was shown that any algorithm that colors the ring must de�ne a legal coloring of G

R;2t+1

and by deriving a bound on the chromatic number of G

R;2t+1

as a function of t, the lower

bound was shown. Here the situation is more complicated, since the ring coloring algorithm

does not necessarily de�ne a legal coloring of G

R;2t+1

: the probability of selecting an edge

with similarly colored end points might be small.(We call such an edge monochromatic.)

Instead, we will show a lower bound on the fraction of monochromatic edges.

The process of selecting the random numbers by the k + 2t processors in the segment

corresponds to selecting a (not necessarily simple) path of length k in the graph G

R;2t+1

:

if the random numbers selected are r

1

; r

2

; : : : r

k+2t

, then the path selected is v

1

; v

2

; : : : v

k+2t

where v

i

= (r

i�t

; : : : r

i

; : : : r

i+t

). Let z

1

; z

2

; : : : z

k

be the edges of this path. Each z

i

is

uniformly distributed over the edges of G

R;2t+1

, and z

i

is independent of all z

j

for j such

that jj � ij � 2(t + 1). Therefore we have

k

2(t+1)

random variables z

1

; z

2t+2

; : : : z

k

that are

mutually independent and each is a random choice of an edge in G

R;2t+1

.

For any coloring (not necessarily legal) of G

R;2t+1

we call an edge monochromatic if both

of its endponits are assigned the same color. Let p be the probability that an edge chosen at

random in G

R;2t+1

is monochromatic. For a randomly chosen path of length k in G

R;2t+1

,

Prob[ some edge is monochromatic] �

Prob[at least one of fz

1

; z

2t+2

; : : : z

k

g is monochromatic] � 1� (1� p)

k

2t+2

If we show that for t =

1

2

log

�

n � b � 2, for all 3 colorings of G

R;2t+1

, p �

1

log

(b)

, then the
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probability that any t rounds algorithm succeeds is at most (1�

1

log

(b)

n

)

k

2t

+

2t

k

.

Consider the series of graphs G

R;1

; G

R;2

; : : : ; G

R;2t+1

, where G

R;i

is de�ned similarly

to G

R;2t+1

. Let c

t

= 3 and c

i

= 2

c

i+1

. De�ne p

1

; p

2

; : : : ; p

t

by setting p

1

=

1

c

1

and

p

i+1

=

p

2

i

2c

i+1

. We will show that p

i

is such that for every coloring of G

R;i

with c

i

col-

ors Prob[random edge in G

R;i

is monochromatic] > p

i

.

Proposition 2.1 For any coloring of G

R;1

with c

1

colors,

Prob[random edge in G

R;1

is monochromatic] � p

1

=

1

c

1

Proof: G

R;0

is actually a complete graph with self loops. Therefore, in order to minimize

the probability that two nodes have the same colors, all color classes should be of the same

size, and we get that p

1

=

1

c

1

.2

Lemma 2.1 Assume that for any coloring of G

R;i

with c

i

colors, the probability that a

random edge is monochromatic is at least p

i

. Then for any coloring of G

R;i+1

with c

i+1

colors

Prob[random edge in G

R;i+1

is monochromatic] � p

i+1

=

p

2

i

2 � c

i+1

Proof: The nodes of G

R;i+1

correspond naturally to the edges of G

R;i

. Selecting a random

edge in G

R;i+1

corresponds to selecting a path of length two in G

R;i

. If we can show that

for every coloring of the edges of G

R;i

with c

i+1

colors the probability that two edges in a

random path have the same color is at least

p

2

i

2�c

i+1

, then we are done.

Given a coloring of the edges of G

R;i

with c

i+1

colors we de�ne a corresponding coloring

of the nodes of G

R;i

with c

i

= 2

c

i+1

colors by the following procedure:

For a node v call a color c frequent for v if at least a fraction f

i+1

=

p

i

2c

i+1

of the edges

starting at v are colored c. An edge e = (v; u) whose color is frequent for v is called

frequent. Otherwise it is called infrequent. Let S

v

be the set of frequent colors of v and let

C

v

2 f0; 1g

c

i+1

be the characteristic vector of S

v

. Node v is assigned the color C

v

.

This is a re�nement of the coloring used in [L], where the color a node is assigned is the

characteristic vector of the set of all colors that meet that node.

Claim 2.1 The fraction of infrequent edges is at most f

i+1

� c

i+1

=

p

i

2

.

Proof: For every node, at most f

i+1

of the edges starting from it colored by any color not

in S

v

. Thus, the fraction of infrequent edges is at most c

i+1

� f

i+1

=

p

i

2

. 2

Claim 2.2 For every edge coloring of G

R;i+1

with c

i+1

colors and the corresponding node

coloring with c

i

= 2

c

i+1

colors, at least

p

i

2

of the edges are both frequent and monochromatic.
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Proof: By assumption, p

i

of the edges are monochromatic and by the previous claim at

most

p

i

2

of the edges are infrequent. Thus, at least

p

i

2

of the edges are both monochromatic

and frequent. 2

Fix a coloring of the edges of G

R;i

and its corresponding node coloring. Suppose that

a path of length 2 is randomly selected at G

R;i

. If the �rst edge e = (v; u) is monochro-

matic and frequent, then the color of e is frequent at u as well as at v, since (v; u) being

monochromatic means that the lists of frequent colors at v and u are the same. Therefore,

there is probability at least f

i+1

that the second edge (starting from u) will be colored as

e = (v; u). Thus the probability that both events occur is at least

p

i

2

�f

i+1

=

p

i

2

�

p

i

c

i+1

=

p

2

i

2c

i+1

concluding the proof og the lemma. 2

Applying the lemma t times we get that

Prob[random edge z

j

in G

R;2t+1

is monochromatic] > p

t

By de�nition

p

t

>

�

p

1

2c

1

�

2

t

=

1

(2c

2

1

)

2

t

Now,

c

1

= 2

2

2

�

�

�

2

3

o

2t+1:

Thus, if t =

1

2

log

�

n� b� 2 for some b > 0, then p

t

>

1

log

(b)

n

and we get our theorem.2

A di�erent proof for the fact that there are many monochromatic edges was suggested

by Noga Alon (personal communication): It relies on the fact that there is lower bound on

the chromatic number of G

R;i

, and thus for any large enough subset of f1::Rg, the induced

subgraph contains at least one edge which is monochromatic.
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