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Abstract

Oblivious polynomial evaluation is a protocol involving two parties, a sender whose
input is a polynomial P, and a receiver whose input is a value . At the end of the
protocol the receiver learns P(«) and the sender learns nothing. We describe efficient
constructions for this protocol, which are based on new intractability assumptions that
are closely related to noisy polynomial reconstruction. Oblivious polynomial evaluation
can be used as a primitive in many applications. We describe several such applica-
tions, including protocols for private comparison of data, for mutually authenticated
key exchange based on (possibly weak) passwords, and for anonymous coupons.

1 Introduction

A secure computation protocol for a function f(-,-) allows two parties, a receiver who knows
x and a sender who knows y, to jointly compute the value of f(z,y) in a way that does
not reveal to each side more information than can be deduced from f(x,y). The fact that
for every polynomially computable function f(-,-) there exists such a (polynomially com-
putable) protocol is one of the most remarkable achievements of research in foundations of
cryptography. However, the resulting protocols are often not as efficient as one would desire,
since the number of cryptographic operations that should be performed is proportional to
the size of the circuit computing f(x,y) [59]. Even for relatively simple functions this may
be prohibitively expensive. It is therefore interesting to investigate for which functions it is
possible to come up with a protocol that does not emulate a circuit computing the function.

1.1 Oblivious Polynomial Evaluation

In the Oblivious Polynomial Evaluation (OPE) problem the input of the sender is a polyno-
mial P of degree k over some field F. The receiver can get the value P(z) for any element
x € F without learning anything else about the polynomial P and without revealing to
the sender any information about x (for the precise definition of learning and information
see Section 1.2). This problem has not been investigated so far; we find it to be a useful
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primitive. For example, as it can act as a cheap replacement for pseudo-random functions
in case only k-wise independence is needed.

Strongly polynomial overhead: The overhead of an algorithm is strongly polynomial
if it is bounded by a polynomial function of the number of data items in the input, rather
than the size of the input values (e.g. the number of bits of numerical input values).
The issue of finding protocols for oblivious polynomial evaluation whose overhead does not
depend on the field size, might be regarded as being the equivalent of searching for strongly
polynomial algorithms in combinatorial optimization (e.g. for linear programming). In the
context of cryptographic protocols we measure the overhead in terms of the number of
public key operations (i.e. operations based on trapdoor functions, or similar operations)
with a specific security parameter, where the size of the inputs to the public key operations
is linear in the security parameter. (In the context of this paper, we usually only measure
the number of invocations of a 1-out-of-2 oblivious transfer protocol.) Counting only public
key operations is justified since the overhead of public key operations depends on the length
of their inputs, and is greater by orders of magnitude than the overhead of symmetric key
operations (i.e. operations based on one-way functions).

We therefore say that a cryptographic protocol is strongly polynomial if the following
two properties hold: (1) the number of public key operations performed by the protocol is
bounded by a polynomial function of a security parameter and of the number of inputs (but
not their size), and (2) the length of the inputs to the public key operations is linear in the
security parameter. Note that the number of symmetric key operations that the protocol
performs can be polynomial in the size of its inputs.

Oblivious polynomial evaluation can be implemented using general protocols for secure
two-party computation [59]. However, as was mentioned above, these protocols operate on
a binary circuit that computes the function and are not strongly polynomial, as the number
of oblivious transfers they use is at least linear in log F, where F is the field over which
the polynomial is defined. A different construction of oblivious polynomial evaluation can
be based on using homomorphic encryption (e.g., Paillier’s encryption system [54]). That
construction, too, is not strongly polynomial, as the size of the input to the homomorphic
encryption function must be as long as the receiver’s input in the OPE protocol. In contrast,
the number of oblivious transfers used by the protocols presented in this paper does not
depend on the size of the underlying field: The length of the items transferred in the
oblivious transfer protocols is of size log | |, but they require only O(1) public key operations
per transfer. Namely, if log |F| is longer than the length of the input of the OT protocol,
then the items to be transferred in the OT protocol are encrypted using random keys, and
the corresponding keys are transferred in the actual OT protocol.

Moreover, our protocols can be readily applied to oblivious computation of g , Where
P is a polynomial, with no increase in their overhead, as described in Section 4.1. In
comparison, the binary circuits that evaluate this function must compute exponentiations
and are very large, and the overhead of the resulting secure protocols is high. (Protocols
based on homomorphic encryption, however, can compute ¢g©'®) without increasing their
overhead.) Oblivious evaluation of g% () yields k-wise independent outputs that might be
useful for distributed implementations of some public key operations.

The noisy polynomial reconstruction problem: The protocols we describe are
based on intractability assumptions related to the noisy polynomial reconstruction problem.

P(z)



While being related to other computational problems, this problem has not been used before
as an intractability assumptions in a cryptographic protocol. Section 2 describes in detail
the assumptions and the background. Interestingly, Kiayias and Yung designed different
cryptographic primitives which are based on variants of the noisy polynomial reconstruction
problem [37, 38].

Overhead independent of the degree of the polynomial: We describe a protocol
(Protocol 3.4) whose computational overhead (as measured by the number of 1-out-of-2
oblivious transfers that are computed) is independent of the degree of the polynomial.
Le., for any degree d, the number of oblivious transfers that are required for an oblivious
evaluation of a polynomial of degree d is the same as for a linear polynomial. (Of course,
the total computation overhead of the evaluation of the polynomial depends on the degree
of the polynomial, but the number of public key operations is independent of the degree.)

Applications: We envision two types of applications for oblivious polynomial eval-
uation. Omne is whenever k-wise independence can replace full independence or pseudo-
randomness (i.e. oblivious evaluation of a pseudo-random function, as in [52]).  Such
property is required, for example, for the application of constructing anonymous coupons
that enable anonymous usage of limited resources (e.g., for constructing an anonymous
complaint box). The other type of applications uses OPE for comparing information with-
out leaking it, or preserving anonymity when the receiver must compute the value of a
polynomial at a certain point. Applications of this nature include a protocol that allows
reliable and privacy preserving metering (described in Section 4.3), a method for distributed
generation of RSA keys, designed by Gilboa [27], and a protocol for private computation
of the ID3 data mining algorithms [42] (in that case the polynomial is used for a Taylor
approximation of the logarithm function).

1.2 Correctness and Security Definitions

We now get to the delicate business of defining the security of oblivious polynomial eval-
uation. OPE requires privacy for both receiver and sender. Namely, in an OPE protocol
neither party learns anything more than is defined by the OPE functionality. The strongest
way of formalizing this notion and ensuring simple composability of the protocols is through
the definition of secure two-party computation (see, e.g., Goldreich [30]) and papers on uni-
versal composability, e.g. [11, 12]). However, this definition is rather complex, while there
are many applications that do not require the full power of the general definition and could
use “non-ideal” protocols. We therefore prefer to use a relaxed definition for OPE, which
ensures privacy for both parties but does not require the sender to commit to its input (i.e.,
to commit to the polynomial P). We call this definition private computation. The defini-
tion of private computation is relevant also to the case of malicious parties (and is therefore
stronger than a definition for the semi-honest case only). It preserves the privacy of the
clients, but does not require one to simulate the joint distribution of the view of a malicious
sender and the output of an honest receiver, as is required by the general definition of secure
computation.

We claim that this relaxation is justified by efficiency considerations, in particular when
constructing specific OPE protocols rather than black-box reductions of OPE to other prim-
itives. Furthermore, the definition of private computation is standard for related primitives



such as oblivious transfer [56, 22, 51] or PIR [14, 40] (note that we present a reduction of
OPE to oblivious transfer). Note also that the definition of private computation is equiva-
lent to the definition of secure computation in the case of semi-honest parties. Furthermore,
we deal with a receiver-sender (a.k.a. client-server) scenario, where only one party, the re-
ceiver, has an output in the protocol. Therefore, the two definitions are equivalent with
respect to a malicious client, as there is no issue of simulating the joint distribution of the
client’s view and the server’s output.

The requirements of a private OPE protocol can be divided into correctness, receiver
privacy, and server privacy. Let us first define these properties independently and then
define a private OPE protocol as a protocol satisfying these definitions. In the definitions,
the running time of polynomial time algorithms is polynomial in the size of their inputs,
as well as in the log | F|, where F is the field in which the polynomial P is defined, and in
a security parameter k. (Note that the length of representations of elements in F must be
polynomial in the security parameter since otherwise the cryptographic operations might
be insecure given adversaries with poly-log|F| running time.) We don’t require in the
definitions themselves that the number of public-key operations is independent of F. To
simplify the notation we also omit any reference to auxiliary inputs.

We first define the input and output for the functionality of oblivious polynomial eval-
uation, as a two party protocol run between a receiver and a sender over a field F.

e Input

— Receiver: an input = € F.

— Sender: A polynomial P defined over F.
e Output
— Receiver: P(x).

— Sender: nothing.

Definition 1.1 (Correctness, or Functionality) At the end of the protocol the receiver
obtains the output of the OPE functionality, namely P(x).

The definition of the receiver’s privacy is simplified by the fact that the sender gets no
output. It is as follows:

Definition 1.2 (Receiver’s privacy — indistinguishability) For any probabilistic poly-
nomial time B' executing the sender’s part, for any x and z' in F, the views that B’ sees
in case the receiver’s input is x and in case the receiver’s input is ' are computationally
indistinguishable.

The definition of sender’s privacy is a bit trickier, since the receiver (or whatever machine
that is substituted for her part) obtains some information, and we want to say that the
receiver does not get more or different information than she should. We compare the
protocol to the ideal implementation. In the ideal implementation there is a trusted third
party Charlie, which gets the sender’s polynomial P and the receiver’s request x and gives
P(x) to the receiver. The privacy requirement is that the protocol does not leak to the
receiver more information than in the ideal implementation.



Definition 1.3 (Sender’s security — comparison with the ideal model) For every prob-
abilistic polynomial-time machine A’ substituting the receiver, there exists a probabilistic
polynomial-time machine A" that plays the receiver’s role in the ideal implementation, such
that the view of A" and the output of A" are computationally indistinguishable.

Definition 1.4 (Private OPE protocol) A two-party protocol satisfying Definitions 1.1, 1.2
and 1.3.

Note that the definition of receiver privacy does not preclude the sender from cheating
by using a polynomial of degree higher than the degree of P (and therefore it might not
be possible to extract from the sender a degree k polynomial.) We do not require that
the sender be committed to single polynomial, and that the receiver could verify that the
value she receives corresponds to this polynomial. Our construction allows such cheating;
however, in many applications (including the ones described in this paper) this is immaterial.

As a side note we observe that a possible approach for ensuring correctness could use
the verifiable secret sharing (VSS) schemes of Feldman and of Pedersen [24, 55], which let
the sender commit to a single polynomial P before engaging in the OPE protocol. Since
two polynomials of degree d agree in at most d locations, an OPE invocation in which the
sender lets the user evaluate a different polynomial P’ of the same degree is revealed with
probability 1 — d/|F| by a receiver that evaluates the polynomial at a random point. This
approach does not work, however, if the sender has some information about the distribution
of points in which the user might compute P.

1.3 Related Work
1.3.1 Oblivious transfer

The basic cryptographic primitive that is used by the protocols for oblivious polynomial
evaluation is oblivious transfer. The notion of 1-out-2 oblivious transfer was suggested
by Even, Goldreich and Lempel [22] as a generalization of Rabin’s “oblivious transfer”
(OT) [56]. A protocol for 1-out-of-2 OT involves a sender, which has two inputs zo and z1,
and a receiver whose input is a single bit, b € {0,1}. At the end of the protocol the receiver
learns x, and nothing about x1_3, while the sender learns nothing about b.

For a discussion of OT see Goldreich [30]. 1-out-of-N Oblivious Transfer was introduced
by Brassard, Crépeau and Robert [9, 10] under the name ANDOS (all or nothing disclosure
of secrets). They used information theoretic reductions to construct 1-out-of-N protocols
from N — 1 invocations of a 1-out-of-2 protocol (it was later shown that such reductions
must use at least ©(/NV) invocations of 1-out-of-2 OT in order to preserve the information
theoretic security [18]). Goldreich and Vainish [32] and Kilian [39] showed that oblivious
transfer enables general secure two-party computation, with no additional assumptions
(with security against semi-honest and malicious adversaries, respectively).

Constructions of oblivious transfer protocols can be based on physical assumptions,
such as the use of a noisy channel (see, e.g., [16]), and on computational assumptions.
Constructions based on computational assumptions can be divided to different categories,
according to the security definitions that they satisfy:



e OT protocols which provide security in the semi-honest model. These include basic
protocols based on the Even-Goldreich-Lempel (EGL) paradigm [22], which are based
on using a public key encryption system that has the additional property that the
distribution of ciphertexts is independent of the encryption key. In these protocols
the receiver sends two encryption keys PKy and PK;, while knowing only a single
decryption key, corresponding to PKj. The sender encrypts xg using the key PKj,
and encrypts x1 using the key PK;. The receiver then decrypts x; but cannot decrypt
x1_p. Protocols based on this paradigm include the construction suggested by Bellare
and Micali [5], and generic constructions based on the existence of trapdoor permuta-
tions. These protocols can be made secure with respect to malicious parties if we add
zero-knowledge proofs in which the parties prove that they follow the protocol. If the
zero-knowledge proofs enable extraction then the protocols are simulatable, but only
for a single invocation at a time (rather than for parallel or concurrent invocations of
the protocol).

e OT protocols which provide information-theoretic security for the sender with respect
to a corrupt receiver, and computational security for the receiver (e.g. the two round
protocols of [50, 1, 58]). Although these protocols provide information-theoretic secu-
rity, they do not enable to extract the receiver’s input. Therefore they do not enable
easy simulation of the output that is obtained by the receiver.

e Fully simulatable OT protocols, in particular for parallel or concurrent invocations.
These include the concurrent OT protocol of [25] (which assumes that the inputs
are independent), the universally composable protocols of [12], and the universally
composable committed OT of [26].

e Protocols based on the random oracle model. In this model it is possible to design
very efficient protocols based on the EGL or the Bellare-Micali paradigms. These
protocols are secure against malicious parties and fully simulatable. Their security
relies, however, on the random oracle model.

The OPE constructions described in this paper can be based on oblivious transfer protocols
from any of these categories (of course, the security depends on the security of the oblivious
transfer protocol).

Our work uses the l-out-of-N and k-out-of-IN oblivious transfer protocols described
in [51]. These protocol are based on efficient computationally secure reductions to 1-out-
of-2 oblivious transfer. A 1l-out-of-N oblivious transfer is reduced to log N invocations of
1-out-of-2 OT, and the k-out-of-N protocol is considerably more efficient than k repetitions
of 1-out-of-N oblivious transfer. Furthermore, more recent constructions [50] reduce the
amortized overhead of oblivious transfer, if multiple invocations of this protocol should be
run (as is the case in the OPE constructions). A direct implementation of 1-out-of-N OT,
e.g., by the protocols which provide information theoretic security for the sender [50, 1, 58],
is quite efficient for the receiver which has to do only O(1) work, while the sender has to
perform O(N) exponentiations.

It was recently shown how to extend oblivious transfer in the sense that two parties can
execute a large number of OTs (a number polynomial in k, where k is a security parameter
of a pseudo-random function), at the cost of running only & OTs and executing additional



invocations of symmetric cryptographic functions for every OT [35] (this is an efficient
realization of a generic construction of Beaver [3]). the security of this construction is based
on a non-standard assumption (or alternatively on the random oracle assumption), and
security against malicious parties is obtained using a cut-and-choose method that involves
running multiple invocations of the system.

In our work we measure the computational overhead by the number of OTs that are
executed by the parties. The use of this criteria makes sense since all other operations are
either arithmetic or are symmetric crypto operations, which are considerably more efficient.
It is preferable to minimize the number of OT operations even given the recent work on
extending oblivious transfer, since that construction depends on a new assumption, involves
some additional constants, and requires a cut-and-choose solution against malicious parties.
We present a protocol that uses a minimal number of OT's in the sense that this number is
independent of the size of the field and of the degree of the polynomial. We assume that
each l-out-of-2 OT operation is atomic and can accommodate an input of arbitrary size
(this is justified since the OT can be used to transfer one of two keys whose length is equal
to the security parameter, and these keys can be used to encrypt each of the two inputs,
which can be of arbitrary size).

1.3.2 Secure two-party computation

The idea of secure two-party computation was introduced by Yao [59]. His construction
enables one party, the sender, to define a function F' and enable another party, the receiver,
to compute the value of F' at a single point z, without learning anything else about F' and
without disclosing to the sender any information about x. The construction is based on
describing F' as a binary circuit, and evaluating the circuit. Its computational overhead
is composed of running an oblivious transfer protocol for every input wire of the circuit,
and computing a pseudo-random function for every gate. The communication overhead
is composed of sending a table, of size linear in the security parameter of the pseudo-
random function, for every gate. The overhead, therefore, strongly depends on the size of
the representation of F' as a binary circuit. In the case of a polynomial of degree d this
circuit should compute % and its size is O(|z|?-log|d|). In particular, the size of the circuit
depends on the size of the field over which the polynomial is defined. (It is also possible to
construct a circuit that uses an FFT approach for computing z¢. The size of this circuit,
too, depends on the size of the field over which the polynomial is defined.)

In another generic construction, Naor and Nissim [47] show that any two-party protocol
can be transformed into a secure protocol with the effect that a protocol with communication
complexity of ¢ bits is transformed to a secure protocol which performs ¢ invocations of
oblivious transfer (or SPIR) from a database of length 2¢. A simple (insecure) protocol for
oblivious polynomial evaluation has a single round and a communication overhead of log | F|
bits (the receiver simply sends z to the sender). Applying the Naor-Nissim transformation
to this protocol results in a secure protocol that executes an OT/SPIR out of a table of |F|
elements. Namely, the server constructs a table of |F| items, containing the value of P(x)
for every x € F. The receiver then reads a single entry of this table using OT or SPIR.
This protocol is definitely not strongly polynomial as its overhead is linear in |F|.



2 Intractability Assumptions

This section contains definitions of two new pseudo-randomness assumptions. They are later
used for constructing protocols for oblivious polynomial evaluation. The assumptions are
closely related to the noisy polynomial reconstruction problem, or the list decoding problem
of Reed-Solomon codes. We first describe this well-known problem, and then introduce the
pseudo-randomness assumptions.

2.1 The Noisy Polynomial Reconstruction Problem
The noisy polynomial reconstruction problem is described by the following definition:

Definition 2.1 (Polynomial reconstruction)

INPUT: Integers k and t, and n points {(x;, y;) Yy, where x;,y; € F.

OuTPUT: Any univariate polynomial P of degree at most k such that P(x;) = y; for at least
t values i € [1,n].

The noisy polynomial reconstruction problem is related to the list decoding problem,
which is motivated by coding theory and was first defined by Elias [21] (and sometimes
also termed as the bounded-distance decoding problem). The input to this problem is a
received word, and the output is a list of all code words that are within some distance from
the received word. For the case of Reed-Solomon codes the list decoding problem can be
formulated as follows:

Definition 2.2 (Polynomial list reconstruction)

INPUT: Integers k and t, and n points {(xi, y;) iy, where x;,y; € F.

OutpuT: All univariate polynomials P of degree at most k such that P(x;) = y; for at least
t values i € [1,n].

For given values of k and n, and in particular for a given message rate k/n, it is preferable
to obtain solutions for minimal values of t. The classical algorithm of Berlekamp and Massey
(see e.g. [46]) solves the polynomial reconstruction problem in polynomial time for ¢ > "T*k
(in this range there is a unique solution). Sudan [57] presented a polynomial algorithm that
works if t > v/2kn, and later Guruswami and Sudan [34] presented a polynomial algorithm
that solves the problem for ¢ > vkn, and thus improves upon the Berlekamp-Massey
algorithm for every value of the message rate k/n. (Later, Coppersmith and Sudan [15]
showed an improved noisy interpolation algorithm which removes random errors applied
to curves of the form (x,pi(z),p2(x),...,pc(x)), where pi,...,p. are polynomials. We are
interested in the case ¢ = 1, for which this algorithm is not better than the Guruswami-
Sudan algorithm.)

The “polynomial list reconstruction” problem is defined as a worst case problem re-
garding the number of polynomials that might appear in the solution list. In other words,
the definition requires that all polynomials within a given distance be listed. Goldreich et.
al. [31] have shown that for ¢ > v/kn the number of possible polynomials in the solution to
the problem is bounded by a polynomial in n. We are more interested in the problem of
finding just a single polynomial that fits ¢ or more of the given n points, since our construc-
tions use random instances for which it holds with high probability that the corresponding
noisy polynomial reconstruction problem has a single solution.



We note that given an input to a noisy polynomial reconstruction problem it is possible
to randomize it to obtain an input that corresponds to a random polynomial. Specifically,
for parameters k and ¢ and given n points {(z;,y;)}"; the randomization is achieved by
choosing a random polynomial R of degree k and constructing a new instance of the problem
with input {(x;, y; + R(z;))}7,. While this is by no means a reduction from the worst case
problem to the average case (since it only randomizes the polynomial but not the noise), it
might hint that solving the problem in the average case might not be much simpler than
solving it in the worst case.

2.2 The Intractability Assumptions — Pseudo-randomness

We present two new intractability assumptions. The first assumption is equivalent to a
conjecture that given a randomly chosen input to the polynomial list reconstruction problem
the value of the polynomial at x = 0 is pseudo-random. The second assumption states that
the value P(0) is pseudo-random even given some additional hints about the location of the
values of P. Section 3 describes OPE protocols that are based on the assumptions.

The intractability assumptions depend on the following parameters:

e F, the field over which the polynomial is defined.
e k, the degree of the hidden polynomial.

e 1, the number of correct values of the polynomial, which is also the number of queries
made in the oblivious evaluation protocol. (This parameter corresponds to “t” in the
definition of the polynomial list reconstruction problem, Definition 2.2. We change
the notation to agree with the notation used later in this paper.)

e m, the expansion ratio (namely, the ratio between the total number of points and n).
(This parameter corresponds to n/t in Definition 2.2.)

Setting precise parameter sizes to satisfy the intractability assumptions is beyond the scope
of this paper, and we therefore do not make any precise recommendations with regard to
parameter sizes.

The first intractability assumption

This intractability assumption simply assumes that given an input to the polynomial list
reconstruction problem, with all z; being distinct, the value of the polynomial at x = 0 is
pseudo-random. lL.e.; it is infeasible to distinguish between two such inputs corresponding
to polynomials with different values at * = 0. To define this more formally, we use the
following notation:

Let Alri’,?n denote the probability distribution of sets generated in the following way:

1. Pick a random polynomial P over F, of degree at most k, for which it holds that
P(0) = a.

2. Generate nm random values x1,..., %y, in F subject to the constraint that all z;
values are distinct and different from 0.



3. Choose a random subset S of n different indices in [1,nm], and set y; = P(z;) for all
1 € S. For every ¢ € S set y; to be a random value in F.

4. Output the set {(x;, y;)}717%.

The pseudo-randomness assumption is based on the notion of computationally indistin-
guishability, as defined by Goldreich in [29, page 104]. It sets the size of the parameters to be
polynomial in a security parameter £, and requires that the resulting probability ensembles
are computationally indistinguishable.

Assumption 1 (First pseudo-randomness assumption) Let ¢ be a security parame-
ter, and let n(f),m(£),k(¢), F(¢) be polynomially bounded functions that define the para-
meters n,m,k and the size in bits of the representation of an element in the field F. Let
A,’j”%l and Aﬁ’,% be random variables that are chosen according to the distributions Aﬁﬁ‘n and

Aﬁ:%, respectively. Then it holds that for every o,/ € F the probability ensembles {Aﬁ:%
and {AZ%} are computationally indistinguishable for adversaries whose running time is

polynomial in the security parameter L.

Pseudo-randomness Assumption 1 is related to the assumption that polynomial list
reconstruction is hard. Assumption 1 is stronger, since in addition to assuming that recon-
structing the polynomial is hard, it assumes that all z; are distinct and that it is even hard
to learn information about the value of the polynomial at 0.

Assumption 1 is weaker than an assumption that states that it is hard to distinguish
between any probability ensemble {Aflf‘n} and a probability ensemble that generates sets
with the same number of random (z,y) values. If the latter assumption is true then so is
Assumption 1. (Assume that Assumption 1 does not hold. Then there is a distinguisher such
that the probability of its output being 1 given an input from {Aﬁfﬁn} has a non-negligible
difference from the probability of it having a 1 output given an input from {Aﬁ%} The
probability of a 1 output given an input from the “random” ensemble must have a non-
negligible difference from at least one of these two probabilities.) The converse might not
be true. It might be that it is easy to distinguish between an input from the “random”
ensemble and an input from {Aflﬁ“n}, but yet for all « values, the inputs from the different
{Aﬁl%} ensembles are indistinguishable.

The pseudo-randomness assumption is of course false for any choice of parameters for
which the polynomial list reconstruction problem is easy, e.g. when m < n/k. (This
corresponds to the number of correct points, n, being more than the square root of the
total number of points, nm, times the degree of polynomial, k. This equation therefore
agrees with the threshold for which the noisy polynomial problem is easy.) In the other
direction, it is an open problem to find a reduction from the polynomial list reconstruction
to the assumption.

The second intractability assumption

The second assumption states that given n sets with m points in every set, such that
a polynomial P agrees with at least one point in each set, the value of P(0) is pseudo-
random. Namely, the total number of points, and the number of correct points, are as in
Pseudo-randomness Assumption 1, but in addition there is a partition into sets and it is
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promised that the polynomial P agrees with at least one point in each set. It is hard to
come up with a reduction to this assumption from Pseudo-randomness Assumption 1 since
the reduction must map each of the n points of P into a different set. The new assumption
seems stronger than Pseudo-randomness Assumption 1 since the problem is easier. Namely,
the adversary is given an additional hint — the partition into sets containing at least one
correct value of the polynomial.

The definition of the assumption uses the following notation.

Let C’ﬁ:% denote the probability distribution of sets generated in the following way:

1. Pick a random polynomial P over F, of degree at most k, for which it holds that
P(0) = a.

2. Generate nm random values x1,..., Ty, in F subject to the constraint that all x;
values are distinct and different from 0.

3. Choose a random subset S of n different indices in [1,nm], and set y; = P(z;) for all
1 € S. For every ¢ € S set y; to be a random value in F.

4. Partition the nm (x;, y;) pairs to n random subsets subject to the following constraints:

e The subsets are disjoint.

e Each subset contains exactly one pair whose index is in S (and therefore for this
pair it holds that y; = P(z;)).

e Each subset contains exactly m—1 pairs whose indices are not in S (and therefore
have a random y; value).

Output the resulting subsets.

The intractability assumption says that for any a, o’ the two probability ensembles
{Chey, {Cﬁ:% } are computationally indistinguishable. It depends on the parameters F, k, m,
and n.

Assumption 2 (Second pseudo-randomness assumption) Let ¢ be a security para-
meter, and let n(€),m({),k(¢), F(¢) be polynomially bounded functions that define the pa-
rameters n,m,k and the size in bits of a representation of an element in the field F. Let
Cﬁzf‘n and Cﬁ:?‘n’ be random variables that are chosen according to the distributions C’ﬁ:f‘n and
Cko" respectively. Then it holds that for every a, o/ € F the probability ensembles {Cﬁ:‘;‘n

n,m?’

and {C’n“%} are computationally indistinguishable.

As with the Assumption 1 there is an easy reduction from the problem of breaking
this pseudo-randomness assumption to the noisy polynomial reconstruction problem. In
addition, if Pseudo-randomness Assumption 1 does not hold in the worst case, then Pseudo-
randomness Assumption 2 does not hold in the worst case (since any input for the latter
can be transformed to an input for the first assumption by simply ignoring the partition
into subsets). This reduction is also true in the average case: consider all sets generated
by the distributions Aflﬁ“n and Cﬁ:,‘;ﬁl subject to the constraint that no more than n points

in a set agree with the polynomial P (the probability that this property does not hold for
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a specific set is at most n(m — 1)/|F|, which we consider to be negligible). Denote the

resulting collections of sets as Aﬁfn and C’,’j?‘n Then each of the sets in flfl?n is mapped to

the same number of sets in C,’f;?‘m and no two sets in Aﬁ:‘f‘n are mapped to the same set in

éﬁz% Now, given a random set in C’f{:?fl, removing the partition into subsets results in a set
in A'fLO‘m Therefore, this procedure has the same probability of hitting any set in Aﬁ%

It is an interesting open problem to provide a reduction to Pseudo-randomness As-
sumption 2 from Pseudo-randomness Assumption 1, or from the polynomial reconstruction
problem. The problem with designing such a reduction is that its output should comply
with the input distribution of Pseudo-randomness Assumption 2, namely in each subset

there should be (with high probability) a single value of the polynomial P.

A remark: The pseudo-randomness assumption that was used in an earlier version of this
work [49] was broken by Bleinchenbacher and Nguyen [7] and by Boneh [8]. The assumption
was similar to Pseudo-randomness Assumption 2, but with the additional requirement that
in each subset of the sets generated by Cff:f‘n all the points have the same x coordinate. This
property enables to reduce this problem to an instance of the lattice shortest vector problem,
and solve it using the LLL algorithm [41]. We remark that it is unknown how to employ
this attack against Pseudo-randomness Assumption 2. Furthermore, the overhead of the
oblivious evaluation scheme that is based on Pseudo-randomness Assumption 2 is not

greater than that of the scheme that is based on the broken assumption.

3 Protocols for Oblivious Polynomial Evaluation

Basic protocols: This section describes protocols for oblivious evaluation of polynomials.
We first describe a generic OPE protocol (Protocol 3.1), and then describe two instantiations
of the generic protocol using each of the two pseudo-randomness assumptions (Protocols 3.2
and 3.3, respectively). These protocols provide privacy against semi-honest or malicious
senders, and against semi-honest receivers. (Semi-honest parties follow the operation that
they should take according to the protocol, but might try to deduce more information
from the data they learn in the execution of the protocol. Malicious parties can behave
arbitrarily.)

The protocols ensure that a malicious receiver learns at most a single linear equation of
the coefficients of the polynomial, but this equation might not correspond to a legitimate
value of the polynomial. We show that if the polynomial P that is evaluated is linear then
the protocols are secure even against malicious receivers, since the linear equation always
corresponds to a value of the polynomial.

Security against malicious receivers, and improved efficiency: We then describe
Protocol 3.4 which is secure against malicious receivers. Furthermore, Protocol 3.4 (al-
though a little more complicated conceptually) has computational overhead which is better
than that of the previous protocols: The number of oblivious transfers is independent of
the degree of the polynomial P and is equal to the number of oblivious transfers that are
required in the case of a linear polynomial.
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3.1 A Generic Protocol
All the protocols involve a receiver A and a sender B and have the following specifications:
e Input:

— Sender: a polynomial P(y) = ijo iy of degree dp in the field F. (To simplify
the notation we denote by y the input to P.)

— Receiver: a value a € F.
e Output:
— Sender: nothing.
— Receiver: P(a).
e Protocol security parameters: m, k, which are discussed below.

At the end of the protocol the parties learn nothing but their specified outputs. The generic
protocol (Protocol 3.1) is described in Figure 1. It is based on the sender hiding P in a
bivariate polynomial, and running oblivious transfer protocols with the receiver to reveal
to her just enough information to enable the computation of P(«). (In this respect, the
protocol is somewhat similar to the instance hiding construction of [4, 43].)

Protocol 3.1 (A generic protocol for oblivious polynomial evaluation)

1. The sender hides P in a bivariate polynomial: (see Figure 2) The sender generates
a random masking polynomial P,(x) of degree d, s.t. P,(0) = 0. Namely P,(z) =
2?21 a;x'. The parameter d equals the degree of P multiplied by the security parameter
k (e, d=k-dp).

The sender then defines a bivariate polynomial
d ) dp )
Qz,y) = Po(x) + P(y) = > _aix® + > biy/
i=1 i=0

for which it holds that Yy Q(0,y) = P(y).

2. The receiver hides « in a univariate polynomial: (see Figure 3) The receiver chooses
a random polynomial S of degree k, such that S(0) = «. The receiver’s plan is to
use the uniwvariate polynomial R(x) = Q(x,S(x)) in order to learn P(a): it holds that
R(0) = Q(0,5(0)) = P(S(0)) = P(«) and, therefore, if the receiver is able to interpolate
R she can learn R(0) = P(a). The degree of R is dr =d =k -dp.

3. The receiver learns points of R: The receiver learns dr + 1 walues of the form
(@, R(x;)).

4. The receiver computes P(«): The receiver uses the values of R that it learned to inter-
polate R(0) = P(«).

Figure 1: A generic protocol for oblivious polynomial evaluation
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Figure 2: The polynomial P embedded in the bivariate polynomial @ s.t. Q(0,y) = P(y).

Figure 3: The polynomial S defines a polynomial R s.t. R(0) = Q(0,5(0)) = Q(0,a) =
P(a).

Note that the protocol uses a polynomial Q(x,y) which is defined by d+ dp + 1 coefficients
only, whereas a random bivariate polynomial of the same degrees is defined by (d+1)(dp+1)
coeflicients.

The only step that has to be further specified is Step 3, in which the receiver learns
dr + 1 values of R. This is the only step that involves interaction between the two parties,
and as such determines the overhead of the protocol. This step can be based on any of
the pseudo-randomness assumptions. Below are descriptions of two protocols for oblivious
polynomial computation in which Step 3 is based on each of the two pseudo-randomness
assumptions.

3.2 Detailed Protocols
This section describes instantiations of Protocol 3.1 based on the two pseudo-randomness
assumptions.

3.2.1 A protocol based on Pseudo-randomness Assumption 1

The first instantiation employs an n-out-of-N oblivious transfer protocol (see e.g. [51]) to
let the receiver learn n values of R while hiding these values from the sender. (See Figure 4.)

Protocol 3.2 (Oblivious polynomial evaluation based on assumption 1) The pro-
tocol is the generic protocol (Protocol 3.1), where the third step is run as follows:
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Figure 4: The receiver uses n-out-of-IN OT to learn n values of R hidden between IV values.

o The receiver setsn =dr+1=d+1=kdp+1 and chooses N = nm distinct random
values x1, ..., oy € F, all different from 0.

o The receiver chooses a random set T of n indices 1 < i1,49,...,1, < N. She then
defines N wvalues y;, for 1 <i < N. The value y; is defined as S(x;) if i is in T, and
is a random wvalue if F otherwise.

e The receiver sends the N points {(x;,y;)}., to the sender.

o The receiver and sender execute an n-out-of-IN oblivious transfer protocol, for the N
values Q(z1,y1),...,Q(xN,yn). (The receiver chooses to learn {Q(x;,y;) bier-)

The correctness of the protocol is based on observing that the receiver can learn dgr + 1
values of the polynomial R, and can, therefore, interpolate R and compute R(0) = P(«).
We prove the security of the protocol in Section 3.3 below.

3.2.2 A protocol based on pseudo-randomness Assumption 2

The second protocol is based on using n sets of points, such that each set contains a point
of the polynomial R. The receiver runs an independent oblivious transfer protocol for each
set, in which it learns a value of R.

Protocol 3.3 (Oblivious polynomial evaluation based on assumption 2) The pro-
tocol is the generic protocol (Protocol 8.1), where the third step is run as follows:

o The receiver sets n = dgr + 1 = kdp + 1, defines N = nm and chooses N distinct
random values x1, ..., xn € F, all different from 0.

o The receiver chooses at random a set T of n indices 1 < 41,40, ...,i, < N, subject to
the constraint that (j —1)m+1 <i; < jm for1 <j <n.

e The receiver defines N wvalues y;, for 1 < i < N. The value y; is defined as S(x;) if i
is in T, and is random otherwise.

e The receiver partitions the N pairs {(z;,y;)}Y, into n subsets Bi,...,B,, where
subset Bj; contains the m pairs indexed (j — 1)m + 1 to jm. This means that each
subset B; contains exactly one pair from T.
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e The receiver sends the n subsets B,..., B, to the sender.

o The receiver and sender execute n protocols of 1-out-of-m oblivious transfer, one for
each subset. The protocol for subset B; enables the receiver to learn one of the values
Q(xi,v;) for the m points (x;,v;) in Bj. (The receiver should choose to learn Q(z;,y;)
for which y; = P(x;).)

3.2.3 Properties of the protocols

Correctness: It is straightforward to verify that both protocols enable the receiver to
obtain any value P(«) she desires. She can do this by choosing a polynomial S for which
S(0) = a, learning dg + 1 values of R, and interpolating R(0) = P(«).

Complexity: The main overhead of each the protocols, in terms of both computation and
communication, is the overhead of the oblivious transfer stage, and depends on the degree
of P and on the security parameters k£ and m. Namely, the overhead of each protocol is
that of running the following primitives:

e Protocol 3.2 (based on Assumption 1): running a single invocation of (kdp + 1)-out-
of-[(kdp + 1) - m] oblivious transfer.

e Protocol 3.3 (based on Assumption 2): running (kdp + 1) invocations of 1-out-of-m
oblivious transfer.

The actual overhead of the protocol depends on the value that is set to the parameter
m, as a function of k and dp, in order for the relevant security assumption to hold (this
value might be different in each of the protocols). It might seem that Protocol 3.3, which
uses (kdp+1) invocations of 1-out-of-m oblivious transfer, is always inferior to Protocol 3.2,
which uses a single invocation of (kdp + 1)-out-of-[(kdp + 1) - m] oblivious transfer. Also,
the fact that in Protocol 3.3 each subset is known to contain a value of the polynomial S
might make the task of attacking the receiver easier, and require the use of larger parameter
m to ensure the security of the protocol. We describe both protocols since the choice of
parameters k and m might be different in the two cases and result in Protocol 3.3 being the
more efficient. Also, recent work on extending oblivious transfer [35] leads to more efficient
implementation of multiple invocations of OT.

We note that the multiple invocations of the oblivious transfer protocol in Protocol 3.3
can be run in parallel. The protocol is secure if the specific oblivious transfer protocol
which is used can be securely run in parallel with respect to the relevant adversary (i.e.,
with respect to either semi-honest or malicious adversaries).

3.2.4 A note on evaluating multiple polynomials with the same receiver input

The OPE protocols have a rather handy property, a single invocation of a protocol can
be used to let the receiver compute the values of several polynomials at the same point x,
with the same overhead (in terms of the number of oblivious transfers) as computing the
value of a single polynomial. This can be done since the choices of the receiver in the OT
protocols depends on her input x alone, and this input is the same in all invocations of the
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OPE protocol. The parallel invocation is done by the parties running a protocol in which
the sender’s input is n polynomials (P, ..., P,), the receiver’s input is z, and the receiver’s
output is (P (z),..., Py(x)). The sender defines appropriate polynomials (Q1,...,Q,) and
in every step in which the sender transfers a single value Q(i, 7) in the original protocol, he
transfers n values (Q1(7,7),...,Qn(4,j)) in the multi-polynomial protocol. Note that this
variant ensures that the receiver computes the values of all the polynomials at the same
point x. This variant of the protocol is used in Protocol 3.4 in Section 3.4, and is also used
in [27] for distributed generation of RSA keys.

3.3 Security Analysis for Semi-honest Behavior

In order to prove the protocol to be secure it has to be shown that the privacy of both
receiver and sender is preserved. These properties can be reduced to the pseudo-randomness
assumptions (which are only needed to show the receiver’s privacy), and to the security of
the oblivious transfer protocols.

3.3.1 The receiver’s privacy

The privacy goal of the receiver is to hide the value o = S(0) from the sender. We only
need to show this for a semi-honest sender, since the protocol includes a single message from
the receiver to the sender, which does not depend on the operation of the sender (and our
security definition does not require to simulate the output of the receiver together with the
view of the sender). This property is guaranteed by the pseudo-randomness assumptions
stated in Section 2.2. We prove this result for Protocol 3.2, based on Pseudo-randomness
Assumption 1. The proof for Protocol 3.3 is identical and is based on Pseudo-randomness
Assumption 2.

Theorem 3.1 If the sender can distinguish between two different inputs of the receiver in
Protocol 3.2, then either the oblivious transfer protocol does not provide privacy for the
receiver, or Pseudo-randomness Assumption 1 (Definition 1) does not hold (namely, there
is a distinguisher between the two probability ensembles stated in the assumption).

Proof: The sender’s view in the protocol contains the set of points that is given to him by
the receiver, and the interaction between the two parties in the oblivious transfer protocol.
Each instance of the sender’s view therefore contains nm points, and in addition his view in
an oblivious transfer protocol in which the receiver chooses to learn values associated with
a set of n of the nm points.

Let ag, a1 be any two values in F. Consider the following probability distributions of
instances of the sender’s view in the protocol.

e Sor,: The set of nm points is chosen randomly from Aﬁ%’. The interaction of the

receiver in the oblivious transfer protocol corresponds to her choosing to learn the n
correct points of the polynomial among the nm points.

e Sor1: Similar to Sor o with the only difference being that the set of nm points is
chosen randomly from Afl‘f;}
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m
receiver in the oblivious transfer protocol corresponds to her choosing to learn n points

sampled at random from the set of nm points.

e Sgro: The set of nm points is chosen randomly from Aﬁ”o‘o. The interaction of the

e Sr1: Similar to Sgo, with the only difference being that the set of mm points is
chosen randomly from Aﬁ%

We would like to show that no algorithm D, o, Tun by the sender can distinguish between
an input sampled from Soro and an input sampled from Sor ;. Define Doro as the
probability that the output of Dy, o, is 1 given an input sampled from So7. Similarly,
define Dot 1, Dro and Dp 1. It holds that

|Dot,0 — Dor,1| < |[Doro — Drol + |Dro — Dr,1| + |Dr1 — Dot

Assume to the contrary that [Doro — Dor,1| is non-negligible. In this case either the
value |Dor,o— Dpro|+|Dr,1— Dor,1| is non-negligible (option 1), or the value |[Dgo— Dp.1]
is non-negligible (option 2).

If option 1 occurs, then either |[Dgo— Doro| or |Dr1 — Dor,1| is non-negligible. In this
case the oblivious transfer protocol does not protect the receiver’s privacy and the sender
can distinguish between different inputs of the receiver. (It is possible to show a reduction
that uses the fact that, e.g., |Dro—Dor| is non-negligible, to distinguish between different
inputs of the receiver.)

If option 2 occurs then we have a distinguisher between inputs sampled from Af;:?,;{) and
from Aﬁ:%. The distinguisher operates by receiving its input, adding to it an interaction
for the oblivious transfer protocol in which the receiver learns a random set of n values,
and forwarding the combined input to Dy a,. Since |Dro — Dpg1| is non-negligible there
will be a non-negligible difference between the output being 1 given inputs from the two
distributions. O

3.3.2 The sender’s privacy - the case of a semi-honest receiver

We first assume a semi-honest receiver whose operation follows the behavior that it should
take according to the protocol. It is a good model for the case of a truthful party that
executes the protocol, but at a later stage falls prey to an adversary that might examine
the information learned during the protocol execution. The proof for the case of a semi-
honest, as we show in Section 3.4, is also sufficient for the case of linear polynomials, even
if the receiver is malicious). Later we show how to provide privacy in the general case of
malicious receivers.

The proof that the sender’s privacy is preserved against semi-honest receivers is identical
for all protocols. The sender hides the polynomial P in a bivariate polynomial () that
is generated by adding a random polynomial of z, and the receiver obtains a system of
dr+1=d+1 = kdp—+1 values of @, using different x values. Lemma 3.2 and Corollary 3.1
state that the receiver learns only a single linear combination of the coefficients of P. In
particular this implies that a semi-honest receiver learns only a single value of the polynomial
P (since following the protocol ensures that she learns linear combinations corresponding
to values of Q).
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Lemma 3.2 Let Q(x,y) be a bivariate polynomial of the form

d dp
Q(x,y) = Pu(z) + P(y) = > _aiz" + > biy/".
i=1 i=0

Then for any d+ 1 values x1, ..., 2441, which are distinct and different from 0, and for
any d+1 values yi, ..., Y441, the distribution of {Q(x;, yj)}?ﬂ is either independent of the
coefficients by, . .., ba,, or depends on a single linear equation of these coefficients.

Proof: The values of Q(z;,y;) are equations of the form Q(z;,y;) = zglzl aj - (z;)" +
Z?ﬁo b; - (yj)’ They correspond, therefore, to a set of d+ 1 equations of the following form,
with different x;’s.

_ d a

(le)d (le)d ! o Ty yillp | .d

($j2)d ($j2)d_1 R ijP e 1 : Q51 Y1)
ay . Q(SUjQ,ij)
bap B

’ Q(xdeA yYjap )
d d—
($jd+1) ($jd+1) !

4 dp . i
Ljarr Yjars 1 bo

A

It should be shown that regardless of the values of the points (z;,y;), the rows of the matrix
A do not span more than a single linear combination of the vectors

{e;=1(0,...,0,1,0,...,0) | d+1<i<d+dp+1}.
\—Y—/
1

The matrix A has d + dp + 1 columns and d + 1 rows. Consider the matrix A’ with
d+ dp + 1 rows that is formed by taking the first d rows of A and appending to them the
vectors €qy1,---,€dyd,+1- The determinant of A’ is different from 0, since its upper-left
sub-matrix of size d x d is a van der Monde matrix, and the lower-right sub-matrix of size
(dp+1) x (dp + 1) is a identity matrix. Therefore, the first d rows of A do not span any of
€d+1;- -5 €d+d,+1, and the matrix A that has just a single additional row cannot span more
than a single linear combination of these vectors. O

Corollary 3.1 A semi-honest receiver learns only a single value of the polynomial P.

3.4 Security Against Malicious Behavior

As described in Section 3.3.1, we should only consider a semi-honest server since the only
message sent by the receiver is sent before it receives any information from the server. On
the other hand, a malicious adversary that plays the receiver’s role might run the protocol
and ask to learn values Q(z,y) that do not correspond to a polynomial S(x), i.e., not of the
form Q(z,S(x)). By doing so it might learn a linear combination of the coefficients of P
which does not correspond to any value of P(z). Lemma 3.2 shows that the adversary can
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only learn a single such linear combination. This might be sufficient for some applications,
but to conform to the “ideal model” security definition, or, in general, to security against
malicious behavior, the protocol must limit the information that the receiver can learn to
a linear combination corresponding to a value of the polynomial P. This is achieved by
Protocol 3.4 that is described below.

Improved efficiency: Another advantage of Protocol 3.4 is that its computational over-
head, as measured by the number of oblivious transfers that are executed, is independent
of the degree of P, and is equal to the overhead of Protocols 3.2 and 3.3 for the case of a
linear polynomial P.

We first note that if the polynomial P is linear, then Protocols 3.1, 3.2, and 3.3 allow
the receiver to learn only a single value of P and no other information about the coefficients
(regardless of whether the receiver is malicious or not). We prove this for Protocol 3.2.

Lemma 3.3 When P is linear, the only information that the receiver can learn in Proto-
col 3.2 is a single value of P(-).

Proof: Denote P(z) as P(x) = bjz + by. Theorem 3.2 implies that the receiver can only
learn a single linear combination of the form by - y1 + by - 79, where the receiver knows ; and
v0- If 79 # 0 then this is equivalent to the receiver learning P(y1/v0) = b1 - (71/70) + bo.
We next claim that the adversary cannot learn any combination in which the coefficient
~o is 0. Consider the matrix A used in the proof of Theorem 3.2. The receiver can learn
the scalar multiplication of the coefficient vector by a linear combination of the rows of this
matrix. In the case of a linear polynomial P, the matrix has d+ 1 rows and d 4 2 columns,
where the last two columns correspond to the coefficients b; and by of P. Note that the
(d+ 1) x (d + 1) matrix that is composed of the first d columns together with the last
column, is a van-der-Monde matrix. Therefore no linear combination of the d + 1 rows of
the original matrix can generate the row (0,...,0,1,0), which corresponds to the receiver
learning a linear combination by - 71 + bg - 7o in which the coefficient g is 0. O

Using linearization to combat malicious receivers: Given Lemma 3.3 the major
tool we use is a reduction from the OPE of a polynomial of degree z to z OPEs of linear
polynomials, due to Gilboa [28]. The reduction is stated in the following lemma, which is
proven at the end of this section.

Lemma 3.4 [28] For every polynomial P of degree z, there exist z linear polynomials
Py, ..., P, such that an OPE of P can be reduced to a parallel execution of an OPE of
each of Py, ..., P,, where all the linear polynomials are evaluated at the same point.

We first describe Protocol 3.4 that uses this reduction to provide security against a
malicious receiver. We then show that the privacy of the server is preserved and prove the
lemma. Protocol 3.4 itself ensures that the receiver evaluates all linear polynomials at the
same point. Furthermore, the overhead, in terms of oblivious transfers, is the same as that
of a single OPE of a linear polynomial, since the choices of the receiver in the oblivious
transfer invocations in all OPEs are the same, and therefore it is possible to use parallel
executions of OPE as described in Section 3.2.4.
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Protocol 3.4 (Oblivious polynomial evaluation secure against malicious receivers)
The sender’s input is P and the receiver’s input is a polynomial oc. The protocol is composed
of the following steps:

1. The sender generates the dp linear polynomials Py, ..., Py, that are used for reducing
the OPE of the polynomial P to dp OPFEs of linear polynomials, by the method of
Lemma 3.4.

2. The parties execute dp instances of OPE in which the receiver evaluates the linear

polynomials Py, ..., Py, at the point o, under the following constraints:

o The sender generates independent masking polynomials P,;, 1 < ¢ < dp, and
consequently the resulting bivariate polynomials Qi(z,y) = Py i(x) + P;(y), one
for each of the dp OPEs. (Step 1 of Protocol 3.1.)

e The receiver generates a single polynomial S for use in all the OPEs (step 2 of
Protocol 3.1). This step defines dp polynomials Ry (z) = Q1(x, S(x)), ..., Rap(z) =
Qap(z,S(x)), such that for each i it holds that R;(0) = Pi(«).

o The receiver learns dr + 1 tuples of the form (xj, Ri(xj), ..., Rq,(xj)). These
values enable it to interpolate Ri(cv), ..., Rq,(a) (Steps 8 and 4 of Protocol 3.1).
The implementation of this step is done by executing the same number of obliv-
tous transfers as is required for a single OPFE of a linear polynomial. In each
OPE the sender sends to the receiver dp wvalues of the polynomials, namely
(j, Ri(xj), ..., Rap(xj)), instead of a single value (xj, R(xj)).

3. The receiver uses Pi(a), ..., Py, (a) to compute P(a) by the method of Lemma 3.4.

It follows from Lemma 3.4 and from the correctness of Protocol 3.1 that this protocol
is correct. Namely, that it enables the receiver to compute P(«) for every value a. As for
efficiency, we measure the computation overhead by the number of oblivious transfers that
are executed. The protocol requires the same number of oblivious transfers as is required
by an OPE of a linear polynomial, regardless of the degree dp.! It is therefore more efficient
computationally than a direct OPE of the dp degree polynomial P. The communication
overhead is about dp + 1 times larger than that of the OPE of a linear polynomial.

Theorem 3.5 Protocol 3.4 is secure against malicious behavior

Proof: The receiver’s privacy is an immediate corollary of the receiver’s privacy in the
linear OPE protocol, since the information that the receiver sends is the same as in a single
OPE protocol where it asks to learn the value at « of a linear polynomial. The sender’s
privacy follows from Lemma 3.4 and from the sender’s privacy (against malicious receivers)
in the OPE that is used to evaluate the linear polynomials. O
Proof of Lemma 3.4: The lemma follows from the following three claims.

'The length of the inputs of the oblivious transfer protocols is likely to be larger than the security
parameter. This fact does not increase the number of oblivious transfers: The sender encrypts the long
inputs with random keys, uses oblivious transfer to let the receiver learn one of the keys, and sends all
encrypted inputs to the receiver. The receiver then uses the key to decrypt one of the inputs.
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Claim 3.1 For every polynomial P of degree z there exist z linear polynomials Py,. .., P,,
such that given Py(«),..., P.(«) it is possible to compute the value of P(«).

Proof of Claim 3.1: Denote the polynomial P as P(z) = Y7, b;x?, where z denotes the
degree of the polynomial. The Horner representation of this polynomial is the following:

P(z) = (((bsx+bs1) -z +by2)-z)+---+ b

The inner-most linear polynomial of the Horner representation is Q.(z) = b,z + b,_1.
Define the linear polynomial P,(z) = b,z + b,—1 — S;,, where s, is a random value chosen
by the server. Of course, it holds that P,(z) + s, = Q.(z). Suppose that the client learns
the value P,(«a) (say, by executing an OPE). Following this step, the client and server have
two random shares, P,(«) and s, that sum up to @,(«). Now, the inner-most polynomial
of degree two is the following:

Q.1(x) =Qx(x) x+b,o=(P(x)+8,) - x+byo=P(x) z+s,-x+by_g
Define P,_1(x) = s, -2+ b,_92 — s,—1, where s,_1 is randomly chosen by the server. Then,
Qz—l(a) = Pz(a) e Pz—l(a) + Sz—1.

Suppose now that the client learns P,_j(«) (by executing an OPE). Now the parties
know two random shares that sum up to @._1(a): The client can compute the share
P,(a) -+ P,_1(«), and the server knows s,_.

In the general case, the inner polynomial of degree z — i can be represented:

Qi(z) = Qit1(z) 7 +bi
= Py(x) 2" "+ Pq(z) - 2 o+ Pa(2) w4 si1 v+ b

The server chooses a random value s; and defines the linear polynomial P;(x) = s;41 -« +
bi_1 — s;. It now holds that (P,(a)-a* "+ P, 1(a)-o* 1 +...+ Pyq(a)-a+ Pi(a)) and
s; are two random shares, which can be computed by the client and the server respectively,
and which sum up to Q;(«). This definition is used up to Py(z); for P;(z), the server defines
Pi(x) = sg - x + by (without any random value my).

We get that Q1(z) = P(z), and therefore

P(a) = Pa) &'+ P,_i(a)-a" 2+ -+ Pi(a). (1)

Claim 3.2 The computation of the z linear polynomials of Claim 8.4 can be done by z
OPEs that are executed in parallel.

Proof of Claim 3.2: Note that the polynomials P, ..., P, do not depend on «. There-
fore, the server can define them in advance (by defining the values so,...,s,). This en-
ables the parties to execute z parallel invocations of OPE, in which the client computes
Pi(a),...,P.,(a). At the end of this parallelized stage, the client is able to compute P(«)
using Equation 1.

It follows that for every a € F, the client can compute P(«) upon learning P; (), ..., P.(«a).
If the parties use the OPE protocols described in this paper, then the z + 1 OPEs can be
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implemented with the client sending the same message in all invocations: the client queries
using the same information as in a single OPE of a linear polynomial at the point «, and
the server responds with the relevant answer for each of the z polynomials.

In order to prove that the only information about P that can be computed given
Pi(a),...,P.(«a) is P(a) we use the following claim:

Claim 3.3 Given P(«) it is possible to simulate the client’s output in the z invocations
of the OPE protocols. (Namely, The only information about P that can be computed given
Pi(a),...,P.(a) is P(a).)

Proof of Claim 3.3: To prove the claim we show that for every (P,«a), the vector
(P(a), ..., P,(a)) is uniformly distributed in F*~! given that (ss,...,s.) are uniformly
distributed in F=~1,

For every 2 < i < z, observe that we can write P;(a) = C;(P, «, Sit1,...,S2) — Si, where
Ci(P,a, Sit1,...,5,) is a function of the coefficients of P, of «, and of s;11,...,s,. The
claim is proved by induction, showing that P;(«), ..., P,(«) is random, with i going from z

down to 2. The base case, i = z is clear. In every step, we observe that s; is used to define
P;(a) but is not involved in defining P;y1(«), ..., P;(a), and therefore P;(«),..., Py(a) is

random given that Piyj(«),..., P,(«) is random.

Now, recall Equation 1. Pj(«) is well defined given «, P(«), and the values of Py(«v), . .., P.(«).
Therefore to simulate the client’s view we choose random values for Py(«),..., P,(«) and
compute P;(«) according to Equation 1. O

Note on oblivious transfer: The security provided by Protocol 3.4 depends on the
security of the oblivious transfer protocol. Universally composable OT protocols obviously
result in a secure OPE protocol, since the choices of the receiver in the invocations of the
OT protocol define the a single point in which it can evaluate the polynomial. Invoking an
information theoretic OT protocol results in an OPE protocol which provides information
theoretic security for the sender. In this case the receiver cannot learn more than a single
point of the polynomial, but it might not be possible to extract it. Finally, it is also
possible to use OT protocols that provide computational security for the sender, in which
the receiver’s input is extractable if the OT invocations are done sequentially. In this
case, however, the protocols must be invoked sequentially in order to enable to extract the
receiver’s input from the OPE protocol.

4 Applications of Oblivious Evaluation of Polynomials

There are two types of applications in which oblivious polynomial evaluation is useful. The
first is where the receiver obtains a value from a k-wise independent space. For many
applications such values are as good as truly random or pseudo-random values. The second
type is where it is desired to preserve privacy in cryptographic protocols that require users
to obtain a value of a polynomial held by the sender, without revealing the choice to
the sender. We give examples of both types of applications below. We also give a short
description of the use of the protocols of this paper for obliviously computing ¢"'®), where
P is a polynomial.
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4.1 Obliviously Computing a Polynomial in the Exponent

In some scenarios it might be required to let the receiver compute the value of g* (*) where
g is a generator of some group, P is known to the sender and z is known to the receiver.
This computation is likely to be useful for cryptographic protocols that are based on the
Diffie-Hellman assumption [20].

All the protocols described in this paper can be readily applied for this computation.
The only change is for the sender to provide the receiver with values of ¢f(*) = ¢@5@))
instead of values of R(x) = Q(x,S(x)). The receiver needs to interpolate these values to
compute g0 = ¢P(@) She can do so by computing

dp+1 dr+1
d ,+1 .. Z .. l 'L .
gRO :gzg Ai-R(i) _ H g RO = H (gD
i=1 i=1

where the values {)\i}?jfr L are the appropriate Lagrange coefficients.

4.2 Comparing Information Without Leaking It

Imagine two parties, A and B. FEach of the parties holds a particular name (e.g. of a
“suspect” from a small group of people). The two parties would like to check whether they
both have the same input, under the condition that if the inputs are different they do not
want to reveal any information about them (except for the fact that they are different).
The main obstacle in designing a protocol for this problem is that the domain of inputs,
e.g. names, is probably small enough to enable a brute force search over all possible inputs.
This problem was thoroughly discussed by Fagin, Naor, and Winkler [23], with subsequent
constructions by Crépeau and Salvail [17].

To specify the function more accurately, if the parties’ inputs are («, [3), respectively,
then their outputs are (1,1) if a = 3, and (0,0) otherwise. In the case of malicious parties
we relax the requirement and say that while for & = 5 the outputs can be arbitrary (since
a malicious party can always change its input), in the case of inputs o # 3, the output of
the honest party must be 0. I.e., the malicious party cannot convince it that the inputs are
equal. Oblivious evaluation of linear polynomials can be used to construct a very simple
solution to this problem.

Protocol 4.1 (Privacy preserving comparison of information)
e Input: Denote A’s input as « and B’s input as .
e Party A generates a random linear polynomial Pa(-).
e Party B generates a random linear polynomial Pg(-).
o The parties execute the oblivious polynomial evaluation twice, switching roles.

— In the first invocation A obliviously learns a value of B’s polynomial (she should
choose to learn Pp(c).)

— In the second invocation B obliviously learns a value of A’s polynomial (he should
choose to learn Py(3).)
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e The parties compute and compare the two values, Pa(a) + Pg(a) (computed by A),
and Pa(B) + Pg(B3) (computed by B).

o If a = (3 then the two values are the same, otherwise they are different with probability

1/|F| (where F is the field over which the polynomial is defined).

For semi-honest parties, privacy is preserved since the parties compare values of the function
P4(x) + Pp(x) that has the following properties (which are trivial to prove):

e The function is pair-wise independent.
e Each party only computes Ps(z) + Pp(z) once.
e Each party computes Ps(z) + Pp(z) without revealing x to the other party.

In the case of malicious parties, the proof is simple if the protocol uses an OPE protocol
which enables the extraction of the receiver’s input. Namely, given a TTP (trusted third
party) which computes the function in the ideal model, we can simulate the joint distribution
of the malicious party and the output of the other party: Assume that Alice is malicious.
We extract her input « from her invocations of the OPE protocol and provide « to the T'TP.
If the answer is 1 we continue the protocol by evaluating her polynomial at § = «, sending
the value P4(a) + Pp(«) to the comparison, and fixing Bob’s output based on the result of
the comparison. (Note that in the case of a malicious Bob, who computes a value of Alice’s
polynomial after letting her evaluate his, we cannot extract Bob’s input before evaluating
Pg(). We can, however, execute the OPE of Bob’s polynomial twice in the simulation, learn
Pg() completely, and then be able to compute any value of Pp() and use it to provide the
right value to the comparison.). If the answer of the TTP is 0 then we provide a random
value to the comparison.

Note that even if the OPE uses an OT protocol which provides information theoretic
security for the sender, but no extraction of the receiver’s input, a malicious party can eval-
uate the honest party’s polynomial in at most a single point. In this case, if the evaluation
point does not match the input of the honest party, then with high probability the output
of the protocol is 0. We don’t know, however, how to extract the evaluation point. (It
might even be possible that the malicious party has some computational representation of
the other party’s input, such that it can evaluate the OPE in the right point but does not
have an explicit knowledge of the value of its input.)

Application to passwords: This protocol can serve as a basis for a mutually authen-
ticated key exchange based on (possibly weak) passwords. Consider a user who wishes to
login to a remote server over an insecure network. She does not want to send her password
in the clear, and is not even certain that the remote party is the required server. An addi-
tional problem is that the password might not have enough entropy and might therefore be
susceptible to dictionary attacks. Assume that there is no PKI (Public Key Infrastructure),
and that the user does not carry with her a public key of the remote server. There have
been several initial solutions to this problem (see e.g. [6, 45]), for which it seems a security
proof must postulate the existence of a Random Oracle.
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The most natural formulation of the scenario is as a “comparing information without
leaking it” problem. If the right user contacts the right server they both should be “think-
ing” of the same password, and they can verify whether this is the case using Protocol 4.1.
Therefore, if it is assumed that there is no active adversary, and that the only operation
of the adversary is to listen to the communication between the two parties and then try to
impersonate the user, then Protocol 4.1 can be used for password authentication. Further-
more, it can be used to generate a session key for the two parties, whose entropy does not
depend on the entropy of the passwords.

In more detail, each of the parties, the user and the remote server, chooses a random
linear polynomial and (obliviously) computes the sum of the two polynomials at x = pass-
word. They use the first half of the output for authentication and the second half as a
session key.

If the adversary can also be active, i.e., change the communication sent between the
two parties, then the above protocol is insufficient. Although the adversary cannot decrypt
the messages sent between the parties (e.g. in the invocations of the oblivious transfer
protocol), it can change them and cause the output of the oblivious transfer protocol to be
different, but related, to its legitimate output. The adversary can use this feature to attack
different invocations of the protocol that are being executed in parallel. Our protocol can
serve as a basis for a protocol that prevents such attacks, which must address delicate issues
such as the non-malleability [19] of the oblivious transfer protocols. Elaborate definitions
and constructions of such protocols were given in subsequent work (see, e.g., [33, 53]).

4.3 Anonymous Initialization for Metering

A scheme for efficient and secure metering of clients’ visits to servers was suggested in [48].
This scheme involves clients which send requests to servers, and a trusted, off-line, audit
authority. Servers prove to the audit authority that they fulfilled requests (e.g. served web
pages) to a certain number of clients. On a very high level, the operation of the scheme is
as follows:

e The audit authority generates a random bivariate polynomial P(x,y), where the de-
gree of x is k — 1.

e Each client u receives from the audit authority initialization data, which contains a
univariate polynomial P(u, ).

e When u sends a request to a server S (e.g. visits its web site) it sends it the value
P(u,S).

o After k requests of different clients, S can interpolate the value P(0,.S) which serves
as a proof for serving k requests.

A modification of this scheme described in [48] preserves the anonymity of clients towards
servers. However, if the audit agency cooperates with a server S they are able to identify
clients which access the server, since the audit agency knows which polynomial is owned by
every client. Combining this scheme with oblivious polynomial evaluation enables the client
to learn the initialization data from the audit agency without revealing to the agency which
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initialization value (i.e. polynomial) was learned by the client. If this method is employed,
then even a coalition of the audit agency and a server is not able to link different requests
by the same client.

4.4 Anonymous Coupons

Consider the following scenario. An organization wants to set up an anonymous complaint
box for its personnel, but would like to ensure that each person complains at most once (for
example, if there are ten complaints about the quality of the coffee machine, they should
be from ten different people and not ten complaints of the same person). A solution for
this problem is to give each person an anonymous coupon that he or she should attach to a
submitted complaint. When a complaint is received the coupon is checked for validity and
freshness, namely it is verified that it is a valid coupon that was not previously used.

Anonymous coupons can be constructed using oblivious polynomial evaluation.? The
coupon manager sets up a polynomial P of degree d. Each person A obtains a coupon by
choosing a random secret value R4 and obliviously computing P(R4), using an oblivious
polynomial evaluation protocol in which the coupon manager is the sender. The coupon is
the pair (R4, P(R4)). It is easy for the coupon manager to verify that a coupon (X,Y") is
valid, by simply testing whether Y = P(X). The coupon manager also keeps a list of the
coupons that were received, and compares each new coupon to that list in order to verify
that it was not used before.

The system is secure against a coalition of corrupt users that attempt to generate fake
coupons, as long as the coalition has at most d different coupons. The degree of the
polynomial, d, should therefore be set in accordance with the potential size of a corrupt
coalition of users.

A corrupt coupon manager might attempt to identify the owners of coupons by using
a different polynomial for each person. Namely, for every user A it might use a different
polynomial P4 for the oblivious evaluation protocol. When it later receives a coupon (X,Y)
it attempts to identify its owner by checking for which polynomials P4 it holds that ¥ =
P4(X). Since users evaluate the polynomial at random points, this attack can be prevented
by ensuring that the sender uses the same polynomial in all oblivious evaluation protocols,
for example using the verifiable secret sharing techniques of Feldman [24] or Pedersen [55].

Acknowledgments

We would like to thank Sanjeev Arora, Daniel Bleichenbacher, Dan Boneh, Oded Goldreich,
Yuval Ishai, Amit Klein, Ronitt Rubinfeld, Madhu Sudan, and the anonymous referees that
reviewed this paper.

2 Another construction for this problem can be based on using blind signatures: Each user prepares
in advance coupons by letting the central server sign them using a blind signature scheme(e.g. Chaum’s
scheme [13], or the scheme of Juels et. al. that can be based on standard hardness assumptions [36]). A
complaint must be accompanied by a signed coupon. The server verifies the signature, and also verify that
this coupon has not been used before.
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