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Abstract
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1 Introduction

Reducing complexity assumptions for basic cryptographic primitives is a major current research program in
cryptography. Characterizing the necessary and sufficient complexity conditions needed for primitives helps
us develop the theoretical foundations of cryptography. Further, reducing requirements for a primitive may
imply more concrete underlying functions for its practical implementations.

From this perspective, we study here the requirements for the existence of zero-knowledge (ZK) argu-
ments for proving the “validity of an NP assertion”. Informally, proving some fact in zero-knowledge (a
notion introduced in [19]), is a way for one player (called “prover”) to convince another player (called “veri-
fier”) that certain fact is true, while not revealing any additional information. In our setting, both players are
polynomially bounded and the prover is presumed to have the witness for the proof of theNP statement.
This has a large variety of applications in cryptography and distributed computing (see [19, 18]). In such
applications, the prover may choose the NP-instance in such a way so that the witness is known (e.g. by eval-
uating a one-way function on some input) or possess some secret information that constitutes the witness.
We must rely on complexity assumptions, since protocols for implementing the above task with polynomial
time players imply the existence of one-way functions (see [22] and [35]). The assumptions could be used
in two different ways:

1. Zero-knowledgeproofs [19, 18]: The prover, even with infinite computational power, cannot con-
vince the verifier to accept a false theorem. But, the proof itself is onlycomputationally secure: i.e.,
if the verifier (or anyone overhearing the execution of the protocol) ever breaks the cryptographic
assumption, say after 100 years, itcanextract additional knowledge about the proof.

2. Perfect zero-knowledgearguments[6]: The verifier cannot extract additional information even if it is
given infinite time ( i.e., security isperfector information theoretic); however, the prover (assumed to
be polynomial-time) can cheat in its proof only if it manages to break the assumptionon-line during
the execution of the protocol. This is the reason to call it an “argument” rather than a “proof”.

In many settings, ZK-arguments, which were introduced by Brassard, Chaum and Crépeau [6], may
be preferable to ZK- proofs: the verifier must only be sure that the prover did not break the assumption
during their interaction(which lasted, say, ten seconds or ten minutes). Notice that while assuring that
the assumption canneverbe broken may be unreasonable, the assumption that something cannot be broken
during the next ten minutescan be based on the current state of the art. On the other hand, the prover
has absolute (i.e. information-theoretic) guarantee that no additional information is released, even if the
verifier spends as much time as it desires trying (off-line) to extract it. Thus, the notion of zero-knowledge
arguments is useful if there is a need to maintain the secrecy for very long time independent of the possible
future advance of cryptanalysis.

So far the complexity assumptions needed for constructing perfect-zero-knowledge arguments were not
general – they required specific algebraic assumptions. This is in contrast with zero-knowledge interac-
tive proofs, which can be based on any one-way function. In this work we dispose of specific algebraic
assumptions for zero-knowledge arguments:
Main result: If one-way permutations exist, then there exist perfect zero-knowledge arguments for
any in NP

We obtain this result by constructing an information-theoretically secure bit-commitment scheme which
can be based on any one-way permutation. The scheme is efficient and thussimulatableby an expected
polynomial time algorithm. We can then apply the known reduction of “perfectly-secure computationally-
binding bit commitment” to “perfect ZK-argument”. Most of the paper is devoted to the description of the
bit-commitment scheme and its correctness and security proof.
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1.1 Background

Past successes in establishing basic cryptographic primitives on general assumptions (initiated in [37]) have
shown that various primitives, which were originally based on specific algebraic functions, can be based
on the existence of general one-way functions or permutations. For example, Naor [30] showed that com-
putationally secure bit commitments (i.e., bit commitments whichcan bebroken off-line given sufficient
resources) can be constructed from a pseudo-random generator. Such generators [1, 37] were first imple-
mented based on a discrete logarithm assumption in [1] and following a sequence of papers [37, 26, 16, 17]
it was shown thatany one-way function suffices [20, 21]. Similarly, digital-signatures can now be based
on any one-way function [31, 36]. Furthermore, these primitives (and primitives derived from them, e.g.
identification) were shown to imply a one-way function (thus they are equivalent) [22].

Concerning secure proofs, Goldreich, Micali and Wigderson [18] showed that zero-knowledgeproofs
forNP can be done using computationally secure bit commitment protocols which, as indicated above, can
be obtained from any one-way function. This applies to generalIP proofs as well [24]. On the other hand,
zero-knowledge proofs for non-trivial languages imply the existence of one-way functions [35].

In contrast to computational zero-knowledgeproofs, the only known constructions for perfect zero-
knowledgeargumentsfor NP was under specific algebraic assumptions [6, 4, 24, 7, 3, 23] or under the
assumption thatcollision intractable hash functionsexists (first shown in [31]; see [11] for more informa-
tion), which in turn is only known to be constructed under specific algebraic assumptions [5, 8, 9]. Our
result gives the first general reduction: zero-knowledge NP-arguments can be constructed givenany one-
way permutation, by first constructing an information theoretically secure bit commitment.

1.2 Organization of the paper

In section 2, we give the model, the formal definitions of the problem, and the assumptions. Specifically,
we present the model of interactive machines, the notion of commitment and of one-way functions and
permutations and the definition of perfect zero-knowledge arguments. In Section 3 we present the new
method for basing a perfectly-secure bit commitment on a one-way permutation and prove its security. In
Section 4 we discuss possible extensions of our techniques. For completeness, we provide in Appendix A a
comparison between this work and other recent work on commitments.

2 Model and Definitions

We now review the model and definitions of bit commitment, one-way permutations and perfect zero-
knowledge arguments (a.k.a. computationally-sound proofs). In general we follow Goldreich [13]. The
parties in the protocols are modeled asInteracting Turing machinesas defined by [19] which share an ac-
cess to a security parametern, a common input and communication tapes. In addition each has an output
tape, a private random tape (or string, a.k.a. as its coin-flips) and an auxiliary private input tape. When we
say that a machine is polynomial-time it is polynomial in the security parameter (given in unary) and in
general all other inputs (including the auxiliary) should be polynomial in the security parameter. We call a
functionρ(n) negligible if for all polynomialsp(n), ρ(n) = o(1/p(n)). That is, it is asymptotically smaller
than all inverse polynomials.

Before we continue we should clarify a few issues regarding uniformity. Most cryptographic primitives
come in two flavors: (i) uniform, where the adversary is assumed to be a probabilistic polynomial-time ma-
chine and (ii) non-uniform, where the adversary’s computational power is modeled by polynomial sized cir-
cuit. (See [12, 13] for an extensive treatment of the subject.) A construction of one cryptographic primitive
from another may beuniformity preservingmeaning that the new primitive is secure against probabilistic
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polynomial-time adversaries if the original primitive is secure against such adversaries. Alternatively, it
may be onlynon-uniform, meaning that the new primitive is secure only if the original primitive is secure
against polynomial-sized circuits. (In all cases we are aware of, if the construction is uniformity preserving
then it is also non-uniformity preserving, hence the usage of “only”; furthermore, this can be formalized
to cover most cases.) Our construction of perfectly secure computationally binding bit-commitments from
one-way permutation is uniformity preserving. However, when using such bit-commitments to construct
zero-knowledge arguments for languages inNP some delicate issues that are beyond the scope of this pa-
per arise. Therefore we provide only the non-uniform version of the zero-knowledge arguments and refer to
[12] as the source for making the uniform case.

2.1 Commitment

A bit commitment protocol involves two interacting parties, the Sender and the Receiver. It can be thought
of the Sender giving the Receiver a locked box with a secret bit inside. The receiver doesn’t learn anything
about the bit, but at a later stage, when the box is opened, it is sure that the contents of the box were not
altered. More formally, abit commitment protocol consists of two stages:

• The commitstage: the SenderS has a bitb on its input tape, to which she wishes to commit to the
ReceiverR. The sender and the receiver exchange messages. At the end of this stageR has some
information that “represents”b written on its output tape.

• The reveal (opening) stage: S andR exchange messages (where their output tapes from the commit
stage are serving as input tapes for this stage). At the end of the exchangeR writes on its output tape
either “OK for bit b” or “NOT OK”.

We should take care in defining what we mean by cheating in the context of information-theoretic com-
mitment. Consider the following experiment: after the commit stageS is “split” into S0 andS1 and par-
ticipates in two executions of the reveal protocol with two identical copies ofR whose state is initialed to
be that ofR after the commit stage. If both executions end up withR writing “OK” on the tape, but the
two bits written are not the same, thenS is considered to have successfully cheated. More precisely, at any
point in time the state of an interactive machine is determined by its random stringr and the messages it
received~m. The sender is specified by two machines{S0,S1} so that when given the same random string
S0 andS1 haveidenticalbehavior during the commit. I,e when sent the same input messages, they respond
back with the same message (this is what it means that theS is split after the commit phase). If we have two
interacting machines and we fix their random strings, then the outcome of their interaction is deterministic.
We denote it by〈R(r),S(s)〉 wherer is the random string ofR ands the random string ofS.

Definition 1 We say that a senderS = {S0,S1} cheats a receiverR with probability at mostρ if the
following holds: the probability that the executions〈R(r),S0(s)〉 and 〈R(r),S1(s)〉 end up following the
reveal stage with ”OK” but with two different bits, is at mostρ where the probability is over the choice ofr
ands.

By a protocol we actually mean a family of protocols, indexed by the security parametern. As is usual
in computational based Cryptography, the security is a function ofn. Note that in the definition below only
the probability of cheating depends onn (but the security is independent ofn).

Definition 2 To beperfectly-secure computationally binding commitment, the protocol must obey the
following for some negligibleρ(n):
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1. (Viability) If both players are honest (i.e. follow the protocol as specified), then for any input bit
b ∈ {0, 1} the senderS gets, the receiver outputs at the end of the reveal stage the “OK for bitb”
with probability one.

2. (Security property:) For anyR′ the distributions of the conversation between an (honest)S andR′

in caseb = 0 andb = 1 are identical. Note that the computational resources ofR′ are not bounded.

3. (Binding property:) The probability that any probabilistic polynomial timeS ′ = {S ′0,S ′1} can suc-
cessfully cheat is at mostρ(n) where the probability is over the random tapes ofS ′ andR.

4. (Efficiency) S andR’s algorithms can be executed in polynomial in the security parametern time by
a probabilistic Turing Machine.

Remark 1 Suppose that in property 1 above instead of requiring that the distributions in caseb = 0 and
in caseb = 1 be identical we require that they will be close to each other to withinρ(n) under, say, theL1

norm. Then we get astatistically secure computationally binding commitment. This is good enough for
many applications.

2.2 One-way functions and permutations

We now define the underlying cryptographic primitive we assume. Letf be a length preserving function
f : {0, 1}∗ → {0, 1}∗ computable in polynomial time. Bya ∈R A we mean that the elementa is randomly
chosen from the setA.

Definition 3 f is one-wayif for every probabilistic polynomial time algorithmA, for all polynomialsp and
all sufficiently largen,

Pr[f(x) = f(A(f(x))) | x ∈R {0, 1}n] <
1

p(n)

where the probability is over the random choices ofx and the random tape ofA.

The above definition is of astrong one-way function. Its existence is equivalent to the existence ofweak
one-way functionusing Yao’s amplification technique [37] or the more security preserving method of [15]
which is applicable only to permutations or regular functions. (A weak one-way function has the same
definition as above, but the hardness of inversion is smaller, i.e. its probability is inverse polynomially away
from 1.)

If in addition f is 1-1 and length preserving then we say thef is a one-way permutation. For the
construction of Section 3 we require a one-way permutationf . Note that the construction there assumes a
one-way permutationf on{0, 1}n. Suppose that instead we have a one-way permutationf ′ : S 7→ S where
S ⊂ {0, 1}n is an easily recognizable and large set (non-negligible fraction of{0, 1}n), e.g. all numbers
smaller thanP where2n−1 ≤ P < 2n, as is the case in the number theoretic constructions. Then we can
construct from it a weak one-way permutationf : {0, 1}n 7→ {0, 1}n by takingf(x) = f ′(x) if x ∈ S and
f(x) = x otherwise. Using the amplification techniques of [37, 15] we can then obtain astrongone-way
permutation on a domain{0, 1}n′ for n′ linear inn.

The goal of this paper is to present a construction of perfectly-secure computationally binding commit-
ment from any one-way permutation.

5



2.3 Perfect Zero-Knowledge Arguments

We now briefly discuss perfect zero-knowledge arguments (a.k.a computationally sound proof systems).
The reason we are brief is that the paper does not deal with them directly, but their existence is a known
consequence of the construction of the perfectly-secure computationally binding commitment protocol. For
a more thorough discussion see [13].

In a proof system there are two interacting machines commonly called the proverP and the verifierV .
The two parties share access to a security parametern and a common inputx which the prover “claims” is
in a languageL. The prover should have in its auxiliary input tape a witness for this fact. In addition each
party has an output tape, a private random tape and perhaps more information on their auxiliary private input
tape. The three properties the proof system should have are (i) Completeness, meaning that ifx ∈ L then the
interaction should cause the verifier to write “ACCEPT” on its output tape (which we denote“ACCEPT ∈
〈P, V 〉(x)). (ii) Soundness which in this case is only computational, i.e. for any “bad” prover who is
polynomially bounded, the probability that it makes the verifier write “ACCEPT” whenx 6∈ L is small and
(iii) Zero-knowledge, which here we require it to be perfect, i.e. for every “bad” verifier it is possible to
simulate precisely its output and message distribution.

Definition 4 (perfect zero-knowledge arguments) A pair of interactive machines(P, V ) is a perfect
zero-knowledge arguments system for a languageL if both machines are polynomial-time and

1. (Completeness) For everyx ∈ L there is a witnessy such that

Pr[“ACCEPT” ∈ 〈P (y), V 〉(x)] ≥ 2
3
.

We say that the completeness isperfectif for everyx ∈ L there is a witnessy such that

Pr[“ACCEPT” ∈ 〈P (y), V 〉(x)] = 1.

2. (Computational soundness) For every polynomial time interactive machineP ′ and for sufficiently
large security parametern, for every sufficiently longx 6∈ L and all auxiliary inputsy

Pr[“ACCEPT” ∈ 〈P (y), V 〉(x)] ≤ 1
3
.

3. (Perfect zero-knowledge) For every verifierV ′ (with no bound on its computational resources) there
is a simulator which is a probabilistic expected polynomial-time machineMV ′ , such that on any posi-
tive instancex ∈ L and auxiliary inputy for the prover andh for the verifier, the outputMV ′ produces
givenx andh, the random variableSIMV ′(x, h), is distributed identically to〈P (y), V ′(h)〉(x).

As is the case in general, the(1/3, 2/3) gap can be made arbitrary large bysequentiallyrepeating the
protocol1. The major result we are interested in is that it is possible to obtain perfect zero-knowledge
arguments given an information-theoretic secure bit commitments. We state the non-uniform version of the
result. As mentioned in the beginning of Section 2, obtaining a uniform result can be done following [12].

Theorem 1 ([6, 18]) If non-uniform perfectly-secure computationally binding commitment exist, then every
languageL ∈ NP has a perfect zero-knowledge argument with perfect completeness.

1It was recently shown that when an argument is repeated inparallel the gap does not necessary decrease [2].

6



3 Perfectly-Secure Simulatable Bit Commitment

We present a perfectly-secure bit commitment scheme and a proof of its security. To get the intuition,
consider the following protocol:

• The senderS selects a randomx ∈ {0, 1}n and computesy = f(x).

• The receiverR chooses a2-to-1 hash functionh : {0, 1}n 7→ {0, 1}n−1 and sends its description to
S.

• S sendsw = h(y).

• At this point, from the receiver’s point of view there are exactly two possible values fory, denotedy0

andy1 (i.e.h(y0) = h(y1) = w andy0 < y1). Lety = yc. To commit tob, the sender sendsd = b⊕c.

• To revealb,R sendsx = f−1(y).

As long ash is guaranteed to be2-to-1, then it is equally likely thaty = y0 andy = y1 so the security
of S is maintained. I.e. even ifR choosesh adverserialy, for anyh which is2-to-1, givenw = h(y) the
probability thaty = y0 or y = y1 is the same overS coin-flips. Therefore the distribution of(w, d) is
independent of the value ofb. If h is “random” enough (pair-wise independence is sufficient), theny is
paired with a randomy′ and hence the chances thatS may findf−1(y′) are low. However, ifS choosesy
only after it learns ofh, then it may be feasible to findx0 andx1 such thath(f(x0)) = h(f(x1)). Indeed,
this is the case, unlessh ◦ f is acollision intractablehash function, which we do not know how to construct
under the assumption that one-way permutations exist2.

In order to take care of “late choosers”, the above protocol is refined and the hash function is disclosed
gradually, in return for bits of information regardingy. The hash function is defined by an(n − 1) × n
binary matrixH of rankn− 1 overGF [2] andh(x) = Hx. The rows ofH are revealed step by step, and in
response for each rowS sends the inner product ofy and the row. The rest of the protocol is as above. We
call this technique “interactive hashing”. We note that a similar idea was proposed independently in a full
information setting by Goldreich, Goldwasser and Linial [14].

Though a deviousS cannot be forced to choosey at the beginning of the protocol, what we show is that
there is enough freedom inR’s movements thatS can be forced (with non-negligible probability) to pairy
with an arbitraryy′.

3.1 The Scheme

Let f be a strong one-way permutation on{0, 1}n. Let S denote the sender andR the receiver. In the
beginning of the protocol,S is given a secret input bitb. B(x, y) denotes the dot-product mod2 of x andy.

Commit Stage.

Commit to a bitb.

1. The senderS selectsx ∈R {0, 1}n at random and computesy ← f(x). S keeps bothx andy secret
fromR.

2. The receiverR selectsh1, h2, . . . hn−1 ∈ {0, 1}n such that eachhi is a random vector overGF [2] of
the form0i−11{0, 1}n−i (i.e. i−1 0’s followed by a 1 followed by an arbitrary choice for the lastn−i
positions). Note thath1, h2, . . . hn−1 are linearly independent overGF [2]. We callh1, h2, . . . hn−1

R’s queries.
2If f is indeed collision intractable, the resulting scheme is very close to the one proposed in [31] or [11].
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3. Forj from 1 to n− 1

• R sendshj to S.

• S sendscj ← B(hj , y) toR.

4. At this point there are exactly two vectorsy0, y1 ∈ {0, 1}n such that for bothi ∈ {0, 1}, cj =
B(yi, hj) for all 1 ≤ j ≤ n − 1. Definey0 to be the lexicographically smaller of the two vectors.
BothS andR computey0 andy1 by solving the linear system3. Let c ∈ {0, 1} be such thaty = yc

(only S knowsc).

5. S computesd = b⊕ c and sends it toR.

Reveal Stage.

The receiver’sR’s input from the commit stage isc1, c2, . . . cn−1 andd, as well asR’s queriesh1, h2, . . . hn−1

1. S sendsb andx toR.

2. R verifies thaty = f(x) obeyscj = B(hj , y) for all 1 ≤ j ≤ n − 1 and verifies thaty = yc where
c = d⊕ b.

3.2 Proof of security

Theorem 2 If f is a one-way permutation, then the scheme presented in Section 3.1 is a perfectly-
secure computationally-binding bit commitment scheme.

Theorem 2 follows from the lemmata below, the Security Lemma and the Binding Lemma, respectively
(the viability and efficiency of the scheme can be verified easily). The proof of the Security Lemma is
relatively straightforward, but the Binding Lemma turned out to be trickier and required a delicate proof.

Lemma 1 (Security) For any receiverR′, the distribution of the conversations at thecommit stage is
independent of the value of the bitb.

Proof : We show inductively onj, that for any choice ofh1, h2, . . . hj the conditional distribution ofy
givenh1, h2, . . . hj c1, c2, . . . cj is uniform in the subspace defined byh1, h2, . . . hj andc1, c2, . . . cj . The
inductive step holds, since the linear independence ofh1, h2, . . . , hj implies that

Pr[B(hj , y) = 0|h1, h2, . . . hj−1, c1, c2, . . . , cj−1] =
1
2
.

Thus, at Step 4 the probability thatc = 0 (i.e. y = y0) is exactly1
2 , asy is distributed uniformly in{y0, y1}.

Therefore, for any method of choosing the queries the distribution of

(h1, h2, . . . hn−1, c1, c2, . . . , cn−1, d)

is the same whenb = 0 andb = 1. 2

Recall that we consider a cheating sender to be successful if following the commit stage it can make
the receiver accept two different values as the bit committed. In our protocol that means that the cheating
sender can findx0, x1 ∈ {0, 1}n such thatx0 6= x1 but y0 = f(x0) andy1 = f(x1) are both consistent
with h1, . . . , hn−1 andc1, . . . , cn−1. The “Binding” Lemma below states that if there exists a sender that
can cheat with non-negligible probability, then it can be used to invert the presumed one-way permutationf
on a non-negligible fraction of the inputs, contradicting our assumption.

3The way the queries are chosen implies that solving the system can be done inO(n2) time
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Lemma 2 (Binding) Assume there exists a probabilistic polynomial timeS ′(n) that following the commit
stage can reveal to a honest receiver two different values forb with non-negligible probabilityε = ε(n)
where the probability is overS ′ and the ReceiverR coin flips. Then there exists a probabilistic polynomial
time algorithmA that invertsf on non-negligible fraction of they’s in {0, 1}n.

Proof : We describe how to construct an algorithmA for invertingf whose run time is larger thanS ′’s by
at most ap(n, 1

ε ) multiplicative factor and its probability of success in computingf−1(y) for y ∈R {0, 1}n
is at least1/p(n, 1

ε ) wherep is some (fixed) polynomial.
We begin by makingS ′ deterministic which can be done using standard techniques. Suppose that we

choose an assignment to the random tape ofS ′ and count the number of queries ofR (i.e. h1, . . . hn−1) on
whichS ′ succeeds in cheating. By assumption, if the assignment is random, then the expected fraction of
such queries is at leastε. Let Ω be the set of assignments on whichS ′ is successful on at leastε/2 of R’s
queries. By a simple counting argument we can conclude thatΩ consists of at leastε2 of the possible as-
signments. The algorithmA described below requiresS ′ to be deterministic. Therefore we choosem = 2n

ε
random assignmentsω1, ω2, . . . , ωm and runm times the algorithmA with the random tape ofS ′ initialized
with ω1, ω2, . . . , ωm. With probability1− (1− ε

2)m ≥ 1− e−n someωi ∈ Ω. Therefore from now on we
assume thatS ′ is deterministic and its probability of success overR’s queries is at leastε2 .

Let T be the rooted tree of depthn − 1 defined by the queries sent byR. A node Ui at the ith
level is defined by queriesh1, h2, . . . , hi−1 where for all1 ≤ k ≤ i − 1 the queryhk is of the form
0k−11{0, 1}n−k. Each ofUi’s 2n−i outgoing edges corresponds to a queryR may send in theith round of
the form0i−11{0, 1}n−i and leads to a different node at the(i + 1)th level. The behavior ofS ′ specifies
a labeling of the edges ofT with {0, 1}. For a nodeUi defined by queriesh1, h2, . . . , hi−1 the label of
an edgehi is the responseci of S ′ to the queryhi in the ith round, given that the previous queries were
h1, h2, . . . , hi−1. We denote it byLS′(Ui, hi). Given thatS ′ is deterministic and thatA has complete
control over it, it is possible to compute this labeling.

For a leafUn defined by queriesh1, h2, . . . hn−1, let U1, U2, . . . Un−1 be the nodes on the path from the
root toUn and let{y0(Un), y1(Un)} be the set of images consistent with the labeling ofS ′, i.e.LS′(Ui, hi) =
B(yb, hi) for all 1 ≤ i ≤ n − 1 andb ∈ {0, 1}. We say that the leafUn is good if given thatR’s queries
h1, h2, . . . hn−1, thenS ′ succeeds in opening the bit committed in two different ways: i.e.S ′ inverts both
y0(Un) andy1(Un).

In general, giveny, A’s strategy is to try to find a good leafUn such that the labelsLS′ on the edges
leading to it are consistent withy, i.e. y ∈ {y0(Un), y1(Un)}. If Un is indeed good, then it yields the inverses
of y0(Un) andy1(Un) and hence ofy. Such a leaf is found by developing the path node by node. Intuitively,
for any labeling ofT at any nodeUi and for ay that is consistent with the labels leading toUi the probability
thatB(hi, y) = LS′(Ui, hi) for a random queryhi is 1/2 (the intuition is that an inner product of random
vector with two different vectors yields independent results). Therefore to find a nodeUi+1 consistent with
y should take on the average two inspections of randomhi’s. However, an important thing to note is that
sinceS ′ may be cheating, its answers need not be consistent and that on the same queryhi the senderS ′
may give different answers depending on the previous queries. Therefore the above intuition is not accurate
and this is the source of the difficulty in constructing and analyzing the invertorA. Roughly speaking, we
must use the randomness ofy itself to argue that the label of a randomh has a fair chance of agreeing with
B(h, y). We should also not “waste” this randomness too quickly, before getting close enough to a leaf.

Description of the inverting algorithm A:

Recall our notation:B(h, y) denotes the inner product ofh and y, Ui is a node of leveli defined by
queriesh1, h2, . . . hi−1 and LS′(Ui, hi) is the answer ofS ′ on hi, given that the previous queries were
h1, h2, . . . hi−1.

9



A gets as an input a random imagey in {0, 1}n and it attempts to inverty. In order to computef−1(y),
A tries to find a good leafu such thaty ∈ {y0(u), y1(u)}. Obviously, if it finds such a leaf it can succeed in
invertingy. Starting at the root,A develops node by node a path consistent withy. Fix j to ben−8(log n

ε +
2). The algorithmA consists ofj − 1 rounds.

The state ofA at the beginning of theith round (1 ≤ i < j) can be described by a nodeUi of the ith
level of the treeT defined by queriesh1, h2, . . . hi−1. Let U1, U2, . . . Ui−1 be the path from the root toUi.
The property thatA maintains is that the and the labelsc1, c2, . . . ci−1 along the path are consistent withy,
i.e. for all1 ≤ k ≤ i− 1 we haveck = LS′(Uk, hk) = B(hk, y).

At the ith roundA performs the following: a random queryh ∈R {h|h = 0i−11{0, 1}n−i} is chosen.
If the outgoing edgeh is labeled properly, i.e.LS′(Ui, h) = B(h, y), thenhi ← h and the path is expanded
to the new nodeUi led byhi. Otherwise,S ′ is reset to the state before its reply, and a new candidate forhi

is chosen. This is repeated until either a success or until there are no more candidates left, in which caseA
aborts.

If A reaches thejth level, it guesses the remainingn− j querieshj , hj+1, . . . , hn−1 by choosing them
uniformly at random from the proper sets of queries.A then checks whether the path to the leaf is labeled
consistently withB(y, hk) for k = j, . . . , n− 1. If this is the case and the leaf reached is good, thenA has
succeeded in invertingy. Otherwise abort.

Analysis of the inverting algorithm A

The rest of this proof is devoted to showing thatA as defined above has probability at leastε
10

65e3(4n)8
for

invertingy. Note thatA as described above does not necessarily halt after a polynomial number of steps.
However, as we shall see following Claim 7, we can limit thetotal number of unsuccessful attempts at
finding consistenth’s to 8n without decreasing significantly the probability thatA succeeds in invertingy.
Notation: since we are dealing with several types of vectors of lengthn over GF [2] we will distinguish
them by referring to those vectors that are sent byR asqueries, and to those vectors which may be the
image thatA attempts to invert asimages. Let Ui be a node at theith level of the treeT defined by
h1, h2, . . . hi−1 and letc1, c2, . . . ci−1 be the labelsLS′ assigned to the path toUi. We say thaty ∈ {0, 1}n
is animage in Ui if B(hk, y) = ck for all 1 ≤ k < i. We denote the set of images ofUi by I(Ui); we know
that |I(Ui)| = 2n−i+1. We say thath ∈ {0, 1}n is aquery of Ui if it is of the form 0i−11{0, 1}n−i. There
are2n−i queries at a nodeUi of theith level.

Let A(U, y) = |{h : h is a query ofU andB(h, y) = LS′(U, h)}|. An imagey is balanced in Ui, a
node of theith level if

1
2

(
1− 1

n

)
≤ A(Ui, y)

2n−i
≤ 1

2

(
1 +

1
n

)
Hence for an imagey that is balanced inUi, roughly half of the answers to the queries at nodeUi agree with
y. An image y isfully balanced in U , a node of thejth level, if it is balanced in all the ancestors ofU . Let
F(U) be the set ofy ∈ I(U) that are fully balanced inU . The motivation for considering fully balanced
images is that the probability thatA reaches a certain nodeU with an imagey ∈ F(U) is close to what it
would be in caseS ′ was honest. For a set of queriesH at a nodeU and an imagey of U thediscrepancy
of y atH is ∣∣∣∣|{h ∈ H : LS′(U, h) = B(y, h)}| − |H|

2

∣∣∣∣
i.e. the difference between the “expected” number of agreeing queries and the actual number of queries in
H that agree withy. Finally, recall thatj = n− 8(log n

ε + 2) and setγ = n2−
5
8
(n−j).

Roadmap: Our main problem in analyzing algorithmA is in showing that no labelingLS′ can bias the walk
towards a set of leaves containing a small subset of the images. Claims 1 and 2 show that for any labeling
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LS′ , for any nodeU almost all the images ofU are fully balanced. The motivation for considering fully
balanced images is expressed in Claim 3 by showing that the probability ofA reaching a certain nodeU
with an imagey ∈ F(U) is close to what it would be in caseS ′ was honest. This is also the reasonA stops
testing queries at levelj and continues further by guessing the rest of the sequence: otherwise the nodes
may be unbalanced and the probabilities too biased.

Though initially a non-negligible fraction of the leaves are good, there is a danger thatS ′ leadsA
to those directions that have only few good leaves. Claims 4 and 5 say that this is not the case and that
with reasonable probability whenA reaches thejth level it has many good leaves whose images are fully
balanced. Claim 6 implies that the probability that our random guess is correct is not far from being inversely
proportional to the number of leaves of a subtree rooted at levelj (which is polynomial). Finally, Claim 7
combines all the above to show that the probability of success is non-negligible.

Claim 1 Let U be node of theith level and letH ⊂ {h|h = 0i−11{0, 1}n−i} be a subset of the queries of
U of size at most2n−j . For anyh ∈ H let ah be a random variable overz ∈R I(U) such thatah = 1 if
B(h, z) = LS′(U, h) and0 otherwise. Then,

Pr

∣∣∣∣∣∣
∑
h∈H

ah −
1
2
|H|

∣∣∣∣∣∣ ≥ 2
7
8
(n−j)

 ≤ 2−
3
4
(n−j).

Proof : First note that any pair of queries differenth′, h′′ ∈ H has the property thath′′ is linearly inde-
pendent ofh′, h1, h2, . . . hi−1. For anyh ∈ H we have thatPr[ah = 1] = 1

2 and Var[ah] = 1
4 . For every

h′ 6= h′′ the eventsah′ andah′′ are pairwise independent (this follows from the linear independence ofh′

andh′′) and hence

V ar[
∑
h∈H

ah] =
1
4
|H| ≤ 2n−j−2.

We are essentially interested in

Pr

∣∣∣∣∣∣
∑
h∈H

ah − E[
∑
h∈H

ah]

∣∣∣∣∣∣ ≥ 27/8(n−j)

 (1)

sinceE[
∑

h ah] = 1
2 |H|. By Chebyschev’s inequality

Pr

∣∣∣∣∣∣
∑
h∈H

ah − E[
∑
h∈H

ah]

∣∣∣∣∣∣ ≥ λ

√
V ar

[∑
ah

] ≤ 1
λ2

Takingλ = 2
3
8
(n−j) we get that (1) is at most2−

3
4
(n−j). 2

Claim 2 For any nodeUj of levelj and randomz ∈ I(Uj) we havePr[z ∈ F(Uj)] ≥ 1 − γ for γ =
n2−

5
8
(n−j)

Proof : Let U1, U2, . . . Uj−1 be the nodes on the path toUj . We should show that for anyUi along
the path mostz ∈ I(Uj) are balanced. We cannot apply Claim 1 directly, since a randomy ∈ I(Uj)
is not random inI(Ui). To apply the Claim, we first take care of the queries ofUi that arenot linearly
independent ofhi, . . . hj−1. There are at most2j−i (out of 2n−i) such queries and we (pessimistically)
count them as contributing to the discrepancy. LetH ′ be the remaining queries ofUi. We partition them
into 2j−i subsets according to the values of bitsi + 1 throughj. For each̀ ∈ {0, 1}j−i let H` = {h|h =
0i−11`{0, 1}n−j} ∩H ′. EachH` is of size at most2n−j and has the following the important property.
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Fact 1 For every differenth′, h′′ ∈ H` we have thathi, . . . hj−1, h
′, h′′ are linearly independent.

Proof : In any subset ofhi, . . . hj−1, h
′, h′′ that sums to~0 an even number of elements out ofhi, h

′, h′′

must participate. Sinceh′ andh′′ are linearly independent ofhi, . . . , hj−1, it is the case thathi does not
participate in the sum. However, sinceh′, h′′ ∈ H` and have the same bits in locationi throughj, no
member ofhi+1, . . . , hj−1 can participate in the sum. Sinceh′ 6= h′′ no vector fromhi, . . . hj−1, h

′, h′′

participates and we get the desired linear independence2

Given this property we have that forh′, h′′ ∈ H` and a randomz ∈R I(Uj) the random variablesah′

andah′′ are independent. Therefore, as in the proof of Claim 1 we have that for any` ∈ {0, 1}j−i

Pr

∣∣∣∣∣∣
∑

h∈H`

ah − E[
∑

h∈H`

ah]

∣∣∣∣∣∣ > 2
7
8
(n−j)

 ≤ 2−
3
4
(n−j). (2)

Let b` be the indicator for the event
∣∣∣∑h∈H`

ah − E[
∑

h∈H`
ah]
∣∣∣ > 2

7
8
(n−j). From (2) we knowPr[b`] ≤

2−
3
4
(n−j). By Markov’s inequality we can conclude that

Pr

 ∑
`∈{0,1}j−i

b` >
2j−i

2
1
8
(n−j)

 ≤ 2−
5
8
(n−j).

That is, the probability that for more than a fraction2−1/8(n−j) of the`’s, the setH` has a discrepancy larger
than2

7
8
(n−j) is at most2−

5
8
(n−j). Thus with probability at least1− 2−

5
8
(n−j) the total discrepancy at node

Ui is at most

2j−i + 2−1/8(n−j)2n−j2j−i + (1− 2−1/8(n−j))2
7
8
(n−j)2j−i ≤ 2 · 2

7n
8

+ j
8
−i = 2n−i · 2−

1
8
(n−j)+1

where the first summand is an upper bound on the contribution of the queries not inH ′, the second the
contribution of theH`’s whereb` = 1 and the third the contribution of theH`’s whereb` = 0. Hence for
z ∈R I(Uj) with probability at least1− 2−

5
8
(n−j) we have

2n−i−1 − 2n−i · 2−
1
8
(n−j)+1 ≤ A(Ui, z) ≤ 2n−i−1 + 2n−i · 2−

1
8
(n−j)+1

and sincej = n− 8(log n
ε + 2)

1
2
(1− 1

n
) ≤ 1

2
− 2−1/8(n−j)+1 ≤ A(Ui, z)

2n−i
≤ 1

2
+ 2−1/8(n−j)+1 ≤ 1

2
(1 +

1
n

)

The probability thatz is balanced in all the levels is therefore at least1− n2−
5
8
(n−j) = 1− γ. 2

Claim 3 For any nodeUj of levelj and anyz ∈ F(Uj)

1
2ne

j−1∏
i=1

1
2n−i−1

≤ Pr[A reachesUj andy = z] ≤ e

2n

j−1∏
i=1

1
2n−i−1

where the probability is uniform over the choices ofy and the coin-flips ofA
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Proof : To get the first inequality,

Pr[A reachesUj andy = z] =
1
2n
·

j−1∏
i=1

1
A(Ui, z)

≥ 1
2n
·

j−1∏
i=1

1
(1 + 1/n) · 2n−i−1

≥ 1
2n(1 + 1/n)n

j−1∏
i=1

1
2n−i−1

≥ 1
2ne

j−1∏
i=1

1
2n−i−1

.

Similarly, for the second inequality

Pr[A reachesUj andy = z] =
1
2n
·

j−1∏
i=1

1
A(Ui, z)

≤ 1
2n
·

j−1∏
i=1

1
(1− 1/n) · 2n−i−1

≤ e

2n

j−1∏
i=1

1
2n−i−1

. 2

Recall that a leafUn is good if given thatR’s queries lead toUn, thenS ′ succeeds in opening the bit
committed in two different ways: i.e.S ′ inverts on bothy0(Un) andy1(Un). Since we stopn − j levels
above the leaves we are interested in nodes that have many good leaves in the subtree below them. The
reason we need many and not just one is that a single good node may not have any of its images in the set
of fully balanced images at the root of the subtree. Call an internal nodeU good if at least ε

4 of the leaves
at the subtree rooted atU are good. By assumption, the fraction of good leaves is at leastε

2 . Therefore, the
fraction of good nodes among those of any fixed level and in particular thejth level is at leastε4 , since all of
them have the same number of leaves.

Claim 4 The probability thatA reaches some good nodeUj of thejth level andy ∈ F(Uj) is at least
ε(1−γ)

4e where the probability is over the choice ofy (the imageA attempts to invert) and the coin-flips ofA.

Proof : Let Uj be a good node of thej th level. Then,

Pr[ A reachesUj andy ∈ F(Uj)] =
∑

z∈F(Uj)

Pr[y = z and A reaches Uj ]

≥
∑

z∈F(Uj)

1
e2n
·

j−1∏
i=1

1
2n−i−1

≥ 2n−j+1(1− γ)
e2n

·
j−1∏
i=1

1
2n−i−1

=
(1− γ)

e

j−1∏
i=1

1
2n−i

13



Where the first inequality follows from Claim 3 and the second from Claim 2. Since there are
∏j−1

i=1 2n−i

nodes at thejth level and at least a fractionε4 of them are good, the probability that the image chosen is fully

balanced at a good node of thejth level is at leastε(1−γ)
4e . 2

Claim 5 In any good nodeUj of levelj the fraction of the good leaves at the subtree rooted inUj that have
at least one image inF(Uj) is at leastε8 .

Proof : Any pair of imagesy1 6= y2 in I(Uj) can be together in at most1/2n−j of the leaves of the subtree
rooted atUj : in any nodeU ′ along the way fromU to the leaves and for random queryh of U ′ we have
Pr[B(h, y1) = B(h, y2)] = 1/2. By Claim 2 there are at mostγ2n−j+1 images inI(Uj) that are not fully
balanced inUj . Therefore the fraction of the leaves of the subtree rooted inUj where both of their images
are fromI(Uj) \ F(Uj) is bounded by (

γ2n−j+1

2

)
· 1
2n−j

(i.e. the number of pairs of images fromI(Uj)\F(Uj) times the fraction of leaves they can appear together).
Since (

γ2n−j+1

2

)
1

2n−j
≤ 2γ22n−j = n22−

1
4
(n−j)+1 = n22−2(log n/ε+2)+1 ≤ ε2

8
,

we have that at leastε4 −
ε2

8 ≥ ε/8 of the leaves are both good and have at least one image inF(Uj). 2

Claim 6 For any good nodeUj of levelj and anyz ∈ F(Uj), given thatA reachesUj andy ∈ F(Uj), the
probability thaty = z is at least 1

e22n−j+1 where the probability is over the choicey and the coin-flips ofA.

Proof : For fixedUi andz ∈ F(Uj) we would like to bound from below the value:

Pr[A reachesUj andy = z]
Pr[A reachesUj andy ∈ F(Uj)]

. (3)

We know from the first inequality of Claim 3 that

Pr[A reachesUj andy ∈ F(Uj)] =
∑

y′∈F(Uj)

Pr[A reachesUj andy = y′]

≤ |F(Uj)| ·
e

2n

j−1∏
i=1

1
2n−i−1

≤ |I(Uj)| ·
e

2n
·

j−1∏
i=1

1
2n−i−1

≤ e · 2n−j+1

2n
·

j−1∏
i=1

1
2n−i−1

.

On the other hand, from the second inequality of Claim 3, for anyz ∈ F(U) we have that

Pr[A reachesUj andy = z] ≥ 1
e2n

j−1∏
i=1

1
2n−i−1

Therefore (3) is at least 1
e22n−j+1 . 2
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Claim 7 The probability thatA is successful is at least ε10

65e3(4n)8
where the probability is over the choice of

the imagey andA coin-flips.

Proof : Define the events: (a)A reaches a good nodeU at level j and thaty ∈ F(U) and (b) that
hj , hj+1, . . . hn−1 define a path to a good leaf that has at least one image inF(U). Call this imagez (select
arbitrarily if both images are inF(U)). If y = z thenA is successful. By Claim 6 we know that the
probability thaty = z is at least 1

e22n−j+1 . The probability that (a) occurs is at leastε(1−γ)
4e by Claim 4 and

that (b) occurs given (a) is at leastε
8 by Claim 5. Therefore the probability thatA succeeds is at least

ε(1− γ)
4e

· ε
8
· 1
e22n−j+1

= ε2 (1− γ)
32 · e3 · 2n−j+1

>
ε10

65e3(4n)8

where the last inequality follows from the fact thatj = n− 8(log n
ε + 2). 2

Note that we have consideredA successful wheny was fully balanced at levelj, without taking into
account the time it took forA to arrive at this position. However, given thaty is fully balanced at levelj, the
probability thatA had many unsuccessful candidates until it reached thejth level is small: we know thaty
is balanced atUi for all 1 ≤ i < j and thereforeA(U, y)/2n−i > 1

4 . Therefore the probability thatA had
to try more (in total) than8n candidates for thehi’s until reaching levelj is exponentially small inn. If we
bound the run time ofA by 8n2 (including the query time), then the probability of success is still at least

ε10

65e3(4n)8
− exp(−n). If ε is non-negligible, then this is non-negligible as well. This concludes the Proof of

Lemma 2 and Theorem 2 . 2

3.3 Obtaining perfect ZK arguments

We have shown a uniform reduction from the existence of a one-way permutation to the existence of
perfectly-secure computationally binding bit commitment protocols. The result holds in the non-uniform
setting as well. Therefore, applying Theorems 1 and 2 we get

Corollary 1 If any non-uniformly secure one-way permutation exists, then there exist perfect zero-
knowledge arguments for proving membership for all languages in NP.

4 Concluding remarks and possible extensions

We now review some technical and general issues arising from this work.
Probability of success:In the proof of the Binding Lemma we did not attempt to optimize the probability
of success as a function ofε and the resulting polynomial is of rather high degree. However it seems that
our method of designing algorithmA does not yield success probability that is linear inε. It is interest-
ing whether we can get the dependency to belinear in ε times some polynomial inn. This would make
the reductionlinear preservingin Luby’s [28] terminology, whereas the current one is onlypolynomial
preserving.
One-way permutations vs. functions: Where is the assumption thatf is a permutation used? First it
is needed for the Secrecy Lemma, in order to argue thatc1, c2, . . . , cn−1 yield no information abouty.
Consider the case wheref is analmostpermutation, that is all but a negligible fraction of the strings in
{0, 1}n have exactly one pre-image.

Call a leafu secureif both y0(u) andy1(u) have exactly one pre-image. IfR andS reach a secure leaf,
thenR cannot guessb with probability better than12 . Initially most leaves are secure, andδ, the fraction
of insecure leaves is negligible. However, a devious receiverR′ may bias the fraction of insecure leaves
by its queries. Letδ = δ1, δ2, . . . , δn−1 be the fractions of insecure leaves at an execution of the commit
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protocol. Suppose thatci is random. Then for any strategy ofR′ the expected value ofδi+1 is δi and
thereforeE[δn−1] = δ. From Markov’s inequality it follows thatPr[δn−1] 6= 0 is negligible. Note however
that theci’s are not quite random. Nevertheless, we can define a property similar tobalancedthat assures us
thatci is not far from being uniform in{0, 1} and thus obtain the desired security property.

As for the binding requirement, the difference between the case wheref is a permutation and an almost
permutation is thaty is not necessarily uniform inI(U), given thatA reachesU . However, by a similar
argument to the balanced property, with high probability the conditional distribution ofy is not far from
uniform inI(U).

In casef is a general one-way function the above arguments may fail miserably. For starters, most
leaves will have the property that the number of pre-imagesy0 andy1 are different. Then there is the danger
that a deviousR′ will skew the probability even further, making the guess ofb extremely easy (so that even
splitting b into b = b1 ⊕ b2 ⊕ . . . bn would be futile).
Dynamic adversaries: We point out another advantage of perfectly-secure computationally-binding bit
commitments (over computationally secure ones). Consider the following scenario which is a variant of one
proposed by Oded Goldreich (personal communication) in order to model dynamic adversaries. There aren
senders and receivers who perform a bit commitment protocol. The input bits given to the senders are drawn
according to some joint distribution on which there is some auxiliary information. The commitments are
performed separately and independently, but following the commit stage an adversary may decide (based
on the communication exchanged) to “corrupt”n/2 of the senders who provide him with all their internal
information, including the random string used in the protocol. The question is whether the remainingn/2
bits are still protected as they before. Since the bits may be related, the proper comparison should be with
an weaker adversary that does not get to see the messages exchanged during the commit stage, but can ask
to get thevalueof n/2 bits. Whatever the strong adversary can compute on then bits should be computable
by the weaker adversary (the computational power of both adversaries should be similar).

Intuitively, this should be the case, since then parties act independently. However, attempts to prove
this have been futile in case the bit commitment iscomputationally secure; the problem is in running a
simulation, since the adversary gets to see the commitmentsbeforeit decides which parties to corrupt, and
the simulation is polynomially bounded. On the other hand, for perfectly-secure bit commitment it is the
case that the remainingn/2 bits are protected information theoretically. The reason is that the messages sent
during the commit stage are independent of the actual value of the bits, so a computationally powerful simu-
lator may use the strong adversary to create a weak one (which in this case both of them are computationally
unbounded).
Other applications of interactive hashing: The technique of interactive hashing presented here were use-
ful in constructing fail-stop signatures [11] by replacing a collision-free one-way hash functions, and in
designing zero-knowledge proofs from honest-verifier zero-knowledge proofs [34, 10]. It would be interest-
ing to know if further applications of the techniques to reduction of computational complexity assumptions
are possible.

One plausible scenario is replacing collision intractable hash functions used in the work of Kilian [25]
and Micali [29] in order to reduce the communication complexity of NP arguments. Essentially, what is
needed there is a commitment to a large string whose communication complexity is much smaller than the
length of the string. Our protocol requiresn2 bits of communication in order to commit to a single bit, so it
may seem not applicable to this problem. Note however that in case we use our protocol to commit to many
bits, the queriesR sends may be shared among the bit commitments giving us amortized complexity close
to n− 1, still far from the desiredo(1).

Suppose that we give up the information-theoretic security ofS and go for computational bindingand
security (i.e. both parties are protected “only” computationally). In this case, consider the following pro-
tocol: the sender commits to a seed of a pseudo-random sequence using a computationally secure scheme
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such as [30]. The bit-wise Xor of the pseudo-random sequence and the string is still pseudo-random and
computationally protects the string. This Xored sequence is then partitioned into blocks of sizen. Each
of these blocks is then used as thex’s in our protocol of Section 3.1. I.e. the commiter computesf(x)
and replies ton− 1 successive queriesh1, h2, . . . , hn−1 with B(f(x), hi). Steps 4 and 5 are not executed,
since the commitment is really tox itself. As suggested above, the receiver’s queries are shared between
the blocks. To open the commitment the seed is revealed along with all the blocks (thex’s). This yields
amortized communication complexity for the commit phase of roughly1− 1

n per bit of theoriginal string.
Reducing the amortized communication complexity too(1) seems to be challenging.

Finally, an interesting question is whether the highly interactive nature of our protocol (n − 1 rounds)
essential?
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A Relation to recent work on bit-commitment

Bit-commitment (BC) protocols allow a Sender (Commiter) to be bound to a bit which is kept secret from
the Receiver. Later, the Sender can “open” that bit in a unique way (i.e. like a sealed envelope). Recently,
several models in which some parties arerequired to have computational power beyond polynomial-time
were investigated. It is worth while pointing out the differences between those models and the current work.

By “From Strong to Weak BC”, we call BC protocols, in which the binding is perfect, i.e. even an
infinitely-powerful Sender cannot cheat, except with negligible probability, but where the security is com-
putational, i.e. the Receiver is assumed to be polynomial-time and no such Receiver can figure out the
bit committed with non-negligible advantage (if a complexity assumption holds). The combined results of
[20, 21, 30] imply that if one-way functions exist, then there is a (Strong-to-Weak) BC which doesnot re-
quire the Sender (and of course the receiver) to do non-polynomial work, that is, it is an efficient protocol
and the underlying assumption in this case is optimal [22].

The work in [33] investigated commitments between strong and polynomial-time players where the
strong player actually needs to use its super-polynomial time power. Thus, the main issue in that paper is how
the hardness assumptions change and can be relaxed when there is a large difference in computational power
of players (rather than being polynomial-time for both players, as needed in cryptographic applications). It
is shown that unless Distributional-NP=RP, a possibly weaker assumption than the existence of one-way
functions, there is a (Strong-to-Weak) BC from a Sender with an (NP ∪ co−NP ) power to a polynomial-
time Receiver; the Sender actually spends exponential-time in order to execute the protocol. (See [27]
for definitions of hard-on-the average problems). Thus, when the Sender uses non-polynomial power this
theoretical result relaxes the assumptions in [30].

By “from Weak to Strong BC” we denote BC in which the secrecy is information-theoretic, but the
binding is computational, i.e. with high probability a polynomial-time commiter cannot change the value
of the commitment (if a complexity assumption holds). In [33] it is also shown that given any one-way
function, there is a (Weak-to-Strong) BC from a polynomial-time Sender to a (PSPACE) Receiver which
actually spends exponential-time in order to execute the protocol. The result is based on an oblivious transfer
protocols among unequal-power players from [32],

In contrast, in this paper, the protocols of both parties require only (low order) polynomial-time to exe-
cute. This is the appropriate model for cryptographic applications. We made no use of trapdoor properties,
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as BC’s and secure interactive proofs do not need decryptions of arbitrary messages, but rather being able to
display the pre-images of pre-specified messages.
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